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Abstract. We derive iterated Mayer expansions for classical gases and establish
recursive bounds which control their convergence. These bounds are useful for
gases with two body forces which are strong and possibly attractive at
distances that are short compared to their range. Our procedure is based on
splitting the potential into pieces of decreasing strength and increasing range.
This may be called a renormalization group treatment of a classical gas. We
apply our results to Yukawa lattice gas models and obtain convergence of
series expansions for the pressure for a range of parameters (temperature,
fugacities, range of the interaction) that was inaccessible before. Application to
3-dimensional (7(1) lattice gauge theory (Coulomb gas, Z-ferromagnet) will be
made elsewhere.

1. Introduction

In this paper we present some tools for the investigation of convergence
properties of (generalized) Mayer expansions for classical gases [1]. They are
useful when the particles of the gas interact through two body forces that are
strong and possibly attractive at distances that are short compared to their range.

To be specific, consider a gas of particles with charge m=±ί which can
occupy the sites x of a cubic 3-dimensional lattice A with lattice spacing set equal
to 1, and which interact through a Yukawa potential ( = infrared cutoff Coulomb
potential) of range M " 1 . The Yukawa potential v-{xy) = ( — A + M2)~1(xy) is the
translation invariant solution of the finite difference equation on Z 3 ,

(-Δ+M2)v(xy) = δxy. (1.1)

A is the lattice Laplacian, viz. Af(x) = Σy{f(y) — f{xj) (sum over nearest neighbours
of x in Z3).
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The grand canonical partition function reads

= Σ Ί^J Σ Σ e x P h ό Σ mpiXiX^mΛ. (1.2)

We have included the selfinteraction of the particles in the potential energy. Of
course one can omit it and compensate for this by substituting z for z on the right
hand side,

z = zexp[-jM0)/2]. (1.3)

Since (-Δ+ M2)~1 is a positive operator, the interaction is stable in the sense that

[1]

Σ m^x^m^-BN, (1.4)

i ^ (1.5)

The lattice provides a short distance cutoff to the interaction so that ^(0)<oo.
Some such cutoff is necessary, otherwise the system would collapse.

The Mayer expansion exhibits the pressure as a power series in the fugacity

T7[^ZΛ= Σ bjT. (1.6)
I7 1! n = l , 2 , . . .

Stability and finite range of the interaction assure convergence of the Mayer series
(1.6) for sufficiently small z, depending on β, uniformly in the volume \A\.

Estimates for bn can be found in [1,2]. Here we are interested in the behavior
for large β. The best known estimates that we are aware of are in this case furnished
by the recent work of Brydges and Federbush [2]

|bJ^(2j8^(O))"-1^BL"-1, (1.7)

v(0)= X KxO)|=M" 2. (1.8)
xeZ*

From this one obtains absolute convergence of the Mayer series (1.6) for

\z\S(2eβM-2Γ1. (1.9)

The present investigation was carried out to prepare the ground for a rigorous
proof that 3-dimensional pure (7(1) lattice gauge theory (with Villain action)
confines static quarks for all values of the coupling parameter β [3, 4]. (Details of
this application will be presented elsewhere [5].) There exists an exact transforma-
tion of this system into a Coulomb gas [4]. For a sufficiently dilute Coulomb gas on
a lattice, Debye screening was proven by Brydges [6], using convergence of the
Mayer expansion in the presence of an infrared cutoff M in the domain (1.9). To
cover the case of the 3-dimensional (7(1) lattice gauge theory, one would want
to use the Mayer expansion or a substitute for it for β large, z« 1, and M of the
order of the inverse Debye screening length mD ( = inverse correlation length
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in the Coulomb gas in Debye-Hύckel approximation). It is given by Eq. (1.18)
below, with ζ = 1. For z ^ 1

rn2

Dπ2zβe-β"Cbm2 (1.10)

\yCb(0) = t>(0) at M = 0]. It is evident that the sufficient condition (1.9) for the
convergence of the Mayer expansion is not nearly good enough to cover this case.
Indeed, if z = 1 and β ^ 1 it would require an infrared cutoff length M~ * less than
one lattice spacing, whereas m^ 1 increases exponentially with β. In the present
paper we will prove the convergence of expansions for the pressure in the desired
range of parameters as described above.

It is instructive to inspect the derivation of the estimate (1.7) for the simplest
coefficient b2. This will reveal a basic reason why it is inefficient when β is large
and M is small. One has the explicit formula

\Λ\b2=^jYj Σ (exp[ — βm1v(xίx2)m2] — 1)

1

= —\β X X ^dsm1^(x1x2)m2Qxpl — βsm1^(x1x2)m2]. (1.11)

Now one estimates the exponential by exp(2β£), using inequality (1.4). After that
the s-integration is trivial and one obtains \b2\S2βv(0)e2βB. Bounding the
exponential factor by its absolute maximum one ignores the fact that the
interaction is strong (and possibly attractive) only at short distances, and not over
its whole range M~ 1 . Another feature of the system which can be exploited is that
a collection of particles at a given site with total charge zero does not interact with
the rest of the system.

Our treatment of the problem is based on splitting the two body potential v-
into pieces u of increasing range and decreasing strength.

* = £*/. (1.12)

and treating the effect of the interactions u one by one, short range interactions
first. In each step a cluster expansion is performed by writing e~β"r = l+fr and
expanding in products of /'s. This may be called a renormalization group
treatment [7] of the gas.1

To obtain the result for Yukawa gases mentioned above it suffices to split into
two or three pieces, but the last step in this application is as difficult as a general
step. We will therefore derive general recursion relations and recursive bounds
first. We will then apply these to Yukawa gases with partition functions of the
following from

Λ= Σ
meZΛ [xeΛ J

n

-^ Σ' xeΛ yeΛ

(1.13)

1 This becomes clearer if we transform the problem into field theoretic language by using the
formula for the characteristic function of a Gaussian measure with covariance β^-^-βi"1^"1)!2

= \dμβJΦ)eι{m'φ\ With the split v = YjV!
r one may introduce fields Φr whose propagators n emphasize

frequencies in a different range. Then one after another these fields are integrated out, high frequency
parts first, by using cluster expansions
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with λ(q)^0. Summation over m is over all integer valued functions on A. The
following special models [8] can be treated simultaneously :

1) the standard gas

) = ζl[ql(2z)/lo(2z) for β = ± l , ± 2 , . . . , (1.14a)

2) the villain gas

MP) = 1, λ{q) = ζ for q=±l, ± 2 , . . . , (1.14b)

3) the hard core gas

) = l , λ(±l) = ζ, λ{q) = 0 for | q | > l . (1.14c)

Iq (•) is the modified Bessel function. A simple combinatorial argument shows [8]
that the partition function for the standard gas with ζ = l equals the partition
function (1.2) times J0(2z)~ |y11. Brydges' work was concerned with this model. The
Villain gas with ζ = 1 is the exact transform of the 17(1) lattice gauge theory with
Villain action [9] in three dimensions. In order not to have to distinguish between
special cases we set

z = l for hard core and Villain gas. (1.15)

We (re)interpret ZΛ as partition functions of a gas of particles with a hard core that
prevents two of them from occupying the same lattice site. They can exist in two or
infinitely many states labelled by charge q = + 1 (hard core gas) and
q= ± 1 , ± 2 , ± 3 , . . . (standard and Villain gas). They have a common fugacity (,
and some charge dependent selfinteraction in addition to the Yukawa interaction
between different particles. We are interested in low temperatures β~x and long
range M " 1 of the interaction.

Our results can be summarized in the following.

Theorem 1. There exist constants M o > 0 , C 1 > 0 , C 2 > 0 and ε1>0 such that the
pressure in the Yukawa gas models (1.14) admits a power series expansion in the
fugacity,

= Σ U\ (1.16)

which converges absolutely and uniformly in the volume \Λ\ whenever β is sufficiently
large, z^O,

M^M^C.m^ and 1 + z(l +2|C|)^C2/Γ V ε i . (1.17a,b)

m^1 is the screening length in the corresponding Coulomb gas model (M = 0) in
Debye-Hϋckel approximation (if ζ>§\ viz.

m2

D = 2β\λ(l)\e-β"Cb{0)12. (1.18)

We note that the case z = ζ — l is covered by this theorem, for sufficiently large β.
The constant ει is the same constant that will appear in Proposition 8.

An "iterated cluster formula" for the coefficients S-n in expansion (1.16) is given
in Eq. (2.31) at the end of Sect. 2. The vertex functions σ which appear in this
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equation are recursively defined by Eq. (2.7) and (2.11). The reader should study
the beginning of Sect. 2 up to Eq. (2.11) to get acquainted with the notation.
Alternative formulae for the vertex functions σ are given in Sect. 3, Eqs. (3.2) and
(3.7). In Sect. 4 recursive bounds on sums of such vertex functions are derived. In
Sect. 5 they are applied to the Yukawa gas models (1.14).

2. Setup of the Expansion

We start by rewriting the partition function (1.13) in grand canonical form in
accordance with the discussion after Eq. (1.15). We introduce abbreviations

Σ Σ(-), d)
i= ± 1 , ± 2 , . . . xτeΛ

n={ i f Xi = Xj (2 2)
15 J \mimjV'(xi,Xj) otherwise

In this notation

ZΛ= Σ Z»= Σ \dξι...dξN$\ξί...ξN), (2.3)
J V = O , 1 , . . . N=0,l,.

} e x p [ - 1 ^ |^ v(ξt, ξ,)]. (2.4)

Z\ is proportional to ζN.
We shall split the interaction potential into R pieces of increasing range and

decreasing strength.

v{ξi9ξj) = v°(ξi9ξJ) + RΣAξi9ξj) (2.5)
r= 1

v° incorporates the hard core

ί + 0 ° ίf Xi = Xp i+j (26)
otherwise. [ }

The other pieces of the interaction shall assume finite values only. They remain
arbitrary until we come to doing estimates.

We write down an iterated cluster expansion. We consider clusters of clusters
of ... of clusters of particles = constituents. They will be called ^-vertices,
/ = 0,1...JR. A 0-vertex is a single particle i which is its own constituent.
Associated with it is a variable ξt = (mί9 xt) which specifies its state and position,
and a vertex function

<T0(£i) = M ) . (2.7)

Higher vertices are defined inductively. An /-vertex α' is a finite collection {α} of
(/—I)-vertices, no two of which share a constituent. There is an associated
variable

ξ«'= ({«««'); dξa.= Y[dξΛ. (2.8)
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A particle i is constituent of α' if it is constituent of one of the (/ — l)-vertices αeα'.
We write ieot in this case, and C(α') for the set of all constituents of α'. We use the
symbol ]Γ for union of sets with vanishing mutual intersection.

We introduce the type [α'] of a /-vertex. [V] is an equivalence class of /-
vertices. All 0-vertices are equivalent, so there is only one type of 0-vertex. Two /-
vertices belong to the same equivalence class if they contain the same number of
(/—I)-vertices of each type [α]. Thus, for instance, two 1-vertices belong to the
same class if they contain the same number of constituents. We write 7} for the set
of all types of/-vertices. Two collections {a'} of/-vertices are said to be of the same
type {[V]} if both contain equally many /-vertices of each type [/]e7}.

It is convenient to introduce an abbreviation for interactions. If α, γ are two /-
vertices we write

A*y)=ΣΣAξi,ξj) for αΦr
ieot. jeβ

(2.9)

ι/(αα) includes in particular the self interaction of all constituents of the /-cluster α
that is due to the piece ι/ in the potential. We also introduce the quantity/^ for
distinct /-vertices α φ β . It depends on ξa and ξβ and is given by

(2.10)

Now we will write down a recursion formula which defines the vertex functions
inductively. We write {<&Λ,} for the set of all connected graphs with vertices αeα'.
Such a graph is specified by a set of links = unordered pairs (α, β), with α φ β and
α,/?eα'. We define

{ ^ I π

It depends on ξa,. Here Nfβ] is the number of /-vertices of type [β] in the (/+1)-
vertex a'.

We claim that the Boltzmann factor ££N(ξ1...ξN) may be expressed in terms of
these vertex functions as follows

:e{α}

~2 Σ V\cκ.y)Vt. (2.12)

S(c) is an average over allΛΊpermutations of the N constituents i= 1...N. K^({a})
are combinatorial factors which will be determined below; the result is given in
Eq. (2.25). Summation is over collections of/-vertices α which share no constituent
and have a total of N constituents ί=ί...N. Only one representative {α} out of
every collection {[α]} of types of /-vertices is to be included in the sum. This is
indicated by the prime'. This restriction could of course be dropped, but the
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combinatorial factor would then be different. The last factor in (2.12) involves the
residual interaction not yet incorporated into σ*, viz.

V'(ay)=ΣΣΣAξi,ξj) for oc + γ, (2.13)
ίeot, jeγ Y^£

Ve(μa)= Σ Σ Aξι,ξj) (2-14)
ί,jea r^i

The proof of Eq. (2.12) proceeds by induction.
/ — 0: In this case α, y are individual particles. Since there is only one type of 0-
vertex, the sum over {α} in (2.12) has only one term. If we insert Eq. (2.7) for σ° and
compare Eqs.(2.13), (2.14) with (2.5) we see that Eq.(2.12) agrees with (2.4) with

(2.15)

The symmetrizer S(c) in (2.12) is redundant if / = 0.

Induction Step: Suppose that Eq.(2.12) is true for a given / ^ 0 . We show its
validity for / + 1 . We split

for αΦy, (2.16)

and similarly for ac = y. Using definition (2.10) we can then write

exp J- Σ V%Ί\ = JΠ e-'-MίΠ C1 +fd •
Z α,y J I α J l(αy) J

[ (2.17)

The product in the second {} is over all unordered pairs of distinct ^-vertices α, y.
We expand this product and proceed in the standard way.

£] = Σ Π ft,ft,
(aγ) & {aγ)e@

Summation is over all not necessarily connected graphs $ with vertices in the set
{α} of /-vertices that is specified by whatever term in the sum £[ α } in (2.12) we
consider. Some of the connected components of $ may be single /-vertices. We
decompose J* into connected graphs ^α, with vertices αeα'. α' is a set of/-vertices
with no common constituents and is therefore a (/+ l)-vertex.

Π[!+./£]= Σ (ΠfΣf Π Sί
compatible with {α}

Summation over {α'} is over all sets of (/-f-1)-vertices which consist of distinct /-
vertices in {α} and have the property that each /-vertex in {α} is in some (/ +1)-
vertex α' (i.e. it runs over partitions of the set {α}).

ίΆ (2.18)
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We insert Eqs. (2.17) and (2.18) into expression (2.12) for &N to obtain

{α} i V

Σ C ( α ) = { l . . . N )

s(c) Σ | Π Σ ί Γ K < ^ ( r a ) ) Π
{} [ α' S?α> \αeα'

compatible with {α}

yΣ Σ ^ d (119)

We inspect the last factor. Comparing with definitions (2.13), (2.14) we see that

ϊΣ Σ

We may now insert definition (2.11) of the vertex functions to rewrite expression
(2.19) as

{α} i N

ΣC( (ίN

•S(c) V
{a'} _

compatible with {α}

-~ Σ
Z α'y'e{α

(2.20)

We are left with a combinatorial problem. Any two representatives {α'} of the
same equivalence class {[α']} that is specified by a collection of types of (*f+ 1)-
vertices differ by some permutation of constituents. Because of the presence of the
symmetrizer S(c) they will give the same contribution to expression (2.20).
Therefore, expression (2.20) is of the form (2.12) with «f + 1 substituted for /, and

K'+\{a'}) = K\{*})n\{a'}) Π Π ^ (2-21)
α'e{α'} [β]eTg

{α}Ξ{αeα',αe{α'}}. (2.22)

n\{<x'}) is the number of collections of {£+1)-vertices of type {[α']} that can be
made out of a given set of /-vertices cue a'. This completes the proof of Eq. (2.12).

It remains to determine the combinatorial factor ?/({α'}) and to solve the
recursion relation (2.21) with initial condition (2.15) for the combinatorial factors
K\{a}). The reader is invited to skip the following discussion and continue with
Eq.(2.25).

To facilitate visualization, /-vertices will be simply called vertices in the
following discussion, and (/+ l)-vertices will be called clusters. Vertices can be of
different type = colour.

In Fig. 1, vertices of different colour are distinguished by symbols D, V, O, x.
Consider a set of labelled vertices, possibly of different colours. We partition this
set into clusters α'. Two clusters are of the same type if both contain an equal
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Fig. 1. Clusters of labelled vertices of different colour

number of vertices for each colour. Two partitions {α'} are of the same type if both
contain the same number of clusters of each type. Two partitions {α'} of the same
type are obtained from each other by permutation of vertices of the same colour
[/?]. Permutation of vertices of a given colour within a cluster does not produce a
new partition, and neither does a permutation of vertices which is equivalent to a
permutation of clusters of equal type. Thus the number τ/({α'}) of partitions of the
same type is

Π Kί
**({«'})=, lβ*J[ π , _ „ • (2.23)

Ύe is the set of types of/-vertices (colours), T€+ίis the set of types of (/ + l)-vertices
(clusters), Nf^1 is the number of (/ +1)-vertices of type [yf~]eT€+ι in the collection
{α'} of («f+1)-vertices, and Nfβ] = Σ N*β] is the number of /-vertices of type

α'e{α'}
[/Γ]e7} in the collection {α} of /-vertices that is specified by {α'} according to
Eq.(2.22).

We can insert result (2.23) into recursion relation (2.21) to obtain

Π

Π
[βΊeTt,

(2.24)

In the special case / = 0 there is only one type of 0-vertex [β], and
N?β, = N = number of constituents in {α}. The solution of the recursion relation
(2.24) with initial condition (2.15) is therefore

(2.25)

Nfβ] = number of /-vertices of type [/?] in the collection {α} of /-vertices. This
completes the discussion of combinatorial factors.
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Let us return to expression (2.12) for the Boltzmann factor and specialize to
£ = R. From the definition (2.13), (2.14) of Ve and Eq.(2.5) it follows that

Therefore we obtain the following proposition as a special case of Eq.(2.12).

Proposition 2. The Boltzmann factor (2.4) can be expressed in terms of the vertex
functions as follows

£?N(ξ ξ )= Y' / Γf NLί\~1Sic) Π σfOU (2.26)

c l α }

 N \WeT* i aeM

Notation and terminology were explained at the beginning of this section (up to
Eq. (2.11)). Summation is over collections of R-vertices a which share no con-
stituent and have a total of N constituents i = 1...ΛΓ. Only one representative {α}
out of every collection {[α]} of types of R-vertices is to be included in the sum.
This is indicated by the prime'. The symmetrizer S(c) averages over all Nl
permutations of the N constituents i=l...N. N*β] is the number of K-vertices of
type [/?] in {α}.

Up to this point all our manipulations involved expansions in finite sums and
no question of convergence arose. In the following discussion it will be assumed
that

Σ $dξa\σϊ(ξa)\<co. (2.27)
[α]eΓR

This implies in particular that the ξ-summations in the individual terms in the sum
over [/?] are absolutely convergent. We may therefore sum expressions (2.26) to
obtain the canonical partition functions

7N— V I ΓT NR '\~1Γf lldfσX-iFW (? 2R)
^ A — Z-i 1 1 [β] 1 1 IJ α ί = α ϋ α V^α/J ' \Z,.Z*O)

{.a} \[β]eTR I αe{α}

Summation is over one representative out of each collection of types {[α]} and is
therefore equivalent to a sum over over multiplicities JV̂ -j with which i^-vertices of
type [/Γ|e TR appear. The expression in {} depends only on the type [α] of α. Thus

ZN

A= Σ Π ijilϋdξrfiξjM. (2.29)
Σίβ]Nfβ]]C(β)\=N

The constraint on the sum says that the total number of constituents is N. If we
insert Eq. (2.29) into the definition (2.3) of the grand canonical function, this
constraint disappears and the sums factorize [10]. The result is given by the
following

Proposition 3. ZΛ = exp £ Sdξaσ?(ξJ9 (2.30)

provided the sum in the exponent is absolutely convergent, i.e. inequality (2.27) holds.
The series in the exponent is of the form (1.16).
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The (rigorous) derivation of Eq. (2.30) from (2.29), (2.27) is standard details can be
found in Appendix A.

It follows from their definition that σ̂  are proportional to ζ'C(y)l? where
Ic(γ)\ = number of constituents in the /-vertex y. Therefore the exponent in (2.30) is
a power series expansion in ζ and represents an analytic function of ζ if it is
absolutely convergent. It can be rewritten in the form (1.16) with

\Λ\όn= Σ ίdξyσf(ξγ). (2.31)
\C(γ)\=n

J dξγ stands for summation over charge and location of the n particles which are
the constituents of the K-vertex y.

3. The Tree Formula

In this section we will present alternative formulae for the vertex functions σ{. We
start with 1-vertices. The 1-vertex functions are determined by the properties of the
hard core potential v°, Eq. (2.6), alone. To determine them we may therefore ignore
the rest of the potential and set R = 1.

Consider a lattice gas of particles which can exist in several states q, with
(sufficiently small) fugacities λ(q) that may depend on q, and no interaction except
a hard core that prevents two particles from occupying the same lattice site. The
partition function for such a gas is equal to

Therefore the pressure is

We compare this power series in variables λ(q) with the result of setting R = 1 in
Eq.(2.30). From the definitions (2.6)...(2.11), it follows that

σ1(ξ1...ξn) = 0, unless xί=x2...=xn.

The comparison therefore yields the unique result

σ\ξl..4n)J-ZlLlλ{mi)...λ{mn)δχ2χι...δχnXι. (3.2)

Now we turn to the higher vertex functions. In later estimates we will use the
tree formula, Eq. (3.7) below, in place of the recursive definition (2.11) of vertex
functions. The tree formalism was developed in constructive field theory [11]. The
tree formula for the cluster integrals in the Mayer expansion for classical gases was
derived by Brydges and Federbush [2]. It is readily generalized to our case (see
Appendix B). To state the result, we recall the pertinent definitions.

Consider the set of all functions η which assign to every integer a = 1.. .t — 1 a
positive integer η(ι) satisfying

(3-3)
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Fig.2, A tree. Maximal vertices are indicated by open circles. They are characterized by iφrange??

Every such function specifies a tree graph with t vertices 1.. X. Its links are the pairs
(a + 1 , f/(α)), α = 1.. X — 1. An example is shown in Figure 2. (The numbering of the
vertices is compatible with the partial ordering that is specified by the tree graph in
the natural way, and every such numbered tree is obtained from a function η as
specified above.) The endpoints of the branches of the tree will be called maximal
vertices.

One introduces real variables sί...st_ι which take values 0...1, and the
functions

ί - l

ί _ 1 ) = Π Sa-lSa-2'- S

a=ί
η(a)' ( 3 4 )

Empty products which arise when η(a) = a or ί = l are read as 1.
Consider now an (/+1)-vertex α' which consists of t /-vertices. We shall label

them in some arbitrary way ocί...oct. The symbol S will stand for symmetrization in
labels a1...av It acts on symbolic expressions F carrying such labels

SF(αI...«ί)=iΣF(α1ιl...α,ί)
L . π

(3.5)

(sum over all t\ permutations of (l...ί)) By definition (2.11), the vertex function
σf,+ 1 is symmetric in the labels a1...av

Given the potentials ί/iaμ^ one defines a partially decoupled interaction Wέ\
It depends on s = (s1...s f_1)

α = l

The tree formula reads for {> 1.

ί!

π

(3.6)

(3.7a)

o
ί - 1

f > = l

Summation is over trees as described above.
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Proposition 4. The tree formula (3.7) is equivalent to the defining Eq. (2.11) for the
vertex functions, for / ^ 1.

The proof is relegated to Appendix B. (It establishes a substitute for the
decomposition (2.18). The assertion follows then by a uniqueness argument.)

To obtain bounds on vertex functions σ*\ estimates on P^(s|α') will be needed.
They will be derived using the fact that W{ can be exhibited as a convex combina-
tion of partially decoupled interactions as follows [2]. Suppose a potential Wr

is of the form

WM Σ wr(α,b). (3.8)

Then one defines, for n = 0...t— 1, a partially decoupled potential

Wr,n = Ί Σ wr(α,b) + | Σ wΓ(α,fe). (3.9)

To obtain Wΰ we set

wo(a,b) = v'(aa,otb). (3.10)

The quantities Wr for r = l . . . ί —1 depend on variables s = (s1...s ί_1). They are
recursively defined by

In this way one constructs

W ( s | α ' ) = ^ - i ( s ) . (3.12)

4. Recursive Estimates

To get useful estimates, some bounds on the pieces ι/ are needed from which the
potential v is composed, see Eq. (2.5). We assume that xf are of the form

i / ^ or 0, for ^ 1 , (4.1)

and that they satisfy inequalities of the form

\ Σ Aξ,ξj)^y,+4~1+ίm^ f o r N=ι> ( 4 2 a )

with

£ l > 0 , ε ^ O (/ = 2 . . .R-1), (4.2b)

^ = y , - ε ^ 0 (^=1. . .K-1) . (4.2c)

We will show in Sect. 5 how the Yukawa potential can be split in such a way that
inequalities of this form are true, with γ1 = jv1(0).

We begin by deriving inequalities for the vertex functions themselves, ξ-
summations will be done afterwards. The final step will be to estimate sums over
types of /-vertices.
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Consider formula (3.7) for the vertex functions σ̂ ,+ 1 for / ^ 1. Remember that
the (/+l)-vertex α' consists of some number ί ^ l of/-vertices a1...at that were
numbered in some arbitrary way. We note first that the bounds (4.2) imply a
similar bound for the partially decoupled interaction W^(s|α')

W*(s|α')^δ, + ε , Σ < (4.3)

This is proven by noting that the inequality is preserved throughout the recursive
procedure (3.10)...(3.12) by which W* can be constructed because formation of
convex combinations preserves inequalities.

Inserting the bound (4.3) into formula (3.7) for σf,+ x and using (4.1), one obtains
the inequality

1 ί - 1

>jdsΐ...dst_ί Σ Π ( 4 4 )
0 η a= 1

Σ Σ 5«-lS«-2 Λ(α)

To obtain σf,+ 1 one has to multiply with the combinatorial factor of Eq. (3.7a).
Next we carry out x-summations and do the s-integrations. We assume that

the potentials -z/, and therefore also the vertex functions, are translation invariant
functions of the positions of particles x f eZ 3 . [This entails no loss of generality. If
translation invariance in this sense does not hold, the following procedure should
be preceded by a preparatory step where |σ|, |t/ | etc. are bounded above by
functions which depend only on differences of arguments,

We write ζa = (ma,xa), xa

 = (χi)isoL e t c > a n d introduce a (preliminary) norm
(n — number of constituents of α)

KllK)= Σ lo&«)0x,* (4,5a)

>max Σ K(ξJ\δXjX. (4.5b)
h x xxeΛn

ί is an arbitrary constituent of α. The result does not depend on ί or x because of
translation invariance. We introduce

*'(<))= Σ W\*y)\ (4.6)
xeZ3

By translation invariance this is independent of y. If vr(xy)}^0, then v* is the
Fourier transform of v-r.

We consider individual trees η and numberings of the /-vertices (they are
permuted by S). We carry out the summations over variables xα in expression (4.3)
one by one, "trimming the tree and straightening its branches" as explained in
Fig. 3.
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M 41 *1 Φ1 O1

Fig. 3. How to trim a tree and straighten its branches. (The last dot represents a single constituent of the
ί-vertex cq)

If we carry out the summations over xaa in the order a = ί, t — 1, ..., we are sure that
in each step the summation variable is attached to a maximal vertex of the
remaining tree, compare Fig. 2. Each xα-summation except the last is over all
Xj-eZ3 for ieα. In the last step, the position of one last constituent is exempt from
summation. To do the individual xα-summations, we consider the terms in the sum
over jeα in expression (4.4) individually. The summation over Xj is done last, with
the help of (4.6). The preceding ones are carried out with the help of (4.5a). The
freedom of selecting a constituent i in (4.5a) is used to set i=j.

In this way all the x-summations can be done in sequence with the result that

l l ^ ' + 1 I K m α ' ) ^ - [βv-'(0)Y~1e~'βδe Π {\\σ*a\\(ma)e~βb'Σjs"m1}
t αeα'

S f j j v~~* I 1—r \~~i v"~* I I \ (Λ Π\

i dSl" aSt-l L) ίl L L \mjmk\Sa-lSa-2 'Sη(a)( ^ ' '/
0 η l α = l jexa kea^a) J

The sum over trees η and integrations over s-variables can be performed with the
help of the following.

Lemma 5 (The Tree Estimate). The following inequality holds for arbitrary μ(a) ̂  0
and f as defined in Eq. (3.4)

1 ί - l ί - l

Σ ί dsί...dst_ίf{η,s) Y\ [μ(α+l)μ(τ/(α))]^ Y[ [μ(α+l)eμ ( f l )] . (4.8)
?7 0 a=l a=ί

The prototype of such an estimate was obtained by Glimm, Jaffe and Spencer in
ref. 11. The reader who is not familiar with it can find a proof of inequality (4.8) in
our Appendix C.

We set

μ{a) = κ€ Σ Kl» (*V ^ 0 arbitrary). (4.9)

Applying inequality (4.8) with this choice of μ to expression (4.7) we obtain

αeα'

]KilK)exp Σ (-jfoyn,2 + 2κ,|m,|)l. (4.10)

We have used that x^ex for x^O to raise factors Σ\mj\ m t o t n e e x P o n e n t ?
included some factors exp(...)>l to make the resulting expression look more
symmetrical. Inequality (4.10) is true for any choice of κ^>0.
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Next we do m-summations. We introduce norms [n = number of constituents of

llσαllεκ= Σ llσfll(mα) e XPfΣ (^Mjl ""ε m./)] (4-11)

From definitions (4.5a), (4.11), (2.1) and inequality (4.5a) it follows that

JίigσfO^μ|| |σf| |0 > 0. (4.12)

Inequality (4.10) implies that

1 ~e 2 t - i

Finally we can estimate sums over types of vertices. Consider sums of (έ
vertices a' which consist of a given number |α ' |= ί of/-vertices. Define

α | ί f=ί + 1

= y /— '-—ιiι^+ 1ιι (4i4)

Ultimately we will be interested in estimating the left hand side of (2.27). Because
of inequality (4.12) it satisfies the bound

A Σ fdξβK<(U^Σll*fllo.o (4.15)
\/ι\ [a']eTR ί^ l

It suffices therefore to estimate sums of the form Σ f>il|of| | ε κ. We derive a
recursive bound for them.

We insert the estimates (4.13) on the right hand side of (4.14). This gives

α]e7V+
| α ' | = ί

The type [α ;] of a (/+ 1)-vertex is given by the number of times Nfβ] with which
any given type [/?] of /-vertex appears in it. Summation over [α'] is therefore
equivalent to summation over the multiplicities Nfβ] subject to the constraint that

the total number of /-vertices ]Γ Nfβ] = ί. We can therefore apply the multinomial
[β]

theorem to do the [α'j-summations. As a result

Σ
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We insert definition (4.14) to rewrite this as

l , 2 , . . .

This is valid for £ ̂  1 and for any κ€ > 0. Finally we may sum over t. This produces
our

Proposition 6. / / the potential of a lattice gas with pair interactions can be split
into R pieces v*(£ = 0...R—l\ which are of the form (2.6), (4.1) and satisfy the bounds
(4.2), then the following recursive bounds on sums of vertex functions are valid for
/ ^ 1 and arbitrary κ£ > 0

provided the argument of the logarithm is positive.
To apply these bounds, one starts from a bound on σ1 and applies the recursive

bound (4.17) repeatedly. This produces for instance
R- 1

Corollary 7. Suppose the hypotheses of Proposition 6 are fulfilled. Let K^= £ κk,
R-l £ k=t

Ej = β Σ εkandΔj= ]Γ δk. Suppose that the following inegualities are also fulfilled

for some Λ>0, 0 < C < 1.

Σ IkXi^α-CΓ1 (4.18a)
n = l , 2 , . .

CYA-ιeβΔ<-* for / = 1. . .K-1. (4.18b)

M Γ ' Σ $dξa\σR(ξa)\SA(l-CyRe-βA«-\ (4.19)

Proo/ We show that

Σ \\<\\E,,κ^W-CΓ'e-βA<-> for /=1...R. (4.20)
n = l , 2 , . . .

The assertion of Corollary 7 follows from the special case £ = R of this by
inequality (4.15). The proof of (4.20) proceeds by induction. If t?=l inequality
(4.20) is true by hypothesis (4.18a). Suppose (4.20) is true for some ( ̂  1 we show it is
also true for / + 1 . Since — ln(l — x)^x(l — x)"1 for l > x ^ 0 , the recursive bound
(4.17) gives

_

The second inequality follows from hypothesis (4.18b). Proof completed. D
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5. Application to Yukawa Gases

We will now apply the results obtained so far to the Yukawa gas models that were
described at the end of the introduction. We split the potential as in Eq. (2.5) into
the hard core potential υ° plus R— 1 =2 pieces v1 and v2. Because of the presence
of the hard core, an arbitrary finite value can be assigned to vx(ξv ξ2) for x1 = x2.
We make use of this freedom to set

θ if x 1 =x 2 > s ignm 1 = -signm 2

K V ( ¥ J otherwise, { '

1(x1,x2), (5 lb)

and

v2{ξ1,ξ2) = mίm2V

2{x1x2), (5.2a)

v2(xιx2) = (-A+M2Γί(xi,x2)-(-A+M2

ϊy
ί(xvx2). (5.2b)

Mί^.M will be chosen later on. First we will now establish

Proposition8. This choice ofv1, v2 satisfies the bounds (4.2) for some ε1 > 0 if M1 is
sufficiently small, with ε 2=<5 2=0,

^ W ) ' and

 1 ^
Moreover, «/(xjX2)^0 and

2 . (5.3)

Proof. The positivity assertion is a well-known fact (see Appendix D). It follows
that ^(O) as defined by Eq. (4.5) are given by the Fourier transforms

£'(fc)= ]£ e£*V(x0). (5.4)

Explicitly

k)= 2 Σ [1-cos/g + M* , (5.5a)
\ μ=l I

) ' M ) \

- 1

) ΛJ[1-cosfcJ + M2) M Σ [1-cosΛJ+Mf) \ (5.5b)

Relations (5.3) follow by setting lc = 0.
The self energy ^(0) of a particle of unit charge is given by

\ μ

ntial vCb(which we compare with the Coulomb potential vCb(x — y) = ( — Δyί(xy). A short
calculation shows that

^(0) = vCb(0) - (4π) - 1 M 1 + 0{M\). (5.6)
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The numerical value of vCb(0) is known [12]

= 0.252731. (5.7)

Now we are ready to derive the bounds (4.2). We introduce the Hubert space H
of complex functions / on Z 3 with scalar product

(f,g)= Σ Άχ)g{χ).
JCEZ3

The kernels v-\xy) specify positive operators in H which act according to

(*//)(*)= Σ Aχy)f(y)-
yeZ3

These operators are diagonalized by Fourier transform, and it follows from
Eqs. (5.5) that

m,m), (5.8a)

with

j )~ 1 ; ρ2=0. (5.8b)

Consider a set of N particles with integer charges mi + 0 and not necessarily
distinct positions xt. Set

It follows from inequality (5.8) that v2 satisfies a bound (4.2) with

(52 = ε2 = 0. (5.10)

It remains to study v1. From definition (5.1a) it follows that

Xi = Xj, sign mι= — sign nij

Inserting the bound (5.8) for the first term and noting that ^ 1 ^ ^ 1 ( 0 ) , one finds
after a short calculation that

\ΣΛξtΛj)^WΣrnl (5.11)

If M 1 is sufficiently small one has 4ρ1>^>1(0) by Eqs. (5.6), (5.7). Therefore
inequality (5.11) implies validity of bounds of the form (4.2) with y1 = ^ 1 ( 0 ) ΊΐM1

is sufficiently small and Σ m\ = 4
It remains to discuss the case £ r a ? ^ 3 . There are only the following

possibilities. One may have N= 1,2 or 3 particles with charges m f = ± 1. Consider
first particles whose positions are all distinct, and define for this case

N

EN= min \ Σ Wim^ix^. (5.12)
{xι,mι=±l} ij=ί
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vι{xy) is positive and monotonically decreasing in the modulus \xμ — yμ\ of each
coordinate difference (see Appendix D). It follows that

(5.13)

(We use the abbreviation ^1(ϊ) = v-ί(x,x + eμ), e^ = unit vector in the μ-direction.)
E2 is the energy of a dipole = two charges ± 1 at nearest neighbour sites of the
lattice. It can be computed because

^ ( θ ) - ^ ( i H - έ Σ [^1(±^o)-v

1(oo)] = - ^ 1 ( O ) .
±,μ

The inequality for £ 3 is obtained by dropping the repulsive interaction between
like charges. In the limit M1=0, relations (5.13) give E1=jvcb(0) = 0A264, E2

= 0.1666, E3 ^0.206. Thus EN>^1(0) for JV = 2,3 if M x is sufficiently small. So the
desired bound (4.2) holds.

Finally we have to dispose of the possibility that (at least) two of the two or
three charges sit on the same lattice site. If they have equal charges, the argument
is the same as above. It they have opposite charges, they do not interact with a
remaining third particle, and the attractive potential between them has to be
ignored according to Eq. (5.1). It follows that E ^ J W ^ O ) and the desired bound
(4.2) is again satisfied. This completes the proof of Proposition 8. D

To apply the recursive bounds on vertex functions of Sect. 4 we need a bound
in σ1 first. It is provided by

Lemma 9. Σ llσnllε κ = 2|/l(l)|e2κ ε(l —C) x if l + z(l + 2|ζ|)^Ce ε 2 κ. This is

true for any C in the interval O < C < 1 and z^O.

Proof There is only one type of 1-vertex with n constituents. It follows therefore
from the explicit formula (3.2) for σ1 that

(5.14)

The modified Bessel functions satisfy Jn + 1(2z)^zJπ(2z) if 5^0, n = 0,l,.... This
follows from their series representation [4]. Therefore

C'z w i t h ICΊ^ICI (5.15)

for all three models (1.14). (We adopt the convention (1.15).) We insert this into
(5.14). We must estimate

S = £ {Έe2κ)Me-εql.
q=±l,±2>...

We distinguish two cases ze2κ^l. Consider first the case zelκ7zl. In this case we
can estimate
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with A = ze2κ~ε. Thus

Σ KΊL,κ^ Σ -
«^1 n^l n

\ if 2\ζ\A(ί-AΓ'<l.

[Here and in the following the inequality — ln(l — x)rgx(l — x)'1 for l > x ^ 0 is
used whenever a logarithm appears.] The inequality of Lemma 9 will therefore
hold if {l + 2\ζ'\)A = (l + 2\ζf\)ϊe2κ-εSC<l. The hypothesis of Lemma9 guaran-
tees that this is satisfied since |ζ'|^ICI by (5.15). Therefore Lemma 9 is proven for
ze2κ^l. In the second case, z e 2 κ ^ l , we estimate

SSze2κΣe~~εq2^2ze2κ Σ e-εn = 2ze2κ~ε(ί-e-E)~1.

Then one proceeds as before. The details are left to the reader. One finds that the
assertion of Lemma 9 also holds in this case. This completes the proof of
Lemma 9. D

Proof of Theorem 1. Because of Proposition 3, it suffices to show that the
hypotheses of Corollary 7 can be fulfilled by a suitable choice of Mί ̂ M if the
hypotheses of Theorem 1 are fulfilled. Corollary 7 is valid for any choice of κ£ > 0
Sj and be are given by Proposition 8, and R = 3. The hypotheses of Proposition 6
are met by Proposition 8. We set

M ^ m a x ί M ^ π K ; ^ - 1 ) , κ1 =κ2= - l n ( l - C ) . (5.16)

The following considerations are valid for any C in the interval O < C < 1 . In the
end we may set C = -|.
By Lemma 9

Σ Iklk^+^α-CΓ1, (5.17)

^ - 2 | C Ί ^ ^ 1 + 2 ( K l + ' C 2 ) = 2|CΊzβ- / ? ε i(l-C)- 4, (5.18)

provided

C ) V ε i . (5.19)

This is assured if hypothesis (1.17b) of Theorem 1 is fulfilled, and β is sufficiently
large or C2 sufficiently small, depending on C. Thus, hypothesis (4.18a) of
Corollary 7 is fulfilled.

Next we turn to hypothesis (4.18b) for *f=l. By Proposition8, ^{ty^M^2.
Therefore it is required that

βM~2κ~2 ^ C(l - C)5(2|£ΊzΓ V ε i (5.20)

Since M~2^(4π)~2κ;2β2 and κ^C this is fulfilled if

2\C\z^(4π)2C3(l-C)5eβείβ-3. (5.21)

This is assured by hypothesis (1.17b) of Theorem 1 if C2 is sufficiently small,
depending on C, since ICΊ ÎCI by (5.15).



118 M. Gόpfert and G. Mack

Finally we have to verify hypothesis (4.18b) for ί = 2. Since v-2{O)<M~2 it will
be satisfied if

βM~ 2κ~ 2 S C(l - Cf(2\ζ'\zT 'eβn, (5.22)

where γ1=ε1+δ1 = ^(O) by Proposition8. Since κ2^C this holds if

M 2 ^ C" 3(1 - C)" 6 2 ^ | Π z β - ^ 1 ( 0 ) / 2 . (5.23)

This is of the form of hypothesis (1.17a) of Theorem 1, except that ^(0) appears in
place of vCb(0). We distinguish the two cases M1 =M and M 1 =4πκ1β~1. We have
Mt=M only if M ^ T Γ K ^ / Γ 1 . In this case, (5.23) follows from (1.17b) if C2 is
sufficiently small. If M 1 =4πκ1β~1 we can use Eq. (5.6) to obtain

c . , C) (5.24)

if β is sufficiently large. Therefore (5.23) holds if β is sufficiently large and

This is true if hypothesis (1.17a) of Theorem 1 holds, with C1 sufficiently small
(depending on C), since ζ'z = λ(l) by definition (5.15). Validity of all the hypotheses
of Corollary 7 has now been established, and the proof of Theorem 1 is therefore
complete. D

Remark. Corollary 7 also tells us that

Σ \κ\π^\Λ\-1 Σ ί^x3(uι
n ^ l [α]eT3

^ 2 | A ( l ) | e - ^ 1 ( 0 ) / 2 ( l - C Γ 7 . (5.25)

The leading term in the sum comes from a 3-vertex with only a single constituent.
Its contribution is equal to

Σ λ(q)e-β"{0)q2l2~2λ(l)e-β"i0)l2 for large β.
1. ±2,...q= ± 1 . ± 2 , . . .

Thus, inequality (5.25) estimates the whole sum by a multiple of the first term, v-1 is
obtained from v- by substituting M 1 for M. Noting that ^ x = ^ if M1=M9 we
deduce from Eqs.(5.6), (5.16) that ^(0)--^1(0)Sβ~1H^--CΓί+O{β~2). The
constant C can be made arbitrarily small if the constants Q and C2 in Theorem 1
are chosen sufficiently small, depending on C.

Appendix A. Proof of Exponentiation of the Grand Partition Function,
(Proposition 3)

We want to prove formula (2.30) starting from Eq.(2.29). We consider ZN

A as a
function of the quantities

= ί dξyσf (ξγ\ ZN

Λ = Z*
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Under the transformation ^([y])-»/ί |C(y)U([y]), ZN

Λ scales in the following way, as
can be seen from (2.29) by simple inspection:

ZN

Λ({λlcmA(lγl)}) = λNZN

Λ({A(lγl)})- (AΛ)

Differentiating (A.I) with respect to λ and setting 2 = 1 afterwards, we obtain the
identity:

δZN

NZN

Λ= Σ \C(y)\A(M) *-. (A.2)
[ * τ « δA(ly])

δZN,
For further investigation we have to compute :

d

dA(\y\) ^ ^
ΣNfβi\C(β)\ =

ίβ]

11 \τR 1 / \τR
WeTjR i V [ α ] ! l iV[y]

wn
ΣNfβ]\C(β)\ = N - \ C ( ) \

[β]

dZN

if \C(y)\ ^ N , otherwise — - - ^ - =0.
34([y])

So we get the following equation for the quantities Z\:

3!= Σ

From (A.4) we can derive (2.30) by a simple computation we introduce a fugacity

z and consider z—-ZA\

= Σ Σ |C(y)M([y])zlc^lzr | c ω l ^ " | c ω l (A.5)
N [y]eTjR

The left hand side is an entire function of z (a polynomial in our case because of the
hard core). Assuming absolute convergence of £ z'C(y)U([y]) for | z | ^ l , we

[y]eTR

conclude: (changing the summation over Λf and [y])

Σ z ^ . (A.6)
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Eq.(A.ό) implies

Σ Σ (A.7)

for |z| ^ 1. This proves Proposition 3. D

Appendix B. Proof of the Tree Formula (Proposition 4)

Suppose we have a set of indices / and an array of real numbers w(ίj) — w(ji) for
ijel. We assume that some ordering on I is given. For any finite subset αC/ we
define the following quantities:

£ wία f̂c), if α = {αl5 ...,απ}, α t < α 2 < . . .<α π (B.I)

^ ^ ( α j α k ) - l , (B.2)

= T f Σ Π 4 α k , if α = {α l 5 . . . ,α j

= 0, 4(α) = l for n = l . (B.3)

Summation over ^ α is over all connected graphs, i.e. sets of pairs (ocp αΛ) of elements
in α, where each pair (ocj, αfc) occurs at most once in ^ α . We want to show the
following proposition:

Proposition B.I.

/!(«) = - S j ώ , . - A - x Π 3 ί k. I»f(s 1...s f c_ 1 | l . ..Λ)ew r ( ί '-*- | 1 - ), (B.4)
n 0 fc=2

where Su denotes the symmetrίzation with respect to the variables ocί...ocn and

W(s1.. .sm_ Jl...m) = Σ 5j SΛ-1w(αjαfc) [w = 2, 3,..., n] ,
1^j<k^m

(B.5)
O [ l ]

Remarks (i) We expand the product in (B.4) and obtain, using the notations and
definitions of Sect. 3:

Π V . w ' t e i - ^ - i l i •• k ) = Σ/(»/.s) Π w(«t+!«,*))• ( B 6)
k=2 η Λ = l

Summation over ^ is over all trees on n vertices and s = (5 l5 ...,sn_ί). From (B.6) we
see that Eq. (B.4) is in some sense a generalized tree formula.

(ii) Proposition 4 in Sect. 3 follows from Proposition B.I by setting:
/ = {α1? α2,...,α ί} [where (x,l9...,oct label the subvertices of the (/+l)-vertex α'] and

(oιμj) for α'= {α1?..., α j .

To see this compare (B.3) with (2.11) and (B.4), (B.6) with (3.7).
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To prove Proposition B.I we need the following two lemmata. They are in
some sense two Kirkwood-Salsburg equations: β(α') corresponds to Boltzmann
factors and A(<xr) to Ursell functions.

Lemma B.2.

β(α) = - Σ \S\ } A(S)Q(oί -S)'\S\, α Φ 0, (B.7)
n SCα

where A(S) is given by the right hand side of(BA) (i replaced by S).

Proof of Lemma B.2. First we show the following equality by induction in m:

OT-l

«β(«)= Σ Σ |S| |S|U(S)β(α-S)
i = l Scα

| S | = ί

m - 1

+ Sαn J d5 Π (n-ΐ)dsW(sί...si\l...i + l)

. ^ ( 5 1 . . . 5 m _ 1 | i . . . ι , ) > [ m = i j 2 , . . . , n ] 5

M s 1 . . . s m _ J l . . . n ) = ^ ( s 1 . . Λ _ J l . . . n ) | S m = S m + l = . ί. = Sn_ l = 1 (B.8)

(i) m = l :

β ( ) 0 Sαrc exp £
1 ^ j < k ^ n

This is true by definition of Q(α).

(ii) m->m+l: we have to show:

S α n J dS

mγi (n-i)dSiW(s1...sί\l..Λ+l)ew(Sί s™-ίll -n)

r o . i i " 1 - 1 ί = i

|S| |S|W(S)Q(α-S)

..5 i | l...i + l ) e w r ( S l - s ' " | 1 - I I ) . (B.9)

Scα
|S |=m

We use the following equality:

gΪΓ(Si. . .Sm - 11 1 •«) _ g ^ ( s i . . Sm - lSm = 0| 1. . .«)

(B.IO)

We insert (B.IO) in the left hand side of (B.9) to obtain a sum of two terms which
will be shown to be equal to the two terms on the right hand side of (B.9).

First term:

m-l

San J ds Π (n-03, l^(s 1...s i | l ...i+l)e" r ( ϊ 1- 1— I Ϊ" = 0 | 1 - " ) (B.ll)
[ 0 , 1 ] * " - 1 ί = l
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With (B. 12) we get for (B.I 1):
first term

m - 1

β({αm+!,...,«„}), (B.13)

first term - S α φ - l ) . . . ( n - m + l ) m i ( { α 1 ? ...,αw})β({αm+1, ...,αJ)[Sα=S { α i,...,α m }].

InY1

We multiply the right hand side of (B. 13) by ( ) and sum over S C α, |5| = m. This

does not change anything and we get:

first term = SΛ Y — : —

m

= Σ mm!i(S)β(α-S). (B.14)

|S |=m

This is just the first term on the right hand side of (B.9).

Second term:

m- 1

S«w ί ds Π (n-ί)dSiW(s1...si\l..Λ+l)dSmW(s1...sJl..φw^ -^1 -^
[ o , i r ί = i

-S α n J ds f ] (n-i)5 s l Msi. .Λ l1 » i+l)e w r ( β l " S m | 1 " l l ) ( B 1 5 )
[ 0 , l ] w i = l

This holds because the integrand is symmetric in α m + v ..., αn and so we can use the
fact that everything stands behind the symmetrization operator Sα. (B.I5) is
already the second term on the right hand side of (B.9). End of the proof of the
Lemma B.2. D

Lemma B.3.

β(α) = - Σ \S\'\S\\A(S)Q(a-S\ αΦ0. (B.16)
^ SCα

Proof of Lemma B3: This proof is similar to the standard proof of Kirkwood-
Salsburg equations in polymer systems [13].

(i) 0(α)= Π ew(ctj*k)= Π (1 + /«,J

= Σ Π /«,., [α+0,N = «] (B.17)

Summation over $ is over all sets of pairs (α^αj with j,/ce{l, ...,n}. We
decompose J 1 in connected pieces and finally arrive at the formula

β(α)= Σ Γ W ; σ(Se)=Σ Π /.Jβt,

[σ(Sβ)=l for |SJ = 1]. (B.18)
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Summation over α = Σ $ρ i s o v e r aU partitions of α in non-empty mutually
Q

disjoint subsets Sρ with (J SQ = a. The sum over ^s is the same as the analogous

one in Eq. (B.3). (B.18) specifies a polymer system living on α.
(ii) Given two subsets YcXCoc with yφ0. X' = A-X.

We consider

Y) = Σ \\σ{S).

Given a partitionX'+ Y=ΣS we consider D=X'n (J S, where

a) D is an arbitrary subset of X' {D = 0 is possible).

b) Σ S is a partition of X' — D.
SnY=@

c) Σ ^ is a partition of Y + D satisfying SnY+0 for all S in the partition.

It follows that

β(γ'+y)= Σ Σ Σ ΠMs)ΠMs'). (B.20)
) = ΣS' S S'

We define

Φ(Y\D)= Σ Π σ ( ^ ) ? (B.21)

and obtain the equation:

Y)= Σ Φ(Y\D)Q(X'-D). (B.22)
DCX'

We choose X = 7=α / 5 αf some arbitrary element in α.

Φ(αi|D)= Σ Π σ ( s / ) = σ (αi + ̂ ) . ( B 2 3 )

S'θtXi

So we get from Eq. (B.22):

Q(α)= Σ σ(αf + I>)β(α-(α f+ £>))= Σ σ(S)Q(α-S). (B.24)

DCα SCα

We sum Eq.(B.24) over i=l, ...,n and divide by n to get:

β ( α ) = - Σ Σ σ(S)β(α-5) = - Σ |S|σ(S)β(α-S). (B.25)

We compare (B.3) and (B.18) and obtain σ(S) = \S\\A(S).
This proves Lemma B.3. D
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Proof of Proposition B.ί: Consider the following system of equationr for un-
knowns φ(S):

Q(α) = - Σ \S\ \S\lφ(S)Q(a-Sl α + 0,
n Scot

Q(0) = 1, φ(0) = O. ((B.26)

φ lives on finite subsets of the set of indices /. (B.26) determine the quantities φ(S)
uniquely:

- |α| |α| !φ(α) = β(α) - - Σ \S\ |S| !<p(S)β(α - S). (B.27)
W n SCa

SΦα

(B.27) allows a recursive determination of all φ(S).
From the Lemmata B.I, B.2 we see that A{S) and A{S) both fulfill the equations
(B.26). So they must be identical: A{S) = A{S). This proves Proposition B.I. •

Appendix C. Proof of Lemma 5 (The Tree Estimate)

We wish to estimate quantities of the form

9>(μ) = Σ ί dsλ.. A - iM s) 'I!
// 0 α = 1

1 ί - 1

= Σf d s i - d sί-i Π Mα
η 0 α = 1

The following procedure follows [11,2] closely. Summation over η amounts to
summing over η(a) = l...a for each a. Thus

9f(μ)=)ds1...dst_ι Π Σ
0 α = l L f e = 1

Now one inserts a factor
ί - 1

l ^ e x p Σ st_ίst_2...sbμ(b).
b=ί

After that the s-integrations can be performed in the order st_ x first, then st_2 etc.
In each step one uses the inequality

0

Thus, in the first step one estimates

1 ί- 1 t- 1

I /f C Λ C ft / l | ί / \ "̂ Γ^ l / Ί O \ C V I l( [ft

I Cto^ ^ / o* 9 * tr^\ / : ^ 1 ^^f 1 / j ^t 2 " ' * fer^V /
0 k = l fc=l

Γ ί - 1

' e x P Σ s t -i. -s

ί-2

Σ w .
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Next, the sf_2-integral can be estimated in the same way, and so on. As a result
after t—ί steps one obtains

ί - 1 ϊ ί - 1 ί - 1

]~] μ(α+luexp Γ̂ μ(fr) = Π
I Λ = 1 J b = l α = l

This is the assertion of Lemma 5. D

Appendix D. Some Properties of the Lattice Yukawa Potential

Let v-M(x, y) = ( — A+ M2)~ Hxy) be the Yukawa potential in v dimensions. From its
Fourier expansion (cf. eq. (5.5)) we find that

1 - 1

2Σ (1— cosfcJ + M 2 eιkx.
μ = l J

Integration is over kμ= —π... + π. One inserts the integral representation
00

x~1 = j dte~xt for [ ] ~1. The /c-integrations can then be performed with the result
o

that

0 μ = l

The modified Bessel functions In(x) = I __ n(x) are positive and monotonically
decreasing in |w|, for x^O. It follows that

^ 0 if

and uM and v1 are monotonically decreasing in the modulus |xμ| of each
coordinate. (To show monotonicity of In(x) in \n\ for all x^O one computes
In(x) — In+ί(x) from the integral representation, formula 8.431 of [14], writing zezt

= (d/dt)ezt and reabsorbing d/dt by a partial integration. The result is an integral
representation with a manifestly positive integrand.)
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