
Communications in
Commun. Math. Phys. 81, 501-513 (1981) Mathematical

Physics
© Springer-Verlag 1981

Capacity and Quantum Mechanical Tunneling

S. Albeverio1, M. Fukushima2, W. Karwowski3, and L. Streit4

1 Mathematisches Institut, Ruhr-Universitat Bochum, D-4630 Bochum,
Federal Republic of Germany
2 College of General Education, Osaka University, Japan
3 Institute for Theoretical Physics, University of Wroclaw, Poland
4 Fakuίtat fίir Physik, Universitat Bielefeld, Federal Republic of Germany

Abstract. We connect the notion of capacity of sets in the theory of symmetric
Markov process and Dirichlet forms with the notion of tunneling through the
boundary of sets in quantum mechanics. In particular we show that for
diffusion processes the notion appropriate to a boundary without tunneling is
more refined than simply capacity zero. We also discuss several examples in IRd.

1. Introduction

In recent years the theory of symmetric Markov processes has been developed
considerably using the connection with the theory of Dirichlet forms, see [1] and
references therein. In particular the case of processes over an open set in Rd, given
by local generators with singular coefficients (that need not be functions nor
generalized functions) has been studied. The usefulness of this approach for
quantum theory has been pointed out in [2-5, 29]. It permits the definition of
quantum dynamics in situations where the approach via a potential perturbing a
kinetic energy term does not work, due to the singularities of the potential or the
fact that the potential is neither a measurable nor a generalized function, like in
cases of zero range potentials considered in nuclear physics and solid state physics
(see e.g. [12-14], and references therein). This is an extension of the usual
approach to the definition of Hamiltonian inasmuch as in the cases where the
Hamiltonian can be defined as a sum of a kinetic energy term and a not too
singular potential, the approach by Dirichlet forms is equivalent with the
traditional one [15, 6, 7, 2, 3, 8-10]. Another advantage of the approach to
dynamics via Dirichlet forms is the fact that it extends to the case of infinitely
many degrees of freedom (see [6, 3, 16] and references therein; see also [17-20]).
Moreover it gives an immediate connection with the theory of diffusion processes,
the Hamiltonian appearing as the infinitesimal generators of such processes,
therefore making available for quantum theory results of this very well studied
chapter of modern probability theory. In the other direction this connection
suggests developments in the theory of diffusion processes. This connection can be
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seen as a new form of the relation of probabilistic and analytical methods, a sort of
development of the original one which schematically could be condensed in the so
called Feynman-Kac formula. New questions suggested by the above approach to
dynamics have led to a new approach to stochastic equations [4, 1, 21].

To close this opening remark let us recall that the theory of Dirichlet forms and
symmetric Markov processes is the natural framework for stochastic mechanics,
which in turn is an alternative foundation of quantization (see e.g. [22] and
references therein). Among the problems that arise naturally by looking at the
mentioned connection between quantum theory and the theory of Dirichlet forms
and Markov processes is the one of understanding the behaviour of both the
quantum mechanical particle and the associated process at the singularities. This
study began in [4] and was pursued in [5], in particular by analyzing to what
extent a given process with a singular generator can be approximated by those
with smooth generators. As discussed in [4] to the quantum mechanical particle in
IRd is associated a diffusion process. This process can be taken to have state space
IRd ([1], the exceptional polar sets arising first in the construction act as traps from
inside and are not hit from outside). Capacity zero sets are not hit by the process.
In quantum mechanics on the other hand there is the well-known phenomenon of
nontunneling at singularities of the potential. This has been studied in detail in one
dimensional models (see e.g. [23-25]). It is quite natural to ask about the
connection between nontunneling and capacity zero sets.

It turns out that the relation is more subtle than one might think at first. In
fact, roughly speaking, there is no tunneling between two adjacent regions of space
if and only if the boundary can be enclosed in the closure of a decreasing sequence
of open sets of small capacity. This is a much finer condition than the boundary
having capacity zero. This paper is dedicated to the detailed analysis of these
problems. Note that whereas the one dimensional situation can be analyzed both
probabilistically and analytically by Feller's method, in the more dimensional
situation such a direct method is not available, and in this case our method
clarifies the situation by providing concrete criteria.

In Sect. 2 we define tunneling through the boundary between two adjacent
regions of ]Rd by the property, roughly speaking, that quantum mechanical
transitions are possible between the two regions. This property is put in
connection with the direct decomposition of the associated Dirichlet form. A
relation with Silverstein's concept of proper invariance [26] is also pointed out.

Section 3 contains the two main results of the paper. First, in the general
situation of a regular Dirichlet form, not necessarily local, i.e. not necessarily
associated with a diffusion process but only in general with some Hunt process, we
give a sufficient condition for the boundary between two adjacent regions of IRd to
have the property of being enclosed in a decreasing sequence of closed sets with
small capacity. This property is then shown in the local case, i.e. in the case of a
diffusion process, to be a sufficient condition for nontunneling. Conversely if there
is nontunneling and the associated process is a diffusion process then the above
property regarding the boundary holds.

In Sect. 4 we study several examples. In the one-dimensional case we show how
our criteria permit us to study such situations on the line where one has
nontunneling or tunneling in relation to the singularities at the origin. A situation
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when one has nontunneling and yet positive capacity is exhibited. The prob-
abilistic interpretations are also given.

In the more dimensional case we discuss several examples exhibiting a very
rich structure of behaviour. Again, examples of tunneling or nontunneling are
given.

2. Quadratic Forms and Tunneling

Let Jf be a Hubert space and 3tfγ be a closed subspace of Jf with 2/eγ + {0}. Let
jf2 = j ^ θ ^ i be the orthogonal complement of ^ in j f and let P{ be the
orthogonal projection onto Jf i ; i = l , 2 .

Let (Up ίeR) be a one-parameter strongly continuous unitary group acting in
Jf, with infinitesimal generator A so that Ut = e~ιtA. We shall say that Ut is reduced
by the splitting $e = 2/ei®#ei iff Ut leaves both Jf 1 and Jf2 invariant, i.e. Ut

commutes with the projections P , ί = 1,2. Note that the commuting of Ut with P
for some z already implies that Ut is reduced. It follows from the definition of the
infinitesimal generator that Ut is reduced by the above splitting iff A and P
commute in the sense that APif = PiAf for all feD(A), z=l,2. This implies in
particular D(A) = D1(A)®D2(A) with Di(A) = D(A)njei, i = l,2. It is also well
known that Ut is reduced by the splitting J^ = jfxφj^2 iff all the spectral
projections EΛ

9 A E R of A commute with Pt, hence iff any bounded functions of A,
defined by the spectral theorem, commute with P . Moreover the semigroup
(Tt = e~tA,t>0) commutes with P iff Ut is reduced.

Now let A be a positive self-adjoint operator in ffl. We easily see by the
spectral theorem that Ut is reduced iff All2PJ = PiA

ll2f for all feD(A112).
There is a well known surjective correspondence between positive self-adjoint

operators A on a Hubert space ffl and symmetric bilinear positive closed forms E.
The correspondence is given by

where (, ) is the scalar product in Jf and E(f g) is the evaluation of the form E at /
and g in D(A1/2) = D(E). Let Ei(f,g) = (A1/2Pif,A

1/2Pigl for all f,geD(A1/2Pi).
We shall now prove the following

Lemma 2.1. 77ιe following statements are equivalent:
1) Ut = eτitA is reduced by the splitting ^ = ^ f 1 0 j r 2 .
2) E = EX@E2 in the sense that feD(A1/2) implies PJeD(A1/2) and

for all f9geD(A 112)

Proof If Ut commutes with P , then we saw above that by the spectral theorem
A112 commutes with P on D(A1!2\ in the sense that Aυ2Pif = PiA

υ2fϊoτ all
feD(Am). Then, for all fgeD(A1/2)

HAmP1fA
ιl2P2g)^(All2P2fA

ll2P,g)
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Conversely suppose E(f,g) = E1(f,g) + E2(f,g) for all f,geD(A112). Note that
feD(A) and Af = h iff feD{Am) and E{f,g) = (h,g) for any geD(A1/2). We then
see from the assumption that E{Pίf,g) = Eί{f,g) = E(f,P1g) = (h,Pίg) = (P1h,g\
which implies PJeD(A1/2) and APίf = Pίh = PίAf. D

We shall now consider the special case where Jf7 = L2(Ώ, m), where Ω is some
nonvoid open subset of the J-dimensional Euclidean space lRd and m is a positive
Radon measure on Ω, strictly positive on any non-void open subset of Ω. Let Ω1 be
any m-measurable subset of Ω, and let Ut be a one-parameter group of strongly
continuous unitary maps of L2(Ω, dm). We shall say that there is nontunneling
through the boundary dΩλ (of Ω1 in Ω) under the action of Ut iff L2(Ω,m)
= L2(Ωvm)®L2(Ω-Ωvml and Ut is reduced by the splitting of L2(ί2,m). In the
following we shall be interested in situations where the quadratic form E is a
Dirichlet form in the sense of [1]. Let us first recall the definition of such forms.
Let Ω and m be as above. According to [1, Chap. 1.1, p. 5] a Dirichlet form on
J^ = L2(Ω,m) is any positive definite symmetric bilinear form E on 3^ which is
densely defined, closed on Jf and which has the contraction property
ueD(E)=>E(υ,v)^E(u,u), with U = ( 0 V W ) Λ 1 . Let A be the unique self-adjoint
positive operator A such that E(£f) = (A1/2f, A1/2f) for all feD(A1/2) = D(E). By a
well-known result (see [1, Chap. 13, Theorem 1.4.1]) Tt = e~tΛ, £^0 is a symmetric
Markov semigroup on L2(Ω, m) in the sense that Tt is self-adjoint and 0 ^ TtfS 1
wherever 0 5* / ^ 1, feL2(Ω, m). Viceversa any symmetric Markov semigroup Tt on
L2(Ω, m) comes from a Dirichlet form in the sense that, calling — A its infinitesimal
generator so that Tt = e~tΛ

9 then (A1/2f,All2f) is a Dirichlet form.
By the above definitions we have that Ut = e~ιtΛ is reduced by a splitting

3f = J4?ι®34?2 iff Tt commutes with the orthogonal projectors on Jf ί and in turn
this is equivalent by Lemma 2.1 with the corresponding Dirichlet form
E(f,f) = (All2f,A1/2f) being reduced by this splitting. Moreover if Ωx is an open
subset of Ω and there is no tunneling across dΩγ under the action of Up we shall
say shortly that there is nontunneling (with respect to £, Tt or Ut).

We shall now put our notion of nontunneling in connection with the concept of
a proper invariant subset introduced by Silverstein [26, p. 9]. We can extend the
Markovian operator Tt on L2{ΩV m) for any non-negative measurable function /
For a measurable function /, we let Ttf = Ttf

 + — Ttf ~ whenever the right hand
side makes sense. Then by symmetry and the Markov property Tt is extended to a
contraction on Lp(Ω,dm) for all 1 ̂ p ^ oo.

In the definition and discussion of proper invariant sets below we shall
use this extension of Tt and denote it again by Tt. According to [26, p. 9] a Borel
subset Ω1 of Ω is said to be proper invariant (relative to a given Dirichlet form E or
equivalently to a given symmetric Markov semigroup Tt) if w^Ω^φO,
m(Ω — ί2 x )φ0 and moreover TtχΩι^χΩι for all ί > 0 , m-a.e. Note that, by the
symmetry of Tp one immediately has that Ωx is proper invariant iff Ω2 = Ω — Ω1 is
proper invariant. Suppose now E is reduced by the splitting L2(Ω,m) = L2(Ωvm)
®L2(Ω2,m). This is equivalent with Tt commuting with the projectors P. onto
L2(ΩV m) and one can identify P f with the operator of multiplication by χΩ. in
L2(Ω,m). But TtPJ^PtTJ for all feL2(Ω,m) implies the same equation for'all
m-measurable /such that Org/rgl, hence, since P f7Jl^P flm-a.e. we have TtPJl
^P flm-a.e., i.e. Ωλ is proper invariant.



Capacity and Quantum Mechanical Tunneling 505

Conversely, suppose now Ωx is proper invariant, then TtχΩ.^χΩi, i = 1,2, m-a.e.
Multiplying by χΩί we then get χΩTtχΩl = 0, χΩTtχΩι = 0, m-a.e. Since \χΩTtχΩJ{x)\

^H/llooZί3 2

7ϊWΛ ;)= = ( ) m- a e f o r feL^ w e a l s o s e e t h a t XoJtXo^0 as an
operator on L2(Ωi,m).

Similarly we prove XΩίTtχΩ2 = 0. Then (χΩιTt-TtχΩί)f = χΩlTtχΩJ + χΩlTtχΩ2f
-TtχΩιχΩJ-TtχΩίχΩ2f = (χΩι-l)TtχΩ1f = χΩTtχΩιf = 0 for all /eL2(Ω,m). This
then shows that Tt commutes with Pv hence also with P2. Hence we have shown
that E is reduced by the splitting iff Ωx is proper invariant. Finally we remark that
E reduced by the above splitting is equivalent with nontunneling through dΩv

since χΩi is identified with the projection onto L2(Ω2, m).
We summarize these results in the following:

Lemma 2.2. Let J^ = L2(Ω,m\ where Ω is an open nonvoίd subset of IRd and m is a
positive Radon measure on Ω, strictly positive on any nonvoid open subset of Ω. Let
E be a Dirichlet form on L2(Ω, m) and let A be the associated positive self adjoint
operator so that E{ff) = {All2fA1/2f\ feD{A1/2) = D{E). Let Ωx be an
m-measurable subset of Ω, let Ω2 = Ω — ΩV Let J^?

i = L2(Ωi,m). Then nontunneling
across dΩx with respect to the splitting J^ = ̂ 1®^f2 is equivalent to Ω1 being
proper invariant.

Remark. Silverstein [26, p. 10] calls E irreducible if there are no proper invariant
subsets of Ω. A closely related notion is discussed by Faris and Simon [28]. Tt is
called indecomposable if there are no Ώi? m(Ωi) φ 0 such that Tt is reduced by the
splitting L2(Ω,m) = L2(Ωvm)®L2{Ω2,m). In particular they show that in such a
case A cannot have a degenerate ground state.

3. Capacity Zero Sets and Tunneling

Let Ω be an open nonvoid subset of IRd and let m be a positive Radon measure on
Ω, strictly positive on any nonvoid open subset of Ω. Let E be a Dirichlet form on
L2(Ω,m). E is said to be regular if D(E)nCc(Ω) is dense in D(E) in the
E{1)(f f) = E{f / ) + (/, / ) norm and in CC(Ω) in supremum norm, where CC(Ω)
denotes the space of continuous functions of compact support on Ω. Associated
with any regular Dirichlet form E there is a notion of capacity Cap {B\ defined for
any subset BCΩ. For later use we recall its definition (see [1, Chap. 3.1]). If B is
open, define

Cap(B)ΞΞoo if ^B = {ueD(E)\u^lm-a.e. on B}

is void and C a p £ = inf E{1)(u,u) if J ^ Φ 0 . For any BCΩ define Cap(B)

= infί7, the infimum being taken over all open subsets U of Ω such that
UDB. It is known that Cap is then a Choquet capacity: for this and other
properties of Cap, see Chap. 3.1 of [1].

We denote by dB respectively B the boundary, respectively the closure of a set
B CΩ. We have the

Theorem 3.1. Let Ω be a nonvoid open set in IRd and mbe a positive Radon measure
on Ω, strictly positive on any nonvoίd open subset of Ω. Let E be a regular Dirichlet
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form on L2(Ω,m). Consider a nonvoίd open subset Ωx of Ω and suppose that
χΩigeD(E) for any geD(E)nCc(Ω). Then there exists a decreasing sequence 0n of
open subsets of Ω such that 0n35ί21 and Cap(0π)—>0 as n->oo.

Proof Denote dΩx by C and let Cκ = CnK for any compact set KcΩ. Since E is
regular, there exists a function ge Q)(E)r\Cc{Ω) such that g = 1 on a neighbourhood
U of K. By assumption, χΩί g belongs to @)(E). According to Theorem 3.1.3 of [1].
XΩI'9 admits a quasi-continuous version h. Namely, there is for any ε > 0 an open
set 0 ε cΏ with Cap(0ε)<ε such that the restriction of h to Ω — 0ε is continuous
there and h = χΩί-g m-a.e.

Suppose that Cκn(Ω — O J Ξ Q is nonvoid. Then V=Un(Ω — 0ε) is a neigh-
bourhood of Cκ and h is continuous on V. Since χΩχ-g is identically 1 on an open
set VnΩ1 and h = χΩί-gm-a.e., /ι(x) = l for any xeVnΩ1. In the same way we see
h(x) = 0 for any xe Vn(Ω — Ω1). But this means that /ι is discontinuous at any point
of Cκ, arriving at contradiction. Therefore Cκ C 0ε.

Let Ω be covered by a countable union of compact sets Kκ and let Ck = CnKk.
00

Then C = (J Ck. For each n and fc we can find an open set O^CΩ such that

Cap(OjJ)< - ^ - and CfcCθ^. By the construction above we may assume that 0£ is

decreasing in n. Then 0n= M 0k has the desired property with Cap(Oπ)<- . D

Remark 1. The assumption in Theorem 3.1 is a necessary condition for nontunnel-
ing through δΩv by virtue of Lemma 2.1. We shall see conversely that if E is a local
regular Dirichlet form in the sense of [1] (see below before Theorem 3.2 for the
definition), then the conclusion in Theorem 3.1, coupled with some mild additional
condition implies nontunneling though dΩv

Remark 2. Any Dirichlet form having C™(Ω) as a core can be written

« f du(x) dυ(x)
E(uv)^ X ί V(dx)

+ if (u(x)-u(y))(v(x)-v(y))J(dxdy)+$u(x)v(x)k(dx), (3.1)
Ω*Ω-D Ω

where vίp i j = l, ...,d are Radon measures (not necessarily positive) on Ω such

that for any /lelRd and any compact set KcΩ one has X / l ^ v^XJ^O and
u

vfj.(K) = v^K). J is a positive symmetric Radon measure on
ΩxΩ — D = {(x, y)eΩxΩ,x + y} such that for any compact set K and any open set

Ωo with JFCC£20C£2, one has j \x-y\2J(dxdy)<oo, J{K,Ω-Ω0)<co. k{dx) is
KxK-D

a positive Radon measure on Ω. Eo is obviously regular (see [1, Theorem 2.2.2]).

Remark 3. It is interesting to notice that the condition geD{E)nCc{Ω)=>χΩίgeD{E)
of Theorem 3.1 is equivalent with the following seemingly weaker condition, which
we call condition R for shortness:
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For any point xoeδΩ1 one can find a continuous function gXQ{ ) on Ω with
gXo(x) + 0 for all x in some neighbourhood of x0 in dΩx (with the topology induced
on dΩ1 by the one on Ω) and one has gXQeD(E) as well as χΩίgXoeD(E).

Clearly the condition of Theorem 3.1 implies this one, using the regularity of E,
as pointed out in the proof of Theorem 3.1. To prove the converse, observe that the
functions in Lco(m)r\D(E) form an algebra [1, Theorem 1.4.2]. On the other hand,
the condition # X o Φ0 in a neighbourhood of xoedΩ1 permits us to construct, using
the assumption and the fact that if ueD(E) then WΛ 1ED(E\ functions in D(E)
which are equal to χΩί on some open subset of Ω1 with boundary including a
portion of dΩ1 in some compact of Ω.

In the following we shall need to recall a few more notions from the theory of
Dirichlet forms and the associated symmetric Markov processes. For any Borel set
B with Cap(B) < oo we shall denote by eB the 1-equilibrium potential of B [1, p. 75)].
Then Caip(B) = Eί(eB, eB). We have [1, Theorem 4.3.5, p. 106)] that Pι

B(x) = Ex(e-σB)
is a quasi-continuous version of eB, where σB is the hitting time of B for the Hunt
process ξt uniquely (up to equivalence) associated with a regular Dirichlet form E
(see [1, Chap. 6, p. 173]), and Ex is the expectation with respect to the process
started at xeB. Then PB(x) is the (1 - ) hitting probability of B.

We shall now consider local Dirichlet forms. We recall the definition [1, p. 6].
A Dirichlet form E is said to be local if E(uvu2) = 0 whenever uteD(E\
supp(M1dm)nsupp(w2dm) = 0, suρp(w.dm) compact, ί==l,2. For local Dirichlet
forms we have the following

Theorem 3.2. Let Ω and m be as in Theorem 3.1 and let E be a Dirichlet form on
L2(Ω;m) which is not only regular but also local. Consider an open subset Ωx of Ω
and suppose that there is a decreasing sequence of open subsets 0n of Ω such that
Cap(0J->0 as n~+co and 0nD dΩ^n. Then if each 0n separates Ωx and Ω — Ωx in the
sense that any continuous path connecting a point in Ωλ — 0n and Ω — Ω1—0n should
cross 0n and if m(δΩ1) = 0J then there is nontunneling through dΩv

Proof Let εn be a sequence decreasing to 0, such that Cap(0w)<εM.Without loss of
_ °° _

generality we can assume the 0n are decreasing, OnD5i2l5 and that f] 0n — dΩv
n=l

According to [1, Chap. VI], there exists a diffusion process (a Hunt process with
continuous sample paths) M = (Xt, Px) on Ω associated with the Dirichlet form E.
The transition semigroup PJ of M is a version of the ZΛsemigroup

Since Cap(0n) decreases to 0, we now see in the same way as in the proof of
Theorem 4.3.1 of [1] that

Pχίlim σ0n = oo\=l m-a.e. xeΩ,
\n-»co )

where σOn denotes the hitting time to the set 0n of the sample paths. Let xeΩ and
let B be any Borel subset of Ω such that x and B are separated by all the 0n. By the
assumption σOn^σ^P^-a.e. for any xeΩv so that we obtain

Px{σB~co) = \ m-a.e.
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which in turn implies

pt(x,B) = 0, i.e. (e~tΛχB)(x) = 0 m-a.e. xeΩ1.

Hence, if m(dΩ1) = 0, TtχΩ. = χΩ.Tt, proving the nontunneling. q.e.d.

Remark 6. From the proof of Theorem 3.2 we see that the assumption that the 0n

separate Ω1 and Ω — Ω1 in Theorem 3.2 can be weakened in the following sense. 0n

may be such that any continuous path connecting Ωt and Ω — Ωί has to pass either
through all 0π or through one of at most countably many disjoint subsets of the
boundary, provided each of these subsets has 0 capacity.

Remark 7. In both Theorems 3.1 and 3.2 we can replace everywhere the capacity
relative to the Dirichlet form E by the capacity with respect to the part of the
Dirichlet form E on any open set V containing dΩv For the definition of this
concept of part of a Dirichlet form see [1, p. 111]. The reason for the possibility of
such a replacement is the same as in the proof of Theorem 4.4.2 in [1, p. 111]. This
remark is useful for the estimate of capacities, as we shall see in the next chapter.

Remark 8. Consider the assumptions of Theorem 3.2 without m(dΩι) = 0.

We can divide the points of the boundary dΩι into two disjoint Borel subsets

L/1? U2, with U^dΩ.f]^ U2=\J(dΩίnd0t).
n n

Then by the assumption Cap(0M)->0 we have Cap((71) = 0, hence m(Ul) = 0.
Hence the assumption m(dΩι) = 0 can be replaced by the assumption that
m(L/2) = 0. If we drop this assumption then we can only conclude from the proof
that XΩlTtχΩ-ΩLrUι=χΩ2TtχΩ-Ω2-U2 = 0, thus the process starting from xeΩ, does
not reach Ω — Ωγ nor the part Ui of the boundary (but could reach U2).

4. Some Examples

Let us first consider the 1-dimensional situation where Ω is an interval in 1R,
Ω = (0, b\ - oo S a <0 < b S oo. Let Ω1 = (a, 0), then dΩλ = {0}. Let m be a Radon
measure on Ω, positive on any open interval. Consider the form

E(u,u)=Uu'(x)2ρ{x)dx, ueC?(Ω),

where ρ is a non-negative function on Ω. Suppose that the form E is closable on
L2{Ω;m). Sufficient conditions for this are given in [1,4,27]. Its closure is denoted
by E again, it is a particular regular local Dirichlet form and is called an energy
form. We let Id = (0J) for 0<d<b.

Lemma 4.1. 1) // there exists a b'(<b) such that ρ(x)^2Cx2y, xelb>, for some
positive constants C, γ with 0<γ<\, then l imCap/ d >0.

diO

2) // there exists a b'(<b) such that ρ(x)^2Cx, xelb>, for some positive
constants C, then lim Cap(/d) = 0.

diO

Proof 1) Denote by CapF the capacity associated with the part of E on the interval
V = (a,b'). According to the proof of [1, Theorem 4.4.2], it suffices to show the
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assertion for CapF (see also Remark 7, Sect. 3). To compute Capv(K) for a compact
interval KCV, we use the following formula (cf. [1, pp.76]):

where D£ = {ueC*(F) :w=l on K}. Take any c, d such that 0<c<d<b ' . Then, for
K = ίc,d],

v
Cap F (K)^ inf C\u'2x2ydx.

ueD£ d

The right hand side is attained by the solution u of the Euler equation (2ur

x 2 y ) '=0, u{d)=l u(b') = 0, namely, by M(x) = ( ( b / ) 1 ~ 2 y - x 1 "
which gives

Thus C a p ^ / J ^ C a p ^ K J ^ C A b ' ) 1 " 2 7 , which is independent of d.
2) Let us compute Cap(K) for K = [c, d] with 0 < c < d < b\ Take any c\ d' such

that 0<c'<c<d<d'<b' and consider the space L= {ueC™(c\d'):u = 1 on (c,d)
and O^w^l on (c',<i')}? then clearly

Cap(K) ̂  inf Eγ(u, u) ̂  inf £(M, M) + m{ld)
ueL UGL

^ i n f C J u2xdx + m{Id).
"eL [c',c]u[d,d']

The infimum is attained by the solution u of the Euler equation (2ιιx)' = 0, namely
by

( l o g - l o g - , c<x<c

(log— log — , d<x<d\
\ a j x

Thus C * Cap(X) g log - + log — + m(Id). Now letting c'lQ and setting
\ ^ / \ d ]

d' = 2d( < 6'), C " ! Cap(7d) ̂  (log 2) ~ ι + m{I2d), which decreases to zero as d[0. q.e.d.
Combining this lemma with Theorems 3.1 and 3.2, we immediately get the

following:

Theorem 4.1. 1) If there exists a positive constant C such that the inequality

holds either for any xe(0,d) for some d>0 or for any xe(d,0) for some d<0, and
moreover m{0}=0, then there is nontunneling through 0.

2) // there exist positive constants C, y with 0 < y < ^ such that the inequality

holds for any xe(d1,d2) for some d1<0<d2, then there is tunneling through 0.
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Remark ί. According to the Feller classification of the boundary of the one
dimensional diffusion, the origin 0 is a regular boundary of (0, b') in the first case of
Lemma 4.1, while it is a non-exit boundary in the second case. In fact the local

generator of our diffusion is expressed as with ds = -ρ~idx.
dm as 2

Hence s(0, d) is finite in the first case of Lemma 4.1 and infinite in the second
case, d > 0. In the particular case dm = ρdx we have that if there exists a b'( < b) such
that ρ(x) = 2cx2y, xelb then 0 is an entrance boundary, a natural boundary if y = \
(and regular for y<f).

Remark 2. In the second case of Theorem 4.1, the capacity of the origin 0 is
positive. An interesting case arises when the inequality in Theorem 4.1, 1) takes
place for positive x, while the inequality in 2) holds for negative x. Then Cap(0) is
still positive by virtue of Lemma 4.1,1), but if m({0}) = 0 then there is nontunneling
through 0 by virtue of Theorem 4.1. By the observation made in the proof of
Theorem 3.2, we see that the associated diffusion admits no communication
between positive real and negative real in this case.

We know (from Remark 1 for instance) that the sample paths in this case can
hit the origin from the left but cannot from the right. If the paths could go through
0 from the left, then, by symmetry of the diffusion, they should do so from the
right, which is a contradiction. Therefore sample paths arriving at 0 from the left
have no way but reflection, at least when the measure m does not charge the
boundary.

The preceding method to test tunneling still works for higher dimensional
diffusions, to which the one-dimensional methods like Feller's test are no more
applicable. Let Ω be a two-dimensional rectangle, Ω = (a,b)x((x,β), — c o ^ α < 0
<frgoo, - o o ^ α < β g o o . We let Ωί={a90)x(<z,β). Then dΩ^ = {(xiy):x = 09

a<y<β}. Let m be a Radon measure on Ω positive on any nonvoid open set. We
consider the form

E(u, u)=U(u2

x+ u2)ρ(x, y)dxdy, ue C?{Ω),

where ρ is a non-negative function on Ω. Just as in the one dimensional case, we
suppose that the form E is closable on L2(Ω m). Its closure (denoted by E again) is
a regular local Dirichlet form.

As before we let Id = (0,d) for 0<d<b.

Lemma 4.2. 1) Assume that there exists a b'(<b) such that

ρ(x,y)^2x2?C(y), xelh,, ot<y<β,

where y is a constant with 0<y<^ and C(y) is a non-negative function of y with
β'

j C(y)dy>0 for any α', β' such that oc<a' <β' <β. Then

limCap(/dx(α/,jS'))>0
diO

for any α', β' as above.
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2) Assume that there exists a b'(<b) such that

ρ{x,y)S2xC(y), xelh.9 a<y<β,

where C{y) is a locally integrable non-negative function of y. Then

limCap(Jdx(α',j8')) =
diO

for any α', β' as above.

Proof. The proof is essentially the same as the proof of Lemma 4.1.
1) Let V = (0, b') x (α, β) and K = [c, d~\ x

Then

β' fb' Λ

CapF(K)Z inf j \ \ux{x,y)2x2ydx\ C{y)dy.
ueDVa' [d J

As we saw the proof of Lemma 4.1,1) the integral in the braces dominates C/(b')x ~2y

for each ye (α', /?'), and so we see

CapF(/d x (α', β')) £ — L ^ f C(y)dy,
\P) a'

which is positive independent of d>0.
2) Let K be as above and take any c', d', α", jS'' such that 0<cf <c<d<d'<b

and oc<a"<(x'<β'<β"<β. Choose any function veC™((χ'\β") such that u = l on
(α',j8') and O^ί ^ l on (α",^").

Then adopting the same function class L as in the proof of Lemma 1, we see

17 \ ίβ" \
S inf E^w.w)^ inf ] j u / 2 x ώ fi)2C(j)ψ

w = u®v,ueL w = u®v [\[c',c]u[d,d'] I \a" I
UQL

u2xdx\U (v')2C(y)dy)

Thus, setting M = sup {v>2)(y\ we have

a" <y<β"

Cap(/d x (α", β")) ύ (Iog2)"r | C(y)dy
α"

β"

+ 2d 2 M I C(j;)d3; + m(I2d x (αr/, j8")),
a"

which decreases to zero as d[0. q.e.d.

Combining Lemma 4.2 with Theorems 3.1 and 3.2, we arrive at the following:

Theorem 4.2. 1) // there exists a locally integrable non-negative function C(y) of y
such that the equality
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holds either for any (x, y)e(0, d) x (α, β) for some d >0 or for any (x, y)e(d9 0) x (α, /?)
for some d<0 and if m(dΩ1) = 0, then there is nontunneling through dΩv

2) If there exist a constant y with 0 < γ < \ and a non-negative function C{y) of y
β'

with j C(y)dy>0 for any ot\ β' (α<α'<β' <β) such that the inequality

holds for any (x,y)e(d1,d2)x(<x,β) for some d1<0<d2, then there is tunneling
through dΩ1.

Remark. In Theorem 4.2, 1) we just considered the case where ρ satisfies the
inequalities in a rectangle to one side of the y-axis. However the same result can be
obtained e.g. when ρ satisfies ρ(x, y) ̂ 2\x\C(y) for all (x,y)e(0,d) x(δ,β) and all
(x,y)e(— d,0) x (α,δ), for some <x<δ<β. This corresponds to different situations in
Theorem 3.2. Such an example can easily be extended to the case of several
rectangles, some at one side and others at the opposite side of the y-axis. Extension
to the cases where dΩx is a curve are also possible. The extension of Theorem 4.2 to
the case of parallelepipeds in IRd is also immediate.
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