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Adiabatic Theorem and Spectral Concentration
I. Arbitrary Order Spectral Concentration for the Stark Effect in Atomic Physics

G. Nenciu*
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Abstract. The spectral concentration of arbitrary order for the Stark effect is
proved to exist for a large class of Hamiltonians appearing in nonrelativistic
and relativistic quantum mechanics. The results are consequences of an
abstract result about the spectral concentration for self-adjoint operators. A
general form of the adiabatic theorem of quantum mechanics, generalizing an
earlier result of the author as well as some results by Lenard, is also proved.

1. Introduction

This is the first in a series of papers devoted to the study of some asymptotic
phenomena appearing in the spectral theory of linear operators and in the theory
of evolution equations in Hilbert (or, more generally, Banach) spaces. Common to
all the papers in the series will be the method employed which is, we believe, a new
and rather general way of performing the asymptotic expansions. In a less abstract
form, the basic ideas of our method have already appeared in [1-3].

In this paper we shall prove two results. The first one (Theorem 1) gives the
existence of asymptotically invariant subspaces (see Sect. 2 for precise definitions)
for a class of families, H,, ¢=0, of self-adjoint operators in Hilbert spaces. For
finite dimensional asymptotically invariant subspaces our result has a close
relation to the abstract theory of spectral concentration as developed in [4, 5] (see
also [6, Chap. VIII, Sect. 5] and [7, Chap. XII]). The second result (Theorem 2) is
an adiabatic theorem “to an arbitrary order” generalizing a recent result of the
author [1] as well as some results of Lenard [8].

As an application of Theorem 1 we shall prove the existence of spectral
concentration of arbitrary order for the Stark Hamiltonians of atomic physics:
atoms and molecules, impurity states in solids, relativistic hydrogen atom etc., as
well as for Hamiltonians describing barrier penetration phenomena.

Concerning the Stark effect in atomic physics, some remarks are in order. In
the framework of the abstract theory of spectral concentration, Riddell [4] and (in
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a less explicit form) Conley and Rejto [5] gave criteria for the existence of the
spectral concentration of order p, p=1,2,.... For p=1 the hypotheses of the
Riddell-Conley-Rejto criterion are easily verified for the Stark Hamiltonian of
general atoms and molecules (see [ 7, notes to Chap. XIL5]). For p> 1 the situation
seems to be less clear. The hypotheses of Riddell-Conley-Rejto criteria implying
the spectral concentration of arbitrary order, have been verified by Riddell [4] and
Conley-Rejto [5] for the hydrogen atom and by Rejto [9] for the helium atom.
Their verification is not very simple even for the hydrogen atom, and it is really
complicated for the helium atom. Moreover, we are not aware of a published
verification for more general situations. However, it is a simple matter to verify the
hypotheses of Riddell-Conley-Rejto criteria, implying the spectral concentration
of arbitrary order for general Stark Hamiltonians appearing in atomic physics.
More exactly, the assumptions of Theorem 1, which are readily verified (see
Sect. 3) are easily seen to imply the Riddell-Conley-Rejto hypotheses (see Sect. 2).
Of course, we cannot exclude that the existence of the arbitrary order spectral
concentration for general Stark Hamiltonians was known as folklore, prior to our
proof and to the other recent results we are now going to quote. Namely, recently
the complex and powerful machineries of dilatation analyticity, translation
analyticity and complex scaling have been used to obtain a remarkably detailed
description of the Stark effect in hydrogen [10-13]. Moreover, similar results for
arbitrary atoms are announced [13]. The price one has to pay is that the proofs

are far from being simple and depend on some peculiar (and remarkable)
2

. e d
properties of the concrete hamiltonians involved | e.g. the fact that — pe +eéx has
X

empty spectrum for Ime=+0 [11]).
Section 2 contains the main results. Section 3 contains applications to the
Stark effect and to the barrier penetration phenomena. For the sake of simplicity,

we shall not state and prove the results in the most general form. Some simple
extensions are pointed out in Remarks.

2. The General Theory

We shall start with the following definition.

Definition 1. Let H,, P,, ¢ 20 be families of self-adjoint operators and orthogonal
projections, respectively, in a Hilbert space, #, satisfying the conditions:

i) lim | P, — Py =O0. @.1)
ii) Let p be a positive integer. There exist ¢, <o, &,>0 and bounded self-
adjoint operators B, defined for ¢€[0,¢,] such that
Bl <c,ef™t 22
and P, are invariant subspaces of H,+ B,. Then the family P,s# of subspaces is
said to be an asymptotically invariant family of subspaces of order p for H,.

1 After the first version of this paper was finished, Graffi and Grecchi published [14] results similar
to those announced in [13]
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Remarks. 1. The definition requires that P,3# is an invariant subspace of H,,.

2. For ¢ sufficiently small, dimP,=dimP,. The case dimP,=oc0 appears
naturally in some problems of solid state physics [3]. For dimP, < co there is a
close connection between the above definition and the spectral concentration.

Definition 2 [4, 5]. Let A, be an isolated eigenvalue of H, with finite multiplicity m;
J=[o, f] an interval containing A, but no other points of the spectrum of H,;
E (%) the spectral measure of H,; P, the spectral projector of H, corresponding to
205 and p a positive number. Then

i) The spectrum of H, contained in J is said to be concentrated to order p

provided there are sets C,CJ such that s—li_{ré (E(C,)—Py)=0and liné e Pu(C)=0

(u denotes the Lebesque measure).

ii) The set of unit vectors {¢,(e)}¢mF, ¢, (e)e 2(H,) is said to be an asymptotic
basis of order p for E,(J) if:

a) lim (1 Po)p &) =0, lim (¢e), ¢ &) =3,

b) there are real numbers A(e) such that

lime~?|[(H,~ 4(&)e )| =0, i=1,2, ..., dim P,

The vectors ¢,(e) and the numbers 1,(¢) are called pseudo-eigenvectors and pseudo-
eigenvalues, respectively.

The main result of Riddell [4] (see also [5] for the proof of the “if” part of the
theorem) reads

Theorem R1 [4]. Under the conditions described in Definition 2, the spectrum of H,

contained in J is concentrated to order p if and only if there is an asymptotic basis of
order p for E(J).

As one expects, the existence of asymptotically invariant subspaces implies the
spectral concentration.

Proposition 1. Suppose that :

i) H, has an asymptotically invariant family of subspaces of order p, with P,
corresponding to an isolated finitely degenerated eigenvalue A,

ii) H,—~H in the strong resolvent sense [6] as e—=0. Then in every interval J
containing Ay but no other points of the spectrum of H,, the spectrum is concentrated
to order p.

Proof. For ¢ small enough dimP,=dimP,< co and then
exp(—i(H,+ B)t)P . H =P H

implies that there exist 4(¢), ¢ (), j=1,2, ...,dim Py, (¢,(e), 9 () =4, » @ e)eD(H,),
{o(e)}§imfe is a basis in P,#, and

ji=1
(H,+ B)pe)=2e)¢ ). (2.3)
Then (2.1), (2.2) imply that {¢(&)}$"° is an asymptotic basis of order p and the

spectral concentration is implied by the “if” part of Riddell’s theorem.
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Remarks. 3. The condition dim P, < oo in Proposition 1 is crucial. For an example
of what can happen when dimP,= oo see [3].
As expected, P, are almost invariant under the evolution given by H,.

Proposition 2. Suppose H, has an asymptotically invariant family of subspaces,
P .#, of order p. Then
(1= P,)exp(—iH P, Sc e’ el 24

Proof. The inequality (2.4) follows from Definition 1 and
exp(—iH,t)=exp(—i(H,+ B,)t)

t
+1i [ exp(—i(H,+ B,)(t —t')B,exp(—iH,t')dt’.
0

In particular if P,=(¢,, )@, is one-dimensional, then due to (2.4), ¢, has, for small
a rather long lifetime. This, together with the fact that ling |P,— Pyl =0 says, in

the language of physicists, that ¢, describes a metastable state.

Suppose now that H, is of the form H,-+eX, where H,, X, are self-adjoint
operators in . The problem is to find conditions on pair H,, X, under which one
can prove the existence of asymptotically invariant subspaces for H, The
following heuristic discussion gives a hint. Let t,(X,;-) be the automorphism of
%(A) (the Banach algebra of bounded operators in ) given by

(X g3 A)=exp(iX o)A exp(—iX yt) (2.5)

and adX, its generator. Suppose that Hjeker(adX,) in the sense that
(Hy—z)" *eker(adX,) for all ze o(H,). Then all the invariant subspaces of H,, are
invariant subspaces of H,. On the other hand, if X, is bounded, i.e., the domain of
adX, is the whole #(5¢), then for an arbitrary H, the usual perturbation theory
provides convergent sequences of asymptotically invariant subspaces of H,. By
some rearrangements of the perturbation series one can see that objects like
(adX,)"(H,—z)~ ! appear. The above extreme situations suggest that, when X is
unbounded, one may still hope that some sort of perturbation theory can be
performed if (H,—z) " 'e 2((adX,)?), p=1,2, .... That this is indeed the case says
Theorem 1 below. Before stating the theorem, let us remark that
(Hy—2)" e D((adX ,)?) is equivalent with the fact that t,(X,; (H,—2z)" ') is p times
norm differentiable with respect to t.

Theorem 1. Suppose that:
i) H,=H+eX is essentially self-adjoint on 2(Hy)ND(X,).

il) 7,(Xo;(Hyxi) ™) is p+1 times norm differentiable.

iii) There exist, — o0 <A, <1, <0, such that the spectrum o, of H, has the
properties: 6, =05U0dg, 06CLA;,A,], dist(ap,03)=d>0.

Let P, be the spectral projection of H, corresponding to oy. Then H, has
asymptotically invariant families of subspaces, of order q, PI3#, q=0,1,...,p with
Pi=P,.

Proof. For simplicity, and having in mind the examples in Sect. 3, we shall consider
the case p=co. The proof is by construction and is divided in a series of steps.

1. We shall start with the following, almost trivial lemma.
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Lemma 1. Let H,(t) be defined by
exp(ieX o) Hy exp(—ieX ot) =Hy(t), Ry(t;2)=1,X¢;(Ho—2)"")

be its resolvent and P(t)=r1,(X,; Po) its spectral projection corresponding to cy.
Then Ry(t; z), zeo(H ), Po(t) are infinitely norm differentiable and there exist finite
constants by ,(z), ¢o ,» m=1,2, ... such that

ar dar

E[—m RO(Z ’ Z) = ” [W Ro(t > Z)]t= . = bo’m(Z)ﬁm s (26)
a ar
W Po(t) = l [W PO(t)L Y é Co,mgm . (27)

Proof. For z= =i, (2.6) holds by hypothesis. For arbitrary ze g(H,), one has to use

the identity .
Ro(t; 2)=Roft; 20)[ 1+ (2= 20)Ro(t3 20)] 1. 2.8)

Finally, (2.7) follows from (2.6) and the usual formula relating the resolvent and
spectral projections.

2. We shall use the following construction, which has been given by Kato
L6, 15].

Lemma 2. Let P(t) be a norm differentiable family of orthogonal projections, with
norm continuous derivative.
1) If K(t) is defined by

K(t)=i(1— 2P(t))% P(t), (2.9)
then K(t) is self-adjoint.
ii) The equation
i%A(t) =K(@)A@F); A@0)=1 (2.10)
has a unique solution satisfying A~ (t)=A*(t) and
P(t)=A(t)P(0)A*(z). (2.11)
3. Let K,(t), Ao(t) be given by Lemma 2 applied to P,(t) and
By=¢"1K(0). (2.12)

Note that || Byl| =c,, ;. Consider now the self-adjoint operator
X, =X,+By; 2X,)=2X,). (2.13)
By the Stone theorem, for all fe 2(X,)

i%(exp(isxot) exp(—ieX 1)) f = K,(t)exp(ieX ot) exp(—ieX 1),

which together with Lemma 2 implies

Ay(t)=expl(ieX yt) exp(—ieX 1). (2.14)
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From (2.11), (2.14) one has

P, =exp(ieX t)P, exp(—ieX 1), (2.15)
which implies that for fe 2(X,)n2(H,)
Po(Hy+eX,)f —(Hy+eX )Py f=0. (2.16)

Since H,+eX;=H,+¢B, is essentially self-adjoint on 2(X,)n2(H,) it follows
that
[Py, exp(—i(H,+¢Bo)t)] =0, (217)

which says that P? =P, is asymptotically invariant of order zero for H.,.
4. Consider now H(¢) given by

H ()= A5(0)[Ho(t) — Ko()]A(). (2.18)
From the identity
R(t;2)=(H,()~2)""
=AFOR,(t; 2)[1 — Ko(OR (5 2)] 7 Ao(t) (2.19)

and Lemma 1 it follows that R,(¢; 2) is infinitely norm differentiable. Note that if
H (¢) is defined by

H,(e)=H,—¢B,,
then
H,(t)=exp(ieX ;)H () exp(—ieX ;1)
H,=H,(e)+eX,.

5. For e<gy=d/2||B,| the spectrum of H,(e) is still separated and we can
repeat the whole construction. Obviously one can continue this process inde-
finitely. Namely, for n=0, 1, ... starting from H, written in the form

H,=H, (¢)+eX,, (2.20)
where o(H,(¢)) =0,=0,Uad?; dist(a}, 62)>0 (o} coincide with ¢} in the limit ¢—0),
we define

P"=the spectral projection of H,(¢) corresponding to o},
H (t)=exp(ieX ,)H (e) exp(—ieX t),
P, (t)=exp(ieX )Pl exp(—ieX,t),

K,(0=i(1~2P,(0) & P, (),
(2.21)
i 40=K040;  4,0=1,

B,=¢ 'K,(0),
H,, (e)=H,(e)—¢B,,
X, 1=X,+B,.
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Obviously
H8=Hn+ 1(8)+5Xn+ 1>
H,, (0= A30OLH,(0) — K,()]4,(0),

and the whole procedure can be carried further as far as

8<snEd/2(gn:0 HBjH)

[which assures that the spectrum of H,,,(¢) is still separated]. Since by
construction

[P} exp(—i(H,+¢eB,))]=0, (2.22)

the only thing we have to do in order to finish the proof of the theorem is to obtain
bounds on |B,|, n=0,1,....

6. The needed bounds are consequences of the following Lemma which is the
main (and only) technical point of our paper.

Lemma 3. Let I be a contour (of finite length) surrounding o}, satisfying dist(I', o)

=d/2. Then there exist constants b, ,,, ¢, ,; p=0,1,...; m=1,2, ... such that for
e<e,_y (by definition ¢_ =o0) and zel'
da" _
;i—t,;Rp(t; 2)| b, " R(t;2)=(Hy(t)—2)"", (2.23)
—{n—P ol Zc, " (2.24)
dtm p =Cp,m * )

Proof. The proof is by induction over p. The case p=0 is contained in Lemma 1.
Suppose (2.23), (2.24) be true for p—1. Then (2.23) for p follows from a formula
similar to (2.19) relating R (t; z) and R,_,(t; z) and the induction hypothesis. For
(2.24) the following observation [1] is crucial. From

P,_()=A,_,()P,_ (0)4*_ (1

it follows that P,_,(0) is the spectral projection of A}_ (t)H,_(t)4,_(t) corre-
sponding to ¢l_, for all teIR. Then one can write

p- L
Pp(t) - Pp— 1(0) = (27[1)— IA;I;— 1(t)

~H(Hp_l(t)—Kp_l(t)—z)_le_l(t)Rp_l(t; 2)dz|A,_,(1). (2.25)
Now, (2.25) and the induction hypothesis implies (2.24) for p to be true and the

proof of the Lemma is finished.
7. From the definition of K (t) and (2.24) for m=1 it follows

IB,ll=c, 67, &<e,_y, (2.26)

which finishes the proof of the Theorem 1.
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Remarks. 4. One can relax the condition that ¢f be bounded, but then one needs

Ry(t52)

pId to have sufficiently rapid decrease in dist(z,d,), to assure the

convergence of integrals appearing in d?Po(t).
5. The whole proof works for H, of the type
H,=H,+X,(e)

as long as Ry(t;z)=1,X,(e); (Hy—2)"') is infinitely norm differentiable and
satisfies (2.6).

6. The assumption ii) of Theorem 1 already implies that 2(H,)n2(X,) is dense
in #. In fact, we suspect that it implies assumption i). The assumption i) has been
used to obtain (2.17) from (2.16). If H, + eX ; has several self-adjoint extensions and
dim P, < co, then (2.16) implies (2.17) for any self-adjoint extension of H +&X,,.

Formally, the recurrent construction in the proof of Theorem 1 is the following

2.27)

X,41=X,+B,; H,,,(e)=H,e)—¢B,.

The observation in (2.25) is nothing but
[PLX,1=[PI-PI" X ]. (2.28)

If X, is Hy-bounded, one expects that the recurrent construction (2.27)
converges.

Proposition 3. Suppose that

i) X, is Hy-bounded.

i) H, satisfies the spectrum condition iii) of Theorem 1. Let I" be the contour in
Lemma 3,

b=(d/2)sup |Xo(Ho—2)" 1|, k=(1/2m)[|dz|, ao=4bk/d.
zel r

Then for e<d?*/(2%kay)=z¢,, (229)
B, =(&/2¢.)"aq . (2.30)
Proof. The proof is by induction. Note that | B,|| < a,.
n—1 -1
Denoting a,= | B,| using R,=R, [1 —8( Y Bi) RO} and the fact that b<a,,
i=0
we have from (2.28)
n—-1 =2n—1
a,<8¢kd %a,_, (1 ~2ed™ 'Y, ai) Yoa; n=12.. (2.31)
i=0 i=0

as long as

n—1
2ed™' Y a;<1.

i=0
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Then (2.30) follows from (2.29) and (2.31) by induction.

Proposition 3 shows that for regular perturbations the construction in
Theorem 1 is nothing but a different way to perform the perturbation theory.
Moreover, using (2.27) and (2.28) one can give a “time independent” proof of
Theorem 1. Translated in the “time independent” language, Lemma 3 says, in
particular, that (H,(e)—z)~*, P%, B,, n=0,1, ... are all in 9((adX,)*). Using this,
the recurrent construction given by (2.27), (2.28) and the identity

(A+B—z)"'=(A4~2)"" i (= 1)(B(A—z)""Y
j=o

(=N Y (A—2) "' BN (A+B—2)71,

one can easily see that for arbitrary integers n, N (and sufficiently small ¢)
N
pPi=3 P/ +e¥ T 1PR(e), (2.32)
j=0

where P} does not depend on ¢, and all P}, 13"N(8) are in P(adX ).
Due to (2.26)

P'}=P;+1, j=091>---an9
which together with (2.32) shows that
Pl= j;o Pl +e"" 1P (e), (2.33)
where P; does not depend on n and e Moreover, by construction

lim_‘s(}lp I 13,,(8) | <o and .
e P,# CHH,); P)H CD(H,).

Suppose now X, to be H,-bounded and let P, be the spectral projection of H,
corresponding to the part of the spectrum which coincides with ¢} in the limit
&¢—0. By the usual theory of perturbation [6, Chap. II, Sect. 2]
¢ =1 -1 j -1
P,=Y &2 [((Hy—2) 'Xo)(Hy—2) 1dz.
i 2ni 1

=0

By Proposition 3, [|P,— P||~¢&""!, which together with (2.33) implies that P; are
nothing but

(—1)J(1/2mi) [ (Hy—2)" X o) /(Hy —2)" dz,
r
rewritten in a form which still has a definite meaning even if X, is not bounded

(but of course the hypotheses of Theorem 1 are fulfilled). Let us check this
explicitly for P,. Writing

Xo=PXoPy+(1—Py)X,(1—Py)—B,,
and taking into account that

(Ho—2) 'PoXoPo(Ho—2)"1,  (Hy—2)"'(1—Po)Xo(1—Po)(Hy—2)" !
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are analytic outside, respectively inside I, it follows that

J(Hy—2) X o(Hy—2)" tdz=— ;(Ho—z)_lBO(HO——z)“ldz,

r

which is the desired equality.

Suppose now g to be an isolated eigenvalue with finite multiplicity. In this
case more detailed results can be obtained. More exactly, we shall briefly outline
the proof of the fact that for an arbitrary integer n, one can construct an
asymptotic basis of order n having the form

pe)= Z (pi,jej +0(e"" )
j=0

Afe)= Z li,jgj +O(e" * 1)

Jj=0
i=1,2,...,dimP,.

The proof consists in reducing the problem to a finite dimensional one, in close
analogy with the theory of regular perturbations [7, Chap. XII, Sect. 2].

Consider, for sufficiently small ¢, the operator [16, 6, Chap. II, Sect. 4 and
Chap. VIII, 2]

A7 =[1~(P;—Po)* 1™ PPy + (1= PY)(1 = Py)).
Using (2.33) one can write for A7 the expansion
A'=1+ j; Al +e" 1A, (e). (2.34)
From the corresponding properties of P,, 13,,(8) it follows that
A, A (e D@dX,); j=1,...,n,
/ o (2.35)
A CDHy), Ale)# C2(H,).
It is easily verified that A} is unitary and
AP AT =P,

which together with (2.22) implies that Pys# is an invariant subspace of
A(H,+¢B,)A}. Defining the “reduced” hamiltonian, H’ 4(¢) by

H:led(s) = POA:*(HS + SBn)AgPO >

one can write, using (2.34)

M=

H :ed(‘g) =

J

Hed+e" " HE (). (2.36)

0

Some care is to be taken at this point to make sure that all the operators appearing
in the right hand side of (2.36) are well defined. All of them have the form
P,Q*YQP, where Y is either a bounded operator, H, or X, and Q is 1, 4; or A4,(e).
Due to (2.35) the terms containing H, give no difficulties. Concerning terms
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containing X, one has to observe that X ,QP,=[X,, Q1P,+ QX P, and due to
(2.35) the only thing one has to prove is that X, P is bounded. For further use we
shall prove more, namely that X3P, is bounded for m=1,2, .... Indeed, from

exp(itX o )Py =exp(itX o)P, exp(—itX o) exp(itX ),

it follows that for ¢ D(XY), exp(itX ,)Po¢ is m times differentiable so that XGP,, is
bounded on 2(X{) which implies XTP, to be bounded due to the fact that P, is
finite dimensional (if dim P, = co, in general not even X P, is bounded).

Let y(e), p(e), i=1, ...,dim P, be the eigenvectors and eigenvalues of ) H #
j=0
(considered as an operator in P,5#). Due to the Rellich theorem [6, Chap. II,
Sect. 6; 7, Chap. XIL.1] p{e) and ue) are analytic in a neighborhood of ¢=0 so
that

wi(l‘:) = Z wi,jej 5 ui(s) =
j=o

Clearly A(e)=p/e), @e) = A *p,(e) have all the desired properties.

At this point we can make the connection with the following result obtained by
Riddell [4] and by Conley and Rejto [5], concerning the existence of asymptotic
bases.

Theorem R2. Suppose H, is essentially self-adjoint on D =D(H )NnD(X ) and let H,
be a self-adjoint extension of H,+eX defined on D. If, under the conditions
described in Definition 2, all the operators X X, ...X,P,, where X, is either the
reduced resolvent of H, at Ay, S, either SX, are bounded, then the perturbation
method yields an asymptotic basis of order n.

Since the hypotheses in Theorem R2 are nothing but the conditions needed for
solving the formal Reyleigh-Schrodinger perturbation equations, one can expect
that these hypotheses are implied by the hypotheses of Theorem 1. Indeed, as
already said in the introduction, it is easy to see that this is true. Using the
following formula [6, Chap. II, Sect. 2] for S

_ 1 -1 -1
S_Z—m';(Ho 2) " Yz—Ap) " ldz,

it follows that Se2((adX,)®). Consider now an operator of the form
X X, ...X,P, After commuting X, past all the reduced resolvents, one is left with
X%P,, g=<n which is bounded.

Remarks. 7. As already said, using (2.27) and (2.28) one can give a “time
independent” proof of Theorem 1. We preferred the above proof, since with few
modifications it gives also a rather general form of the adiabatic theorem in
quantum mechanics, which in some sense is the generalization of Theorem 1 to
time-dependent Hamiltonians (see Theorem 2 below). Here we shall state and
prove the adiabatic theorem only for bounded Hamiltonians, in order not to
obscure the simplicity of the proof. In the second paper of this series we shall
consider the general case of unbounded time-dependent Hamiltonians, where
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some technical points related to the possible nondifferentiability of the unitary
propagators arise [7, Chap. X.12].

8. Under the conditions of Theorem 1, one cannot expect to obtain bounds on
¢, 1 1n (2.26) as a function of p. In the third paper of this series we shall explore the
consequences of replacing condition ii) of Theorem 1, by the following stronger
one: Ry(¢; z) is, as a funtion of ¢, analytic in the strip [Im¢ <a for some a>0, or in
other words (H,—z)~ ! is an analytic vector for adX,.

Theorem 2. Let H(s), se I=[0,S] be a norm continuous family of bounded self-
adjoint operators satisfying the conditions
1) o(H(s)=0(s)wa(s),

infdist (o,(s), 0,(s))=d>0.
sel
ii) R(s; +i)=(H(s)Fi)~ ' are infinitely norm differentiable.
Let U (s) be the unique solution of the Schrodinger equation

dU ()
ds

ie =H(s)UJ(s); U 0)=1,

and P(s) be the spectral projection of H(s) corresponding to o (s).
Then, for every positive integer q, there exist e,>0, a,< oo and orthogonal
projections P(s) defined for 0<e=e, such that

lim || P5(s) — Po(s)]| =0,

(2.37)
|ULPY0)~ POV Sayse;  sel.

Proof. Let H(t) be defined by H(t)=H(et). The construction in the proof of
Theorem 1 gives H,(t), P,(t), K, (t), A,(t) and the existence of a,, g, such that

IKOlIsaet™; te[0,e7'S]; 0<eZe,; g=0,1,.... (2.38)
q—1
Denote Z,(t)= [] A4t), ¢g=1,2, ...,
i=0
Bo()=Ko(1); B, (t)=Z (K ()Z(1) (2.39)
and

-1

q
HYt)=H )+ Y. B(); q=12,.... (2.40)
i=0
By construction

HYt)=Z(OH () ZX(1).

Let Pi(t) be the spectral projection of H%(t) corresponding to the part of the
spectrum which coincides with ¢,(f) in the limit ¢—0. Obviously

PYt)=Z,(t)P () ZX(0). (2.41)



Adiabatic Theorem and Spectral Concentration. I 133

Let U(t), V,(t), W,(¢) be defined by

U@®)=U,[et); te[0,e715], (2.42)
V(0= ATOHOAVD:  V0=1, 243
Uity=2 q(t)A LOV(1) W(1). (2.44)

By construction, since P¥(0)= P (0),
and hence
LV,(0), P{(0)]=0. (2.45)

By construction
. d
i W0 = = VEOAZOK,04,0V,0W0),

which together with (2.38) gives
(W) -1 =a,tle?™ . (2.46)

On the other hand from (2.41) and (2.45)
Z, (A, 0V(0PH0)=PYO)Z (DA, ()V,(1),
which together with (2.44) and (2.46) implies
IP{e)U(t)— U()PAO)| Sa,te*™*, (2.47)
which is nothing but (2.37) with the identifications (2.42) and Pi(s)=P¥e " 's).

Remarks. 9. Suppose that H(s) is constant in some neighborhoods of 0 and S. Then
Py(0)= P;(0), Py(S)=P;(S) for all g and in this case (2.37) for s=S$ reduces to an
infinite-dimensional generalization of Lenard’s results [8].

3. Applications

1. Let M be a positive integer and o= {o; f“F , be a real, strictly positive M x M

matrix. Consider in the Hilbert space L*(IR™) the operators T, V, X, defined by
T='i aPP;;  Po=—i0/0x;; Xx=(Xy,...,Xp); k=12,...,M,
o 3.1)
VNHx)=V(x)f(x), (3.2)
X0 /)0x) = (ji opx ,.) £, ceR (3.3)

on their natural domains. Suppose that V is T-bounded with relative bound less
than one, so that T+ V is self-adjoint on 2(T) [7, Chap. X.2].
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Proposition 4. The operators Hy=T+V and X, defined by (3.1)~(3.3) satisfy the
conditions i), ii) of Theorem 1.

Proof. For condition i), see [7, Theorem X.38]. For condition ii): remark that

H(t)=exp(ieX t)H, exp(—ieX ot)
M
= Y aP+ect)(Pj+ect)+V, (3.4
i,j=1
from which the verification is straightforward. Obviously, this example covers the
Stark effect in arbitrary atoms and molecules (see for example the form of the
. - 1
Hamiltonian in Zhislin’s theorem [7, Theorem XIIL7]). For M =3, a,;= %BU,
V(x)=V,(x)+ V,(x), where V, is periodic and locally L? (see [7, Theorem XII1.96])
and V,e L3 (R*)+ LP(R?), 2<p < oo, the above example describes the Stark effect
for impurity states in solid state physics.
2. (The Dirac Equation.) The Hilbert space is (L2(R3))%,

3
T= )Y oP,+pm; P,=—id/0x,, (3.5)
i=1

1

where o,, § are the Dirac 4 x 4 constant matrices

V)= ¥ Vow): V=700, (36)
=1
and
(Xow>,-<x>=(z cjxj)wi(x>, 5= (1, Xy ) (3.7)
=1

Again we shall suppose that V is T-bounded with relative bound less then one so
that H,=T+ V is self-adjoint on 2(T).

Proposition 5. The operators H,, X, defined by (3.5)3.7) satisfy the conditions i),
ii) of Theorem 1.

Proof. For i) see [17]. For ii) see the proof of Proposition 4.
3. (Barrier Penetration (for details see [18]).)
Consider in L*(IR?) the operators

H,= — A+ V() +Xo(e)=Hy +X,e) (3.8)
with Ve L?(R?) and
Xo(@)f)x)=K(exp(—elx)—1)f(x); K>0, &>0. (3.9)

Suppose that H, has eigenvalues in (— K, 0). For all ¢>0, (— K, 0) is contained in
the continuum spectrum of H,. As ¢—0 the spectrum of H, contained in (— K, 0)
shows arbitrary order spectral concentration. In this case the self-adjointness
problem is trivial. Concerning the condition ii) in Theorem 1 see Remark 5.
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