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Abstract. An exact static monopole solution, possessing n units of magnetic
charge and {An — 1) degrees of freedom, is constructed, generalising the
recent work of Ward on two monopole solutions. The equations solved are
those of an SI/(2) gauge theory with adjoint representation Higgs field in
the (BPS) limit of vanishing Higgs potential. The number of degrees of
freedom is maximal for self-dual solutions. The construction is described in
a deductive way, within the framework of the Atiyah-Ward formalism for
self-dual gauge fields.

1. Introduction

Gauge field theories in which the symmetry group G is spontaneously broken,
by the agency of a Higgs field in the adjoint representation, possess classical
solutions with the natural interpretation of magnetic monopoles [1, 2]. (For a
review see e.g. [3]). The magnetic charge of these solutions is quantised in that,
for topological reasons, it has to be an integral multiple of 4π, in suitable
units. We shall call a solution with magnetic charge Ann an n monopole
solution. In the limit in which the potential describing the self-interaction of
the Higgs field vanishes, the BogomoΓnyi-Prasad-Sommerfield (BPS.) limit
[4, 5], it is possible to produce some exact static finite energy solutions of the
equations of motion, in terms of elementary functions. The first example, a
charge one SU (2) monopole, was spherically symmetric [5]. This has been
generalised to obtain spherically symmetric solutions for larger gauge groups
[6]. Recently, following a paper in which Ward constructed an axis symmetric
two monopole solution [7], axis symmetric solutions of arbitrary charge have
been proposed [8]. Further Ward has now produced a reasonably general
solution of charge two [9]. In this paper we extend Ward's result to higher
charge, analysing the construction in a way which we hope makes it appear
rather natural.

In the BPS. limit the equations of motion are implied by the BogomoΓnyi
equations

Bi=±DiΦ, (1.1)
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where the 5(7(2) generalised magnetic field B^= —^εijk¥jk, and

Aj], (1.2)

(1.3)

provided that the fields are static,

30A i = 3 0 Φ = 0. (1.4)

(The gauge potentials, Ai = \iAa

iσ
a, and the Higgs field, Φ = \iΦaσa, are written

as antihermitian matrices: σα, α = l, 2, 3 denote the Pauli matrices.) It is the
first order Eq. (1.1) to which static solutions have been found, subject to the
boundary conditions that

Φ 2 = - 2 T r ( Φ 2 ) - > l (1.5)

as the Euclidean spatial distance from the origin, r->oo, and that the energy be
finite. Condition (1.5) reflects the vestigial influence of the Higgs potential in
the BPS. limit. In this limit the energy equals the modulus of the magnetic
charge. (This charge is positive if Eq. (1.1) holds with a plus sign.) We shall
produce solutions for whcih

Φ2 = l-2l/r + θ(r-2) as r->oo. (1.6)

where / is a positive integer. The magnetic charge is given by the flux out of a
large sphere of Bi = ΦaBa

i=\di(Φ2), using Eq.(l.l). Hence, if Eq.(l.ό) holds, the
magnetic charge is 4πl.

Ward's approach to solving Eq. (1.1) has been to exploit its relation to the
self-duality equations for a pure SU(2) gauge theory in four dimensional
Euclidean space,

Kβ = τεaβγδFyδ. (1.7)

If the gauge potentials are independent of Euclidean time, i.e. δ oAα = 0,
Eq. (1.7) becomes

3 iA0 + [ A i , A 0 ] = - i f i i j k F J k . (1.8)

Thus Eqs. (1.1) and (1.8) are equivalent if Ao is identified with Φ. Much is
known about the self-duality equations. Four years ago Ward [10] established
a correspondence between self-dual Euclidean gauge fields and certain analytic
vector bundles. This was discussed further by Atiyah and Ward [11] who
showed that this correspondence led to a series of ansatze At, 1=1,2, .... These
ansatze were explicitly constructed in [2]. However they have not proved a
very fruitful approach for constructing the finite action self-dual gauge fields
on four dimensional Euclidean space R 4 , which are called instantons. Atiyah,
Drinfeld, Hitchin and Manin produced an algebraic construction of these
[13,14], again based on Ward's correspondence. The ansatz Ax had been
previously discovered and used by 'tHooft and others [15] to produce in-
stanton solutions. Manton [16] discussed its application to the BPS. monopole
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equations, but showed it yielded only the spherically symmetric one monopole
solution [5]. The recent multi-monopole solutions have used the ansatz Aι and
have charge 4πl, and this remains true for our solutions. Weinberg [17]
has shown that any such solution belongs to a (4/ — l)-parameter family of
solutions; our solutions have this maximal number of degrees of freedom
though we have certainly not proved that all / monopole solutions can be
obtained from Aι in the way we outline.

The paper is organised as follows. In the next section we summarise what
we need to know about the Atiyah-Ward ansatze and their construction. In
Sect. 3 we discuss the boundary conditions and their realisation in terms of the
transition function g, which plays the central role in the Atiyah-Ward
construction. Having established a suitably general form for g which, under
certain conditions, builds in the boundary conditions, in Sect. 4 we discuss the
implications for g of the reality conditions (i.e. the conditions which ensure the
existence of a gauge in which the gauge potentials A" and the Higgs field Φa

are real). A (41 — l)-parameter family of possibilities for g is constructed which
have the property that certain functions, Δr(x\ used in constructing the ansatz,
are nonsingular. However, to ensure that the gauge fields are everywhere
nonsingular is much more difficult and we have only been able to do it by
appealing to an argument of Ward, which exploits the existence of a known
solution to guarantee nonsingularity for nearby solutions. In Sect. 5 we explain
how rotations affect the description of our solutions and we discuss the way
the known one and two monopole solutions fit into our discussion. Finally, in
Sect. 6, we summarise the construction.

2. The Atiyah-Ward Ansatze

Ward [10] established a correspondence between self-dual gauge fields and
certain analytic vector bundles. Such a bundle can be described by a matrix-
valued transition function g(ω, π), depending on two complex two-spinors ω, π,
which satisfies the conditions

g(λω9λπ) = g(ω,π)9 (2.1)

detg = l, (2.2)

and other properties which we shall elaborate (see also [12]). It is convenient
to represent the points of four dimensional Euclidean space by quaternions x
= x° — ίx - σ. Then, if we relate ω and π by

ω = xπ, (2.3)

for a fixed x, g(xπ, π) is a function of the single variable ζ = πΐ/π2 by virtue of
Eq. (2.1). This function must be regular in some annular neighbourhood {ζ: 1
— £ i < l ζ | < l + ε2} °f ICI = 1 Further, for each fixed x, it must be possible to
"split" g:

ζ)-\ (2.4)
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where h(x,ζ) is regular in | ( |>1—ε, whilst k(x9 ζ) is regular in | ( | < l + ε , for
some ε>0. These conditions are sufficient for g to correspond to a self-dual
gauge field.

The transition function g' will describe gauge equivalent self-dual fields if
and only if

( 2 5 )

where v^, v0 possess the properties of g expressed by Eqs. (2.1) and (2.2), and,
in addition, are regular functions of ω and π in | ( | > 1 — ε and | ( | < l + ε ,
respectively, for some ε > 0. In this case we shall write g' ~ g.

Atiyah and Ward [11] argued that, at least for instanton solutions, any
suitable transition matrix

(C p(χ,ζ)
2 .0 c-' " ( 1 6 )

where p is only really a function of ( and

(2.7)

(2.8)

We shall assume Eq. (2.6) also holds for monopole solutions. As a consequence
of this limited dependence, p and its Laurent coefficients

satisfy the four-dimensional Laplace equation

S^p = d2Λr = 0. (2.10)

[The contour integral in Eq. (2.9) and subsequent equations is taken round the
unit circle, |C| = 1, unless otherwise stated.] Because of the analyticity con-
ditions stated above p(x, ζ) must be analytic in an annular neighbourhood of
|(l = 1- Additionally the splitting condition of Eq. (2.4) is equivalent to

det£>(/)Φ0, (2.11)

where D(l) is the banded / x / matrix

D^Δ^^, l£r,s£l. (2.12)

In this case, the gauge potentials are given by

β

+i2δβΛ3 -η3

ΛβdfΛ2

where

λ\ (2.13)

(2.14)

and

j i i , Λ2={U Ji;, /I3 ^ j ^ {ΔΛJ)
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For Eq. (2.13) to be nonsingular we need detD ( / ~ 1 } φ0 in addition to (2.11). If
this does not hold we must use another gauge.

Finally we need conditions for reality, xo-independence and the correct
asymptotic behaviour of the Higgs field, if we are to obtain a monopole
solution. To obtain solutions which are independent of x0, in some gauge, we
need g to be equivalent, in the sense of Eq. (2.5), to a function, go(γ, ζ), of ζ and

y = μ-v (2.16)

only [7]. The reality condition takes the form [7]

for some g1^g0. This implies the weaker condition

gofoO^goίy.-VO (2 1 8)

Eq. (2.18) would also hold if go~g2> where

g2(y,0t = -g2(7,-υζ), (2 i9)

but this can be shown to yield a real 51/(1,1) solution. The asymptotic
condition is discussed in the next section.

3. The Asymptotic Condition on the Higgs Field

In the examples of the construction of monopole solutions, using the Atiyah-
Ward ansatz, so far given [16, 7-9], the dependence of p in Eq. (2.9) is of the
form eίxo, so that

As(x) = eix°Άs(x). (3.1)

In this case we can use a remarkable formula of Prasad [8, 18] for the length
of the Higgs field

Φ2 = l-V2\nD{l\ (3.2)

where V2 is the three-dimensional Laplacian operator. Equation (2.10) then
implies

V2Δ=ΔS. (3.3)

Provided that its angular behaviour is not too wild, Λs will satisfy

Δ8(x)~jδa(θ,φ), as r-oo, (3.4)

using spherical polar coordinates r, θ, φ. If this condition holds for |s |^Z—1,
the Higgs field has the required asymptotic behaviour (1.6) and so we have an
/-monopole solution. These heuristic considerations lead us to seek a g as in
Eq. (2.9) with p having an eίx° dependence on x0. We shall then prove (3.4)
does indeed hold for our eventual choice.
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Previous work suggests we consider

C f(y,O
0 e"yζ

r v 0\(ζι p\/eμ 0

0 eΊ \0 C"7 \0 e" '

Hence such a g0 is equivalent to a g of the form of Eq. (2.9) with

p{x,Q = eμ+vf(y,ζl (3.6)

which possesses the desired x0 dependence.

4. Reality and Regularity

Assuming a transition matrix g~g0 as in Eq. (3.5) and (3.6), we seek to
determine conditions on / which will ensure that the resulting gauge fields are
real and smooth. First we consider which /'s yield the same (or gauge equiva-
lent) solutions and then we impose reality and regularity conditions.

(a) Equivalence. Replacing f(y, ζ) by f'(y, ζ) will make no essential difference
if and only if

/ ' \ le'ζ1 f \ (a0 b0

0 e-H-'Γ\0 e-vζ'!\c0 dj' i4Λ)

where a0, b0, c 0 , d0 are functions of ζ and y regular in \ζ\< 1 + ε at fixed x, and
αoo? ôo> coo' ôo a r e ^ s o functions of ζ and y but are regular in | ζ | > l — ε at
fixed x, for some ε > 0, and

a0d0-b0c0 = aO0dO0-bo0co0 = l. (4.2)

Since />0, it is easy to deduce, from Liouville's theorem, that c0 = cO0=0 and,
hence, that a0 = aoo and d^ — d^ and that both are constant. Thus the condition
for / and / ' to be equivalent is

(4.3)

with k a nonzero constant and βo(y, ζ), β^iy, ζ) regular in \ζ\<l + ε and
— ε, respectively.

(b) Reality. The reality condition (2.18) takes the form

In _ h~\

(4.4)
' " r ' ^ (a0

0 ζ- 'e-"/ \ 0 T V / \c0 d0

where α0, i>0, c 0, rf0 and α^, &„, c^, d^ enjoy the regularity properties stated
after Eq. (4.1), and satisfy Eq. (4.2), and where

f = f(γ,-l/ζ). (4.5)
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To obtain Eq. (4.4) we have used

δ U ' ; U 0 / I 0 ζ-'ey) \1 0

"fo ζ- Λ <46)

Thus
φ = Cooζ

ι = c0ζ-1 (4.7)

must be of the form

Also

φ(y,ζ)= Σ Ψ_r{x)? (4.8)

y

 7_aoΰe
y-a0e

 γ

ψ
Equations (4.8) and (4.9), together with Eqs. (4.2) and the regularity require-
ments, contain all the reality condition (2.18). It follows that

Ψ=±φ, (4.10)

a0=±dooi d0=±aoΰ, (4.11)

where ψ, etc., are defined as in Eq. (4.5), are signs must be chosen consistently.
So ao(ζ,γζ), do(ζ,yζ) are analytic functions of ζ and yζ for | ζ | ; g l + ε and all
finite values of yζ. Let us suppose a0, d0 are non-zero in this region. (This
property, possessed by previous examples [7, 9], is quite possibly necessary for
a smooth solution.) Then, using Eq. (4.2),

Kidoei-e-VaJ/ψ, (4.12)

in this sense of Eq. (4.3). Our assumption about the absence of zeros of d0

means we can write

do = eδ, (4.13)

where δ(ζ, yζ) is regular for |ζ| < 1 +ε and all finite values of ζy. Clearly we can
write

δ', (4.13)

where δ' is regular in | £ | < l + ε and χ is a polynomial of degree l — l in γζ, as
ζιψ is a polynomial of degree / in γζ. Then, in the sense of Eq. (4.3),

fxs(ey+xTe-y-*)/ιl/. (4.15)

Here

Ψ=ΣΨι-,(0f, (4 1 6 )
s=0
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with ψs(ζ) ζs being a polynomial of degree 2s in ζ satisfying

±ψs(ζ). (4.17)

So φs has (2s +1) real degrees of freedom, leaving ψ with (/ + 1)2. We can use
the constant k in Eq. (4.3) to fix φo = l, or i depending on the choice of sign in
Eq. (4.17), leaving I2 + 21. This means there must be (/—I)2 constraints on ψ for
it to produce a smooth solution, because we know such a solution to have (4/
— 1) degrees of freedom [17]. As yet χ can be any polynomial

x=Σ Xs(Q(ty)8> ( 4 1 8 )
s=0

where the coefficients χs(ζ) are regular for | ζ | < l + ε.
The full reality condition (2.17) requires the upper sign in Eq. (4.10), etc., if /

is odd and the lower if I is even; see Sect. 6.

(c) Regularity. As given by Eq. (4.15), / may have x-dependent singularities
viewed as a function of ζ at fixed x. These tend to be incompatible with /
being analytic in an annular neighbourhood of |C| = 1 for each x. To avoid
them we seek to choose χ so that

ey+x=+e-v-x when \j/ = 0. (4.19)

Write i

Ψ=Π(y-ys(0), (4.20)
s= 1

so that ys(ζ)9 l ^ s ^ ί are the roots of ^ = 0 regarded as an equation of degree /

in γ. If ys(ζ) is a root so is ys(—l/ζ). We need to choose χ so that

eθiy>ζ>=±l, for y = ys(ζ\ ί^s^l, (4.21)

where
(4.22)

Now Θ must be a polynomial of degree / — 1 in y, satisfying

Θ = Θ, (4.23)

with Θ defined as in Eq. (4.5). Further, if

Θ(γ,Q = 2πi Σ &ΛQyr> ( 4 2 4 )

the fact that χ is a polynomial in ζy rather than γ and that χ is a polynomial
in y/ζ, means that certain of the Laurent coefficients of θr(ζ) must be absent or
restricted:

§Θr{Qίsηr = ̂  \s\<r, 2 ^ / - l , (4.25)

$0 1 (C)y = 2. (4.26)
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Equation (4.21) says that Θ = 2πins when y = ys, Irgs^/, where the ns are
integers if we take the upper sign in Eq. (4.21) and half odd integers if we take
the lower one.

Given ns, l ^ s ^ / , Θ is uniquely determined,

Θ(y,ζ) = 2πiΣnrΠj~^v (4-27)

as it is a polynomial of degree /—I. To satisfy Eq.(4.23) we need

nr=-ns if yr(ζ) = y s (- l/ζ) . (4.28)

Given the choice of the discrete parameters ns, Eqs. (4.25) and (4.26) constitute
the desired (I—I)2 constraints on the coefficients of ψ. This leaves it with 41— 1
degrees of freedom.

For polynomials ψ satisfying the constraints of Eqs. (4.25-7) we stand some
chance of obtaining a nonsingular solution. Provided that γr(ζ) is regular in
some annular neighbourhood of |ζ| = l, we can indeed split Θ as in Eq. (4.22),
explicitly,

where ICI<I^I (An arbitrary pure imaginary number can be added to χ but this
just corresponds to multiplying / by a number of unit modulus and so makes
an irrelevant change.) Then we can verify that the heuristic arguments of
Sect. 3 on asymptotic behaviour are not misleading. To study the asymptotic
behaviour, write

e* = χ° + ζιψR°9 (4.30)

where, in a similar fashion to Eq. (4.13) χ° is a polynomial in ζy of order / — 1,

x°=ΣxHQ(tyY, ( 4 3 1 )

and χ°, R° are regular in |ζ| < 1 + ε. Similarly we can write

e-x^χ^ + ζ^ψR™, (4.32)

where χ00 is a polynomial of order / — I in y/ζ. Then

f~(χo^τχ™e-y)/φ (4.33)

and, uisng Eq. (3.6), it can be shown that

[ ( 1 ) ] δs(θ, φ) (4.34)

as r -> oo.
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However more is needed to establish that the gauge fields are smooth. But
we can exploit an argument of Ward [9] to use a known smooth solution
corresponding to a specific choice φ{0) of φ. Then, for φ sufficiently close to
φ{0) (in the sense that the coefficients of the polynomials are close to one
another), the resulting solutions are smooth. The determinant (2.11), which
should be nonzero, is a continuous function of φ at each point x of space. This
means that condition (2.11) will be maintained in any compact region of space
by a sufficiently small variation of φ from ^ ( 0 ) . At large distance the functions
δs(θ, φ) of Eq. (3.4) are continuously dependent on φ so that we can prove
asymptotic regularity for φ near to φ(0\ Thus we have smooth solutions for φ
in some neighbourhood of φ = φ{0\

Prasad and Rossi [8] claim to have established the existence of certain
smooth 'axis symmetric solutions for each positive /. These correspond to the
following:

( / + l 2 ) i ( Z + l 2 ) l ^ ^ l (4.35)

and we take the upper or lower sign in Eq. (4.10), etc., as I is odd or even,
respectively. In this case χ = 0. The above techniques provide families of so-
lutions, in the neighbourhood of each these, with 4/ —1 degrees of freedom.

It is convenient to use the phase ambiguity in /, resulting from the equiva-
lence relation (4.3), to multiply φ by i if / is even so that it satisfies φ = φ for
all /.

5. Rotations and the Two Monopole Solution

It is illuminating to consider the effects of rotations in this formalism. We shall
see how the rotational properties of one and two monopole solutions emerge
from the above discussion.

The effect of the rotation corresponding to the SU(2) matrix u is

x-^xf=uxu~ί, (5.1)

π->π' = uπ, ω^co' = uω. (5.2)

Hence, if we write

u=( , (5.3)

where a = d9b=-c, \a\2 = l-\b\2, we have

(5.4)

and

(5.5)
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The transition matrix, g\ for the rotated solution is equivalent to

o (ίTι I
0 \ [C p'(x,Q\ ({cζ + d)-1 0

o (a+b/ζ)-1! \o ζ-1 ! \ o (cζ±d)ιΓ ( 5 < 6 )

w h e r e
,. yχ p(x',C)

(5.7)

Thus with φ given as in Eq. (4.17), the corresponding function after rotation is

where

ψ's(ζ) = (a + b/ζ)s(cζ + dyφs(ζ'). (5.9)

For the single monopole, 1 = 1,

(5.10)

where

-η1/ζ, (5.11)

η0 being real. φ1 can be removed by a translation, which has the effect

X-+χ>=X-y^ ζ-^ζ' = ζ (5.12)

y - > / - ^ , (5-13)

where η is obtained from y by repalcing x by y\

-^3-έ(ji-^2)/C (5-14)

After such a translation, the rotation has no effect; this result corresponds to
the spherical symmetry of the one monopole solution.

For the two monopole solution, 1 = 2,

φ(y, ζ) = y2+2ηy + λ, (5.15)

where η is as in Eq. (5.11) and

ζ2 (5.16)

with λ0 real, λ and η must together satisfy one constraint corresponding to
Eq. (4.25), together with further unknown inequalities to ensure smoothness.
This leaves seven parameters. By a translation we can arrange

Φ = y2 + λ\ (5.17)
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where λ' = λ — η2. By a rotation we can reduce X so that the coefficients of ζ2

and ζ~2 are absent, a further so that the coefficients of ζ and ζ~x are real. This
yields the case discussed by Ward [9].

6. Summary

In Sect. 4 we showed (subject to certain assumptions about the positions of
zeros of the functions a0, etc.) that the transition matrix for an / monopole
solution could be obtained from a polynomial φ(γ, ζ) of degree / in y, such that
ζιφ(y, ζ) is a polynomial of degree 2/ in ζ at fixed x. There are certain
restrictions on φ. There is a reality condition

φ(y,ζ) = φ(%-l/ζ). (6.1)

We can normalise φ so that the coefficient of yι is 1, without loss of
generality, leaving I2+ 21 degrees of freedom. To formulate the remaining
conditions, we factorise φ in Eq. (4.20) and define a polynomial (9, of degree /
— 1 in y by Eq. (4.27). This involves the choice of / constants ns which are such
that ns + \l + \ is integral, lgs<;J. Then Eqs.(4.25) and (4.26) provide (/-I) 2

further constraints on Θ and so, implicity, on φ. It is not yet clear which
choices of the constants ns and what range of the parameters in φ yield non-
singular solutions, but in the known cases the ns are chosen so that they are as
small as possible consistent with their being distinct.

Then the transition matrix for the solution is of the form

-'*-• )' ( 6 2 )
(ζ'eθ

8~\0 ζ~ιe

which is equivalent to a g of Eq. (2.6), where

In Eq. (6.3), μ, v are defined in Eqs. (2.7), (2.8), y = μ — v and χ is defined by
Eq. (4.29). The prescription of Eqs. (2.9-15) then yields Af and Φ. (The minus or
plus signs are taken depending on whether the ns are integral or not.)

To verify the reality conditions note that

(6.4)

using relations similar to those in [7] and [9], showing that (2.17) holds if we
take the upper or lower sign as / is odd or even. With the other sign, g2

 = iσ?>g\
satisfies (2.19) showing this choice yields an SU(1,1) solution.

General explicit formulae will be much more difficult to obtain for l>2
than for the 1 = 2 case considered by Ward [9]. He pointed out that that case
required the solution of a quartic and the use of elliptic integrals. For /§;3 we
pass beyond this comparatively elementary domain and we are involved with
the solution of sixth and higher order equations, which cannot be solved
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explicitly in the same sense as the quartic, and with generalisations of elliptic
integrals. It seems likely that the central remaining problem on which progress
can be made is that of determining for which range of ψ and choice of ns, the
solutions are nonsingular.
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