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A Poisson Random Walk is Bernoulli*
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Abstract. Particles distributed on the integers in Poisson distribution, each
independently taking a random walk, form a stationary Markov chain. The
canonical shift in this space is Bernoulli.

1. Introduction

Consider particles distributed onZ with Poisson distribution, parameter 1. (That
is for each neZ, there is a nonnegative number ωn of particles on n. The values
{ωn)nez a r e independent identically distributed (i.i.d.) random variables, each
with Poisson distribution parameter 1.) Let each particle take a random walk,
described as follows. (Results can be shown to remain valid for any random walk
but we choose this one for simplicity. A discussion of generalizing this result to
arbitrary random walk will be made in a closing remark at the end of this paper.)
We let each particle stand still, move one step forward, or one step backward,
each with probability 1/3. They all move independently. Then the particles will
remain Poisson distributed. By continuing this procedure we obtain a sequence
of configurations {X.} e W , where each X. is a Poisson-distributed Ω- valued random
variable, where Ω = N z , N = {0,1, 2,...}. Since {X.}.^ forms a stationary Markov
chain, we can extend the process to a stationary Markov chain {Xι}ieΓ This process
will henceforth be called Poisson Random Walk, abbreviated P-walk. The shift
{Xi}->{Yi}, Yt = Xi+1 for all i, is a stationary shift. Here it is shown to be a
Bernoulli shift.

My result can easily be extended to a process where particles are labeled by
their past and future, thereby strengthening a result of Goldstein and Lebowitz
(Theorem 5.3, page 10 of [1]).

2. Probabilistic Statement of Theorem to be Proved

Let {Xi}ieZ be as in the Introduction. The theorem proved by this paper is

Theorem 1. {Xj ί e Z is Bernoulli.
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The purpose of this section is to reduce this theorem to a probabilistic statement.
Ω = Nz. For any ωeΩ and any finite set S <= Z; let ωs be the restriction of

ω to the set S. Thus, when we speak of the particles of (X^ we mean the particles
of X. which lie on S. (X.)s refers to the function taking each neS to the number of
particles which lie on the integer n at time I

From a theorem of Ornstein, Theorem 4, p. 53 of [3], it follows that if the
process {(Xi)s}ieZ is Bernoulli for each finite S c Z , then the entire process {Xt}ieZ

is Bernoulli. By definition, a process is Bernoulli if it is isomorphic to an inde-
pendent process. However, that condition is difficult to check so instead we use
here a condition which is equivalent.

The condition we use is Shields' alteration of the very weak Bernoulli condition
of Ornstein [2]. Proving that condition for the {Xf}s process is easily seen to be
equivalent to proving the following theorem.

Theorem 2. Given ε > 0 and a finite set S cz Z, we can construct a sequence of jointly
distributed random variables {(Xp ^ t )}/ e 2 such that

1) {Xi}i<0 and {Yi}ieI are independent.
2) {XJ J y j are both P-walks.
3) P((Xn)s φ (Yn)s) < εfor all sufficiently large n.
Thus the remainder of this paper is a proof of Theorem 2.

3. Proof of Theorem 2

First construct the {Y.} process and construct {^J,< 0 to be independent of
the {Y.} process. We allow the particles of Xo to take a random walk in order to
form configurations Xl9 X2,.... As the definition of P-walk implies, the particles
of Xo walk independently of each other. However, we will allow their walk to
depend upon the walk of the Yo particles as follows.

A one-to-one correspondence between a certain subset of the Yo particles
and a certain subset of the Xo particles will be established. The uncorresponded
Xo particles will walk independently of all Yo particles and all other Xo particles.
Each corresponded Xo particle will similarly walk independent of all other particles
until it meets its corresponding Yo particle (i.e., until the two particles are both
on the same integer). This will eventually happen with probability 1 because the
difference between the positions of the two particles takes a symmetric, aperiodic
random walk with bounded step sizes; all such walks eventually reach zero. Once
the corresponded Xo particle meets its corresponding Yo particle it will continue
to move exactly as does that Yo particle so that the two particles will stay together
from that time onward.

In order to complete the definition of {Xt} process, all that remains is to choose
the subsets of Xo and Yo which we will correspond and to exhibit that corres-
pondence. Choose L > 0. We will later specify how L is chosen more precisely. Let

Our correspondence will consist of a correspondence, for each k, between the

elements of a subset of the particles of (X0)Ik and those of a subset of the particles
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of (7 0 ) / k . (Recall that (X0)Ik are those particles of Xo that lie in lk) Let N(X, k)
(respectively, N(Y,k)) be the total number of particles of (X0)Ik (respectively,

The subset we choose from {X0)Ik will consist of Nk particles of {X0)Ik randomly

chosen in a uniform manner, i.e., for any given set of Nk elements of Xo, we will

choose that set with probability 1 /( ' j where ί ] is the binomial

coefficient

N(X9k)\

Nk\(N(X,k)-Nk)l'

In a similar uniform manner choose Nk particles from (Y0)Ik Since both sets have
Nk members, arbitrarily choose a bijection between them. This set of bijections,
for all fc, collectively forms one large bijection of a subset of Xo with a subset of Yo.
This completes our construction of a {X., Y J ^ Q process satisfying conditions
1 and 2.

We now check condition 3.P((Xn)s ± (Yn)s) UP (at time n, S contains un-
corresponded Xo particles) •+• P (at time n, S contains uncorresponded Yo particles)
+ P (at time n, S contains corresponded Xo particles which have not yet met their
corresponding Yo particle) + P (at time n, S contains corresponded Yo particles
which have not yet met their corresponding Xo particle).

Let A,Aι,B,Bι be the four terms of the right-hand side of the above inequality
in order. By symmetry, A = A1,B = Bί. To complete the proof of Theorem 2
we need only show

1) By properly choosing L, we can insure that both A < ε/4 and B < ε/4 for
sufficiently large n.

For Z E Z , let cz be the number of uncorresponded Xo particles which are on
point z. Note that E(cz) is independent of z. For zl9z2eZ, let Pn(zί,z2) be the
probability that a particle which is on zi at time 0 will be at z2 at time n. Note
that Pn(zι, z2) depends only onz2 — z1. Thus for any fixed z o e Z

Σ^,2o) = Σ^o^) = i
zeZ zeZ

2) A ̂  E( # {uncorresponded Xo particles which reach S at time n})

= E(c0) Σ (1) = # SE(c0) = I # (S)E Σ (ct)
z2eS ^ i=ί

= j#SE(N(X,0))-min({N(X,0),N(Y,0)}).

For any i.i.d. random variables X, Y with variance L,
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E{X - min (X, Y)) - E{X - Y)+ = \E\X - Y\ ^ ^JE(X - Ϋf =y/L/2.

Hence the right-hand side of 2 can be made arbitrarily small by choosing L
sufficiently large.

Now suppose an Xo particle at x is corresponded to a Yo particle at y. Let
Pn(x> y> z) be the probability that the two particles do not meet by time n and that
the Xo particle reaches z at time n. Note that Pn(χ9 y9 z) depends only on z - x
and y — x. Also recall that y — x lies somewhere between — L and L. Thus

L

P (x v z\< V P (0 i 7 — Y}

i= -L

For - L^i^L, let αn. be the probability that an Xo particle at 0 and a Yo particle
at i will not meet by time n. Then lim anJ = 0, and hence

lim Σ
n-» oo i— — L

Note also that for any zeZ,

Recall that the expected number of Xo particles at any site is 1. Since the
probability that a corresponded particle at x reaches z at time n without reaching
its corresponding Yo particle is bounded above by

ί=-L

we get
/ L \

^ = Σ \E ft {corresponded Xo particles at x} ^ Pn(0, z, z — x) I
zeS\ i=-L /

xeZ

zeS \ί=-L

xel

L / \ L

- V V V P ί Π i 7 γ \ _ i i C V /i

- L L L r «^, i, z - x) i - ft ύ 2̂  α«,i
zeS i- -L\xeZ J i= -L

which goes to zero as n approaches oo. •
Remark. For simplicity I only mentioned the 1/3, 1/3, 1/3 random walk, but the
proof goes through word for word for any aperiodic random walk whose step size
has finite expectation. It is almost the same if we drop the aperiodic assumption.
Here we carry out the same coupling, making sure we do not correspond two
particles on non-communicating sites.

If the random walk has infinite expectation we use a coupling due to
D. S. Ornstein. Couple corresponding particles so that they take the same step
size if that size is larger than one large prechosen number N in absolute value, and
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take independent steps conditioned on these step sizes not exceeding N in absolute
value. Then the difference between the two random walks is bounded and will
eventually reach zero if periodicity is right and N is chosen large enough so that
the difference is not deterministic.
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