
Communications in
Commun. Math. Phys. 81, 437-453 (1981) Mathematical

Physics
© Springer-Verlag 1981

Analyticity Properties of the Feigenbaum Function

H. Epstein1 and J. Lascoux2

1 Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France
2 Centre de Physique Theorique, Ecole Polytechnique, F-91120 Palaiseau, France

Abstract. Analyticity properties of the Feigenbaum function [a solution of

g(x) =-λ~ 1g(g(λx)) with 0(0) = 1,0'(0) = 0,0"(0) < 0] are investigated by studying
its inverse function which turns out to be Herglotz or anti-Herglotz on all its
sheets. It is found that g is analytic and uniform in a domain with a natural
boundary.

0. Introduction

In the theory of successive period doublings of one-parameter families of smooth
mappings of the interval [ — 1,1], an important role is played by one particular such
function, here denoted g, which is a solution of a certain functional equation [see
Eq. (1) below]. This theory is expounded at length in references [5,6,2-4,8] and will
not be recalled here. The purpose of this note is to indicate a few analyticity properties
of this function, which might, in the future, throw some light on the still somewhat
mysterious aspects of this theory.

Proofs of the existence of g have been provided successively by Lanford [7, 9],
Campanino et al. [1], and again by Lanford [10]. None of them is truly satisfactory
(see comments in [8]).

0.1. Notations

We denote Π+ = —Π_ = {ζe(C:Imζ>0} the open upper half plane, ζ will always
denote the complex conjugate of ζe C, and, to avoid confusions, the closure of a set E
will be denoted Ec. A holomorphic function φ of a complex variable is called "self-
conjugate" if φ(ζ) = φ(ζ).
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1. Recapitulation of Known Properties

a. The method described in [1] proves that there exists a solution g of the
Cvitanovic-Feigenbaum-Coullet-Tresser functional equation :

with the following properties :
1) g is analytic in a complex neighborhood of [— 1, 1].
2) g is even and concave: g"(x)<Q for all xe[ — 1,1] and in particular

0"(0) = -2α, with 1.429 <α< 1.615.
3) λ= -0(1)= -tf'ίl)"1 >0; in fact: 0.152<A2<0.165.
From these properties and the functional equation (1), it follows immediately that

g extends to a real analytic function on 1R and also on ϊlR; the function /, initially

defined on [0, 1 ] by/(ί) = g( |/ί), extends to a real analytic function over R Moreover,
slightly more detailed information obtained in the course of the proof in [1] easily
shows that the graphs of / and g have the appearance given in Figs. 1 and 2. By
construction, the graph oϊg restricted to [ — λ~n, λ~π], n^ 1, is obtained by a dilation
(- λ)~n from the graph of the (2")th iterate of 0|[ -!,!]• Hence \x\^λ~n^>\g(x)\^λ~n,
and M^l^HgCx)!^"1!*!. Another consequence is that the succession of critical
points of g on 1R is dictated by the known kneading sequence of g\\_ — 1, 1] and that
these critical points are simple and form an infinite sequence1. Let JΛ, (k = 1, 2, 3, . . .)
be the kth intercritical interval on the positive real axis, i.e. J1=(0,x0/λ),
J2 = (xQ/λ,x1), J3=(x1,xQ/λ2\etc ..... For — fc=l,2, 3, ..., we define Jk = — J_ f e. Let
gk = g\Jk. For each k with |fe| > 1, there exist j and / with |/| < |k|, \f\ < |fe|, such that,

(2)

This is easily seen by induction on fc. The ends of Jfc are reached when either g. or gf

acquires a critical point. (The argument showing that these 2 events cannot be
simultaneous, (due to Lanford) consists in noting that this would imply a superstable
periodic orbit for g\\_— 1, 1].) The following "multiplication table" (Table 1) shows
values of j and £ for the first few values of k > 0. It is also obtainable from the kneading
sequence.

The functions g and / have negative Schwarzian derivative, i.e.

1 -f [0W(*Γ Ύ ̂ 0,

(and similarly for/). For O^x^l, O^ί^l, we have

1 We learned this fact from O.E. Lanford
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Fig. 1. Graph of the function g

In the interval [0,1] there is one solution x0 of x0 = g(λxQ) Eq. (1) then shows that
g(.x0) = 0: this is the unique zero of g in this interval, and it satisfies: g'(λx0) = — 1,
/(xo) = 0. The convexity o f / and the concavity of g, together with: g(l)= —λ,

g'(l) =-λ~\ /(I) =-λ,/'(I) = -1/2/1 shows that (1 - 2 λ 2 ) < x 2 < ( l - λ 2 ) 2 .
b. Considerably more detail is provided by Lanford's first proof [7, 9] which has

the advantage of yielding (in particular) the Taylor series of/at 0 with any desired
degree of accuracy. These numbers, kindly communicated to us by their author, are
the basis of the various plots shown in this paper. Furthermore, they have been used
by Lanford [9] to prove the existence of a singularity of g in the complex plane (at the
point c later to be reobtained in this paper). Briefly and incompletely the argument is
as follows: one proves, (using the Taylor series and its known degree of accuracy) that
z-*g(λz) has a periodic point c within its domain of analyticity: g(λc) = c, g(λc) — c,
c φ c. If g could be continued to c, it would satisfy g(c) = —λ~ lg(c] = — λ~ lg(c), hence
\g(c)\ = 0; thus for a certain αφO and π^l,
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Fig. 2. Graph of the function /

around c. The functional equation then gives

and therefore λ~ 1 |/lg'(Ac)|" = 1. This is not the case, and a more detailed investigation
shows that, in fact, there is a sequence {zn} such that zn->c and |0(zn)|-»oo.

2. The Inverse Function of g

For each fee TL we denote MΛ the inverse function of the restriction gk oϊg to Jk. Since
0k(x) = 0_ k( —x), We have uk= — u_k. From (2) it follows that, with the same fc, j, f

uk(ζ)=-λu,(Uj(-λζ)).

The function w l 5 also denoted w, satisfies

1

(3)

(4)

It is clear that each uk is analytic in a complex neighborhood oϊgk(Jk\ and, by general
theorems, has a square-root-type branch point at each end of that interval. The
function/also has an infinity of intervals of monotonicity. Using the estimates of [1]
one can prove that, for a certain 11 > 0,11 < 6,/is mono tonic decreasing with/'(ί) < 0
in(-^,xgλ-2),takmgtheva^
= /'(XQ/Γ 2) = 0. The inverse function U of the restriction of/to that interval, [which
satisfies U(ζ) = u(ζ)2 for all ζe (- λ~1,1)] is defined, real and analytic m(-λ~l,λ~2\
and negative in (l,λ~2). This displays the trivial nature of the singularity of u at 1.

We now study the analytic continuation of u. We recall the following classical
facts [11,12].
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Lemma 1. Let {φn} be a sequence of functions holomorphίc in A =Π+uΠ_u(a,b\
(where (a,b) is a non-empty open real interval) and having the properties:
φn(Π+)C Π+,φn(Π_)CΠ_,φn((a, b))C(c, d)CΉ^where -oo<c<d^oo. Suppose that
the sequence {φn} converges uniformly over a compact subinterval KC(a, b). Then {φn}
converges, uniformly in any compact subset of A, to a function φ, holomorphic in A, with
φ(Π+)CΠ+, φ(Π_)CΠ_, φ((a,b)K(c,d).

//, moreover, φn is injective in Afar all w, then either φ is a constant or it is injective.

The first part immediately reduces to Vitali's theorem after Π+ u/7_ u(c, d) has
been mapped onto the unit disk by a conformal map τ and the sequence {φn} replaced
by the bounded sequence {τ °φn} (cf. [12]). The second part is similar to Hurwitz's
theorem and can be found, e.g., in Rudin's textbook [ 1 1] as the last step in the proof of
Riemann's theorem on conformal mapping.

We now prove :

Lemma 2. u extends to a function holomorphic m 77+ u/I_ u( — A"1,!), (again denoted
u or u1) which is injective there and verifies

(i)

(ii) u(ζ)=l-u(u(-λζ)\

(iii) Imζ>0=>(Imw(ζ)<0 and Rew(0>0).

Analytic functions mapping Π + into Π + and Π _ into Π_ will be called Herglotz
functions if — h is a Herglotz function, then h is called an anti-Herglotz function.

Proof of Lemma 2. In [1], g is obtained as the fixed point of a contractive map defined
as follows. Starting with a real function φ 1 on [0, 1 ] with φί(Q) = l,φ'ί(ϊ)= — Λ, ~ * , one
defines

and constructs (by iteration) a function Ψ such that

ψ(t) = F(Ψ(λ2t))9 <P(0) = 0,

Then, defining α as the smallest solution of

2oα¥"(α) = l, α>0,

one defines

G(x) = (φ2(ί -x)- φ2(l)) = [y(α) - Ψ(a(l - x)2)] .

The mapping in question is φ ί -> φ2 or, equivalently the mapping Tλ given by TλF = G.
It depends on A as a parameter, and, for 0.152 ̂  λ2 ^ 0.165, is defined and contractive
on a set of functions F which can be described as follows :

F must be ^3 on [0, 1], F(0) = 0, F(0) = λ~ 2 and for all xe(0, 1),

x)"1. (5)
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For O^x^^l,

X 1 3 '

(7)

F(x)

F"(x)

F(x)

Here A9 c1, c3, / l 5/3, and L are piecewise constant positive functions of A. [In the end λ
is chosen so that the fixed point of Tλ yields a solution of (1).] If F belongs to this subset
then so does G = TAF, and G satisfies the condition (6) for all xe [0,1]. If F is chosen in
a certain class of functions holomorphic near [0,1], G also belongs to it Ψ is then also
analytic. Ψ is obtained as the limit of Ψm when m-» oo, where Ψ0(t) = t and Ψm+ ^t)

It is clear that F, Ψm, and Ψ all have ̂  3 (or, in fact, if F is analytic, analytic) inverse
functions on (0,1), (0,A~2) respectively, and that Ψ'1 converges to Ψ'1. These
functions satisfy

ψ-ll(ζ) = λ-2ψ-ί(F-ί(ζ)). (8)

This holds for all m^O and all ζeF([0,l]). It follows from (5) that
F(x) ̂  λ~ 2x(l — χ/2) for xe [0, 1], and (inductively on m, by estimates similar to those
in [1, Sect 5])

1 - A2ί/(l - λ2) £ ψ'n(t) ^ 1 , ί[l - Λ/2(l - A2)] g ym(ί) ̂  ί

for all ie[0,A~2]. In particular F(l)^A"2/3>2 and
^m(^~2)^A-2[l-l/2(l-A2)]>2.SinceFandΨmareincreasing,itfollowsthatF~1

is defined on [0,/T2/3], Ψ'1 is defined on [0,2] and F"1^)^! for O^C^~2/3.
Assume now that F ~ 1 extends to a function holomorphic in 77 + u 77 _ u(0, λ ~ 2/3) and
maps 77+ injectively into {we(C:Imw>0, Rew< 1}. Assume that, for some m, Ψ'1

extends to a function holomorphic in 77 + u77_ u(0, 2) and maps 77 + injectively into
itself; (this is certainly true for m = 0. Since F~ l and Ψ~ l are self-conjugate, there are
symmetric statements about their behavior in 77_). Then 1F~+1 has the same
property as Ψ'1 and, by Lemma 1, so does Ψ*1. From the equation

G-1(0 = l-[α"1y"1(y(α)-λO]1/2, (9)

which holds for 0 ̂  ζ ̂  λ~ 1 Ψ(u\ with the square root defined as positive, it follows
that G"1 extends to a function holomorphic in 77+u77_u(0,/l~2/3): for O^ζ
^A~ 2 /3wefind/lC<l< l F(α)<α<2.ForCe77 + ,wehaveα~ l l F~ 1 ( l F(α)-AOe77_,
and therefore

G~ 1(C)e{we(C:Imw>0,Rew<l}. (10)

Thus G~ 1 is analytic in the same domain as F~ 1. Moreover G~ 1 is injective in 77 +

since G~1(ζ1)-G"1(C2), C l f 2 e / 7 + , implies

Now iterating the mapping Tλ:F-*G and applying Lemma 1 completes the proof
of Lemma 2, provided an initial F with the required properties can be found. Such
examples are given in the appendix.
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From now on, u = u± will denote the function analytic and injective in
Π+ u/7_ u( — λ~ \ 1) whose existence is asserted in Lemma 2, and U will denote the
function, analytic and injective in Π + u/I _ u( — λ~^,λ~2) which satisfies U(ζ) = u(ζ)2

in ( —/Γ1,1). Both u and U are anti-Herglotz functions.

3. Sheet Structure of the Analytic Continuation of u

3.1. The Functions uk, kεΊL

The branch of the analytic continuations of u that is easiest to study is u_ i since it is
simply given by u _1(0= ~ u(ζ). It is therefore a Herglotz function with

w_ 1(Π+)C{we(C:Imw>0,Rew<0}.

It communicates with u across the segment /0 =(1, λ~ 2) of IR, i.e. when ζ crosses I0

from Π+ to 71 _, u(ζ) gets analytically continued by u_ ^(ζ) while the value u(ζ) crosses
the imaginary axis from the right to the left half-plane. The branch point at 1 is of the
square-root type and u(ζ ± iO) are continuous there.

According to Table 1,

u2(ζ)=^ui(-uΐ(-λζ)). (11)

Hence u2 is a Herglotz function (injective in 77+) which communicates with w t across
the cut between — λ~ 1 and — λ~ 3. The nature of the branch point at — λ~ 1 is again
trivial : as ζ approaches — λ~ L, u2(ζ), as given by (1 1), has a singularity only because

— λζ approaches 1, so that u^ — λζ) behaves like j/1 + ζλ, while the outer M I ? being
holomorphic near 0, just gives a holomorphic image of this behavior. The same
occurs for all the wk, fceZ. Each uk, given by

is a Herglotz or anti-Herglotz function. As ζ approaches one of the ends of its real
interval of analyticity uk(Jk), only one of the functions u£ or uj has a singularity (by
Lanford's argument) which, by induction, is a trivial square root branch point.
Figure 3 describes the situation by analogy with the cosine function.

3.2. Boundary ofu(Π_)

We now study the boundary values of u along the real axis. Denote

As ζ follows /0 — z'O, u(ζ) follows the segment τ0 = i(0, ] t ) of the imaginary axis. If ζ
crosses 70 into Π +, u(ζ) gets continued by u_ ^(ζ) = — u(ζ) and the value of u(ζ) crosses
τ0 into —u(Π+). At ζ = 1, as noted, u(ζ — /O) is continuous. Suppose now £ follows
^ — ΐO. Then — λζ follows /0 + iO, u( — λζ) follows τ0 which is inside the domain of
analyticity of u. Hence
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Fig. 3a-f. The analogy between g and cos locally describes the sheets whose images border the real axis: a:
graph oϊx->g(x) b: graph of x->cosx c and d: positions of images of sheets of inverse functions of g and
cos near R As x becomes complex and follows the contours indicated in c and d, respectively, g(x) and
cos(x) follow the contour indicated in e and f, respectively

follows - U(TO) = τ j. This is a smooth curve in Π + which is part of- «(flR), and starts at
A A

- w(0) = XO/A perpendicularly to the real axis. If ζ crosses /1 into Π + then — λζ crosses
/i

/o into Π _, where u( — λζ) gets continued by — u( — λζ) while its value remains inside

the domain of analyticity of - u thus u(ζ) gets continued by
A

By induction it is immediately seen that: as ζ follows In — zΌ, (n^ 1), w(ζ) follows a
smooth piece of curve τnCΠ+; at the same time —λζ follows 7,̂  + zΌ, u( — λζ)

follows τn_ΐCΠ_ and τn= -u(τn_1). If ζ crosses into Π+ί u(ζ) gets continued by
A
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2 x0/;ι

Fig. 4. Border of M(Π_)

This is a Herglotz function. Starting with n = 2, the starting point of τn is inside Π + : it
coincides with the end point of τ n _ 2; τn and τn_ 2 are at right angles. This is due to the
fact that, at all real points in a neighborhood of (— λ)~n, u is continuous, and it has a
square-root branch point at (— λ) ~n. Indeed if this is true for n ̂  m — 1, it remains true

for n = m because, in the formula -u(u( — λζ)\ u( — λζ) is inside the domain of
A

analyticity of - u. For the same reasons u'(ζ ± ίO) =f= 0 whenever ζ e R and ζ φ (— λ) ~n

A

for all n ̂  0. Note that υί coincides with u2. The other vn are defined as self-conjugate
[i.e. vn(ζ) = vn(ζ}]. However the closure of vn(Π + ) does not intersect the real axis.

Figure 4 depicts the first few τn and exhibits the fact that u(Π_) is bounded. The
next subsection is devoted to a proof of this fact.

3.3. Boundedness ofu(Π_)

Consider the two maps of Π+ into itself given by

1 '" τ"(0, (12)
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and

1 /I \
(13)

The first is anti-analytic, the second analytic, both are injective and extend to

continuous injective maps of Πc

+ into itself. We have Φ(/7+)C -u(Π_\ If ζ = u(w),
we/7_,then

Φ(ζ)=\u(\u(u(^=-u(u(-
A \A I A \ \

Hence Φ(u(w))eu(Π_) and

w
M~1(ΦMw)))=TI for all w e / 7 _ . (14)

A

This is equivalent to

u°λ~2°u~ί\u(Π_) = Φ\u(Π_). (15)

u~ * ( = g) is continuous on u(Πc_). Hence formulae (14) and (15) remain true on Πc_
and on u(Πc_) respectively. In particular Φ\u(Πc_) has an unstable fixed point at
u(0) = xθ9 from which emerge the invariant lines { ζ : ζ = u(ρeiθ), ρ > 0}, — π < θ < 0. Any
ζeu(Πc_), distinct from x0, moves further and further away from x0 under repeated
application of Φ.

We shall apply to Φ the theory of iterated Herglotz functions, due to Wolff,
Denjoy, Valiron, and beautifully expounded by Valiron in [12]. We need the
following facts:

a. Let φ be a holomorphic map of Π + into itself. It can be uniquely written as

κ;^0, ψ(Π+)CΠ+ and, in any angle {Imζ>k\ζ\}, fc>0, \ψ(ζ)\/\ζ\-+Q as ζ-»oo. The
constant κ = mϊ[Imφ(ζ)/lmζ^\ is called the "angular derivative of φ at oo".

b. Let φn denote the nih iterate of φ. There are 4 possible cases:
(i) φ is a homographic transformation mapping Π + bijectively onto itself.

In the 3 other possible cases, φn converges, uniformly on each compact subset of
Π+ to:

(ii) a constant αe!7+ which is then an attractive fixed point of φ\
(iii) a constant αe377+, \a\ < oo
(iv) infinity. This is only possible if K ̂  1, K being the angular derivative of φ at oo.
In the case of φ = Φ, manifestly not a homographic transformation of the above-

mentioned type, the "angular derivative at oo" is zero. Indeed Φ is the square root of a
Herglotz function and cannot grow faster at infinity, in non-real directions, than
1(11/2. Thus cases (i) and (iv) are excluded, and therefore Φn converges, uniformly on
any compact in Π+, to a finite constant denoted c, with ImcgrO, which (since Φ is
continuous in Π\) must satisfy Φ(c) = c. [In case c were real this should be interpreted
as c = Φ(c + zΌ).] Since u(Π _) is sent into itself by every Φn, ceu(Π _)c. More precisely

c= lim Φn(u(ρeίθ))= lim u(λ-2nρeίθ),
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the limit being uniform for ρe [ρ1? ρ2], θe [Θ15 Θ2], provided 0 < ρ1 ̂  ρ2 < oo, — π<θί

<ΘΊ<0. This means that

c= lim u(ρelθ)
ρ-> + oo

uniformly for Θe[0 l9θ2]. This implies

c = lim A ~1 u(u( — λρelθj)
ρ-* -I- oo

But u( — λρeiθ)-*c, a point of continuity of u. Hence

c=-u(c).

(16)

(17)

In case c is real [i.e. case (iii) occurs], (17) must be interpreted as : λc = u(c — zΌ). But this
would mean that u(c — zΌ) is real, i.e. ce [ — λ~ 1, 1], and g(λc) = c, whence g(c) = 0 and
c = x0. This is impossible because xQeu(Πc_), where Φn is conjugated to λ~ 2n. Hence
there is a neighborhood Jf of x0, e.g. Λr = u({ζ:\ζ\<λ2}) such that, for each
ζe Jfr\ΐl + , there exists N>0 such that

Thus ΦΠ(0 cannot tend to x0, and case (iii) is excluded. Only case (ii) remains, so
Imo 0 and c is an attractive fixed point of Φ, and also an attractive periodic point of

C-4u(Q. Indeed A- IM(C) = C, ^^(5) = ̂  and Φ/(c) = μ-1u/(c)|2<l. Hence
A

|λ~1M /(c)|<l and c is also an attractive fixed point of χ.
The open set w^Π.) is a domain of analy ticity for g. At any of the segments τn of

the boundary of this domain, g is continuous, takes real values, and can be continued
into vn(Π+). Since τn = λ~ 1w(τn_ 1), these arcs converge to c as n-> oo. The point c is a
singular point of g : as ρ-> oo, u(ρeiθ)-*c, ( — π < θ < 0), and g(u(ρeίθ)) = ρeίθ-^ oo. Each
of the patches vn(Π+) has its version of c namely

lim υn(ζ) = (
ζ^oo

- c

if n is odd or (λ~ 1u)n( — c) if n is even. These singular points converge to c. Each of them
is the limit of a sequence of singular points, each of which . . . etc.

The boundary of vί(Π+) is given by

u U «(-τB;

(with /I 1x0<xί<λ 2x0) and so
oo 1 /I

Uτ»τ«(-^

is contained in Π+. Thus ι;2(/7+)c is a compact subset of Π+, and therefore

converges to c as r-»oo.
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Another consequence of the boundedness of u and U is that

tn -^f - 1 1

«(0= j t-ζ ί-1

where σ and ρ are positive bounded continuous functions on IR,

σ(f) = - Im w(f + zΌ) , ρ(ί) = - Im l/(ί + JO) ,

with supports

suppσ = [ — oo, — A~1]u[l, oo], suppρ = [— oo, — A~1]u[λ~2, oo],

and cr(ί)|ί — 1|~1/2 is also continuous. For — λ~1<ζ<λ~2, n^l,

This is negative for odd n, and furthermore for any finite sequence {«„}, αne€,

- Σ αB5
n,m = 0

In particular, from

one recovers

3.4. Other Branches

For n = 1, 2, ... and ε = (εl5 . . . , ε2n), with ε̂ . — ± 1, let

i.e.

Denote |ε| = n. By inserting u = - u °u °( — λ) 2" times in formula (1 8) we re-express uε as
Λ

M ε/ 5 with |ε'| = |ε|4-l and, by induction, as uε,. with ε" = \ε\ + N for any integer JV^l.
Thus the representation (18) is far from unique. The function uε is defined in Π + u Π _,
where it is injective, self-conjugate, and Herglotz (respectively anti-Herglotz) if
(—ly 'ε j . . .ε 2 M = 1 (respectively —1). Suppose that |ε| = n, |ε'| = m. If n^m, we re-
express uε as uε,, with \ε"\ = m. Then

1 1

I ε ε I ε" ε

^i^
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is of the form uε,,, with \ε'"\=m + l. Similarly if m<n, we re-express uε, as uε,, with
|ε"| = n, and, in all cases λ~ l uε °uε, °( — λ) = uε,,, with |ε'"| = max(m + 1, n + 1). Let &n be
the set of such functions which can be obtained with |ε| rgrc by convention we set
< 0̂ = {u, — u}. Note that for |ε| > 1, uε can always be written as λ~ luε, °uε,, °( — λ\ with

|εΊ = |c'Ί = |β|-l.
We now prove

Lemma 3. Assume that, for some ζ, ζΈΠ+uΠ _, uε(ζ) = uε,(ζf). Thenu& — u^ andζ = ζ'.

We may assume |ε| = |ε'|. If |ε| = 0, the hypothesis either means u(ζ) = u(ζ'\ hence
C = ζ' since u is injective in Π + u/J_, or u(ζ)= — u(ζf), which is impossible since

Suppose now n ̂  1 and

Applying repeatedly the previous argument we find ε = ε' and ζ = ζ'.
This means that the patches uε(Π±), uε,(Π±) never overlap if uε and uε, are truly

distinct.

Lemma 4. (i) For each ε, uε has continuous boundary values on both sides of the real axis.
(ii) For each ε, there is a locally finite set of branch points on IR, separated by open

intervals Iεj such that uε can be analytically continued across each Iεj,from Π + into
Π _ and vice-versa, the continuation being again some uη (depending onj). For all ζ in
any IεJ, ι4(C±zO)Φθ. At the branch points, \u'ε\ tends to oo.

(iii) All uε can be obtained by successive such continuations, starting from u.

Proof of (ϊ) and (ii) (by induction on |ε|). Suppose (i) and (ii) hold whenever |ε| ̂  n — 1,
n^l. Then, for |ε| = w, uε = λ~1uε,°ue,,°( — λ), with |β'| = |ε"| = n-l, and uε has
continuous boundary values on both sides of IR, Let ζ e 3R : it is a point of analyticity of
uε|/7+ unless — λζ is a branch point of uε,, or uε,,( — λζ — zΌ) is a branch point of uε.. If
either of these cases occurs, |u'ε(w)| tends to oo as w-»ζ, we77+, by the chain rule : if
— λζ is a regular point of wc,,, then u'ε,,( — λζ — zΌ) Φ 0 iΐuε,,( ~λζ — zΌ) is a regular point
of uε,, then uε,ή=Q there if neither, then both u'ε, and t/^ tend to oo. Let /eR be an
interval of regularity of uε\Π + . Then, for all ζ E I, — λζ is a regular point for wfi,,| 17 _ , and
uε,,( — λζ — zΌ) is a regular point for w f i/, and w'ε(ζ + zO)φO by the chain rule. If
uε4 — λζ0 — ιΌ) is real for some ζ0 e / then uε,,( — λj — zΌ) C IRfor some open real interval
J 3 ζ0, otherwise, since wε,,( — ACo ~ ̂ ) =t= 0, ufi/, cannot map Π _ into ± Π _ , and hence
wε»( — ^/ — zΌ) C R Then by Schwarz's reflection principle, uε» is its own continuation
across — λl by the induction hypothesis uε> gets continued by some w f i/,/, and hence, by
the composition rule, uε gets continued by some uη across /. If uε,,( — λI)CΠ±9 uε, is
analytic there, uε>, gets continued across —λl by some wε,,,, and, again by the
composition rule, uε gets continued by some uη across /.

Proof of (iii). Assume that, for all ε with |ε| ^n— 1, uε can be obtained by analytic
continuation from u along a path yε of the following type : a finite succession of
segments along the upper or lower side of the real axis, linked by judicious crossings,
and such that the image of yε under the continuation oft/ lies wholly in Π + or Π _ . This
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is obviously true for |ε| rg 1, (since <31 — {ulί — w l 5 u2, — u2 = u_ 2}) so we assume n ̂  2.
Given ε with |ε| ̂  n — 1 and any ε', the path yε can be used to continue λ~luε, °u °(— λ)
to λ~1uε,°uε°( — λ): it suffices to let — λζ follow γε. We now show how to obtain
λ~1uε°u°( — λ) from λ~ίu°u°( — λ) = u. For this purpose (in view of the induction
hypothesis, and since |ε| g n — 1), it will suffice to prove the following: let uη and un> be
continuations of each other across a certain real open segment 1, e.g. from Π+ into
Π _ then λ ~ * uη °u °(— λ) can be continued into λ ~1 uη> °u °(— λ) in the above manner.
To see this, let yr be the already known path (see 3.1 and Fig. 3) with image in 11+
permitting a continuation of u into ur,reTL chosen so that ur(Π±) borders the real axis
along a non-empty open subinterval of 1, on the 17+ side. Let — λζ follow γr. Then
λ ~1 uη °u °(— λ} gets continued into λ ~1 uη °ur °( — λ). Then let — λζ cross the real axis so
that ur( — λζ) crosses 1, which it can do without leaving the domain of definition of ur

then λ~^uη °ur °(— λ) gets continued by λ~ ^un, °ur °(— λ). Let — λζ follow the reverse-
conjugate path corresponding to γr. In the end we find λ~luη,°u°( — λ).

Lemma 5. The branch points of uε are all of the square-root type.

Proof. In view of the definition of wε, the only way in which this might fail to be true is:
there exist ε1? ...,επ, (ε7 = ±1) and ζ0 such that: ζ0 is a branch point of u and
w0 = ε1M(ε2w(...εntt(ζ0)...)) is a branch point of u while, for p = 2, ...,n,
εpu(εp +lu(... εnw(C0)...)) is a regular real point of u, [unless n = 1, but we exclude this
case which is easy to deal with]. The only possibility is ε1 = 1 and w0 — 1, with ζ0 = 1 or
— λ"1. But this implies gn(ί) = ζQ9 hence ζ0 = l since g maps [ — 1,1] into itself,
i.e. #n+1(0) = l, i.e. 0n(0) = 0 which is not possible for n>l.

4. Final Remarks

We call "patch" a set of the form uε(Π+) or uε(Π_). Note that wε(τε!7+)Cl7+, where
\ε\ ̂  1 and τε = (— ί)nε1 ... ε2n. Lemma 3 asserts that two patches overlap if and only if
they coincide. From the proof of Lemma 4, it is clear that the boundary of uε(Π+)
consists of a doubly infinite sequence of smooth arcs, each starting perpendicularly
from the preceding one (because of Lemma 5). These arcs converge to uε( + zoo). Since
uε is injective on 17+ u!7_, it has an inverse function, denoted gε on wε(17+)uuε(17_).
The proof of Lemma 4, (iii) shows that, for any given ε, |ε| > 1, there is a finite chain of
patches, uη(Q}(Π_\ ...9uη(n}(τη(n}Π+)9 uη(Q) = u, uη(n) = uε, such that uη(p)(τη(p}Π+)c and
uη(p+1)(τη(p+1}Π+)c have a common arc, and uη(0),..., uη(n) are the successive
continuations of u along the path yε. The various gη(p} are then successive
continuations of g. Thus g is analytic and uniform in IJ wε(17+) and also on all the

ε

regular arcs of the boundaries of the patches, as well as at the ends of such arcs (in view
of Lemma 5), which are critical points for g. At points of the form ue(ioo), g is singular
(g tends to infinity at such points). Note that uε(ίco) = λ~~nείu(... ε2nw(( — l)πzoo)...) is
an image of c or c, hence is the limit of a sequence of patches in the same way as c itself.

The preceding discussion has shown that D = (J wε(17+) is a domain of analyticity
ε, ±

for g. Assume that g can be continued beyond D, i.e. that there exists z0 e 17+, z0φD, ε,
z1eMε(τε17+), #0>0, R1>Q, andg, holomorphic in Ω0 = {z:\z-z0\<R0} such that

Ω1 = {z:\z-z1\<R1}Cuε(τεΠ+)
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Fig. 5. Partial picture of {z:Im#(z) =

and g coincides with g in ί20nΩ1 φ 0. Then there exist z\ e Ω0nΩ l 5 z'0e Ω0\D, a path p
from z'j to z'0 in £20 and a neighborhood F of p where 0' does not vanish. One can
then analytically continue uε from g(z\) = Q(Z^) to g(z'0) along g(p): therefore
z'0EjD, a contradiction. Hence D is a natural domain of holomorphy for g. Its
boundary contains all the singular points uε(±ioo). If z = uε(ζ), ζeΠ+, then
λz = uε,(uε4 — λζJ)euε,(τε,,Π_) and g(λz) = uε,{ — λζ). By continuity it follows that
zeD=>/lzED, g(λz)eD and λg(z)= —g(g(λz)). Figure 5 attempts to give an idea of
the pattern formed by the boundary lines of the patches, i.e. the analytic set
{z:Img(z) = 0}. Among these lines is IR, since the patches uk(Π±\ keTL, are
bordered by the intervals Jk (see Sect. 2). Similarly ilR is part of the pattern : indeed,
to every interval of monotonicity of / on the negative real axis corresponds a
restriction f of / which satisfies

hence a branch Uj of /~ 1 whose patches are bordered by an interval on IR_ the
square roots of these are some uε whose patches are bordered by intervals on ΠR, For
any ε and ε', λ ~ 1 uε °uε> °( — λ) is some wε,,,, hence the image of duε>(Π ± ) under λ ~ 1 uε is
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again part of the pattern in particular, letting uε, run through the set of the uk9

shows that the pattern is sent into itself by the dilation λ~i. Similarly it contains all
lines of the form λ~ 1Mε(ilR), which terminate at images of c and c. In fact, each line of
the pattern other than IR or ilR is easily seen to be of the form
λ~Nε1u(ε2u(... εRu(ΰR)...)), and terminates at images of ± c or ± c. These line endings
are points of accumulation of points of the form uε( + ioo). Figure 5 was obtained by
using numerical data kindly provided by Lanford: the Taylor series coefficients of U
at 1 were obtained from his Taylor series for/at 0, then Pade-ized for large values of
C, the functional equation is used repeatedly2.

Appendix

We give two examples of functions F on [0,1] which have the properties required for
the proof of Lemma 2. They are both of the form F(x) = λ~1[φ(l — x) — φ(l)], with
φ(x) = h(x2) and φ(0) = l, φ'(l) = — λ~l. The verifications are straightforward. We
give below (Table 2) the values of A, c1,c3,/1X3, as functions of /I2, and a lower
bound on L,

which permit such verifications.

First Example

h(t) =
1+μf

μ = 0.12, a is fixed by the condition φ'(l)= -/Γ1 to be a = (l+μ)2/2μλ. With the
above numbers α~13.

Inverse function: the inverse function of h is V,

-1
" LC + α-

the inverse function of φ is the square-root of V.

2 The same method leads to the following estimate for c: c«1.831259 + ΐ(2.683151)

Table 2

0.152^2^0.161

0.161^/ί2^0.164

0.164^A2<0.165

0.26

0.261

0.261

0.16

0.172

0.176

0.224

0.243

0.248

0.3818

0.3653

0.3601

0.302

0.3145

0.3172

2.798

2.795

2.791
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Second Example

2at
(t-b)(t-bY

b=—r + is, r>0, s>0, ρ = [r2 + s2]1/2 with, e.g., r —5, ρ=10. The condition
<//(!)= — λ~1 determines a

(α~78 with the above numbers).
Inverse function: the inverse function of h is K

ζ-Γ

where the function z-> ]/z2 — ρ2 is defined in (C\[ — ρ, ρ] as being asymptotic to z at
infinity. One also has

which makes its anti-Herglotz character apparent.
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