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Abstract. A property of the square of the linking number of two closed
rigid curves randomly displaced in a three dimensional space, has been
recently found by W. Pohl. Here, this result is reproduced and generalized.
This new approach is quite different and uses a simple Fourier transfor-
mation.

1. Introduction

The theory of knots is not only very interesting from a mathematical point of
view, it may also have fruitful applications in polymer physics.

A polymer molecule consists of a long sequence of chemically connected
units, each of which comprises only a few atoms. The long chains so formed
can be quite flexible and for many purposes their behaviour can be modelled by
representing them simply by smooth mathematical curves embedded in space
(i.e. R3 or S3). For instance consider two polymer molecules each of which has
the connectivity of a loop (i.e. S1). In their physical motion, they may move and
deform in a continuous fashion but not cross through each other or them-
selves. At the level of mathematical curves of zero thickness, this is equivalent
to saying that they may not pass through configurations with double points.
Thus the two molecules conserve their topology and they can physically be
separated if and only if their configuration is not topologically linked.

No prescription can be given for classifying completely the linking of two
loops. A very simple and versatile partial description is given by Gauss'
"linking number" (or "winding number"). Roughly, this quantity is the number
of turns one curve winds around the other and vice versa. More precisely we
must first define a sense of direction around each of the two curves. Then choose
an oriented surface whose boundary is one curve and count algebraically the
total number of intersections of the second curve with this surface, + 1 accord-
ing to whether the surface is approached from its ± side by the second curve
at each intersection.
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Note that all topologically equivalent links have the same linking number
(up to a possible difference in sign if the senses of direction are not preserved),
but inequivalent ones will not necessarily be distinguished by it. All unlinked
(i.e. separable) configurations have linking number zero, but so also do many
topologically linked ones.

Rolfsen [1] gives many more equivalent definitions of the linking number,
but of particular interest here is the integral [2] given by Gauss for this
integer-valued topological invariant:

* π A B rAB

Here the vector rA defines a point on curve A, the vector rB a point on curve B
and *AB~XB~~XA The integrations are performed along each curve1 and IAB

changes sign upon changing the sense of direction of either curve.
W. Pohl recently found a new result [3] concerning the square of the

linking number of two curves, which may be very useful in the polymer
applications. Trying to reproduce this result, we found a new simple derivation
and a generalized version of PohΓs formula. The aim of this article is to
present this new approach which uses Fourier transforms.

Let us take some initially given joint configuration of the curves A and B.
Then by translating curve B with respect to curve A by a vector p and by
changing the orientation & of B with respect to A, we can define the linking
number IAB(p, Θ).

It is not difficult to show that

where the brackets indicate that we average over all orientations Θ of A and B.
However, it is more interesting to calculate the second moment,

JAB = J ^ 3 P OAB(P> ^)) (1-3)

We note that for plane convex curves IAB is always one or zero. In this case,
JAB has a simple physical interpretation. It defines the "excluded volume" of
the curves A and B. Thus the second virial coefficient of a gas (or a solution) of
convex planar curves C is given directly by \ Jcc.

Using a slightly different notation, W. Pohl has shown, for plane convex
curves, that JAB can be written in the form

]drs*A(r)^B(r\ (1.4)

where s$A(f) and s$B(r) are functions associated with the curves A and B. As
was shown by W. Pohl, for a closed curve, the function si if) is defined by the
following integral taken along the curve (see Fig. 1)

j?/(r)= J dsx cos θx. (1.5)

1 In (1.1), we use the notation (a, b, c) = (a Λ b) c
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Fig. 1. For calculating si if), the length r12 = \rί — r2 | is kept equal to the constant r

It is not difficult to show that for a plane convex curve, s$(r) is just the length
of the envelope of the segments of length r joining two points 1 and 2
belonging to the curve. Thus for a circle of radius R

(1.6)

(1.7)

W. Pohl has indicated that his result can be extended to more complicated
curves.

Using the approach described below, we found that in general

On the other hand, for any curve of length L

1
(1.8)

For a curve C, stf(r) and &(r) are given by double integrals taken along C:

(1.9)

where θ(x) is the step function 0(x) = ̂ (l + |x|/x) and r 1 2 = |r2 —r j .
The function ^(r) vanishes if C is the same as its mirror image C (obtained

by reflection with respect to a plane or a point). Thus, &(r) = 0 for plane
curves, but it will be shown in Sect. 4 that, in general, &(r) does not vanish.
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The expression for srf(r) can be transformed by integrating by parts. We
have

As r12dr12 = (r12'dr12\ we obtain for s$(r) another form

which is usually more convenient. In Eq. (1.10), the integration with respect to
point 2 can be performed. Noting that

^ r Γ r i 2 = C 0 S 01 Γ12^Γ12

dr12 = cos θ2 ds2 — cos θί dsί

we find immediately Eq. (1.5).
Thus our results coincide with the result found by W. Pohl for plane

convex curves. In Sect. 2, we derive an intermediate result and we find that JAB

can be expressed in a simple way in terms of functions sdA\jρ\ sdB\jρ\ &A\_p]
and £fiB\jp\ of a variable p which can be considered as the magnitude of a
"wave-vector".

The final result is derived in Sect. 3 and a few remarks are made in Sect. 4.
A different derivation and a further generalization have been found by

Duplantier [4]. These will be described in another article.

2. Calculation of JAB Representation of JAB in "Wave-Vector Space"

The linking number IAB of two curves A and B can be written

*AB = -£-ii(dτA,dτB,VAU-)). (2.1)
* π A B \ VAB>'

On the other hand, we know that

(remember that A(l/r) = —4π δ(r)).
We may then write

I gi P ( r A - ΓJS)

/ — \ d3 p { [ (dr ,<ir ,p) , (2.3)
8 π 3 AB ' P2

and therefore we have

2,drB2,q) (2.4)
(see Fig. 2).
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Fig. 2. The curves A and B

Now let us translate curve B with respect to curve A by a vector p. We
obtain in this way a linking number IAB(p). To obtain IAB{p), we make the
transformation

in the preceding formula. In this way, we obtain in the integrand an extra
factor e-

i{*+q) p.
Let us now calculate j d3 p IAB(p).
Since

we obtain, after integration with respect to q,

3 2 l C d 3 P e i p - ( r Λ l - r A

Now, we have

dxA1 dyA1 dzA

Π Ύ /] ]) // 7

and therefore

(2.5)

dxA2 dxB2 px

d v ίϊ v z?

Jz^ 2 ^?zβ2 p z

l> P) (dr

drAί dτA2 dxAγ>dxB2

When the preceding determinant is introduced in Eq. (2.4), simplifications
occur. We note that

the integration being made along any closed curve C. On the other hand, drA1

occurs only in the first row, drB1 only in the second row. Similarly dxA2 occurs
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only in the first column, dxB2 only in the second column. This remark shows
that in Eq. (2.4), we may replace the preceding determinant by a simplified
determinant

dxAί

dxB1

drA2

dxA2

0

dxA1

dxB1

dxB2

dxB2

0

0

0

P'

=p2 l(dτΛ1 drA2) (drB1 drB2)-(drAl dιB2) (drB1 (2.7)

Let us introduce this expression in Eq. (2.5). After permuting B\ and 2?2, we
obtain2

ί(drAί drA2)(drk

B1 dr*B2)-{dr>Λ
^ dr\2)\ (2.8)

Now by changing the orientations of B and A we obtain j d 3 ρIAB(ρ, &) and by
averaging over all orientations we obtain

(2.9)

where srf\_p~\ and $X_p~\ for the curve C are defined by double integrals
averaged over all orientations of C in space.

^ [ p ] = < J J ^ i p ( r i - r 2 ) ( d r 1 . d r 2 ) > , (2.10)

^•[p]=<Jje ί P^- Γ 2)(dr jd^)>. (2.11)

We note that

and that

[see Eq. (2.6)].
On the other hand, it will be convenient to introduce the function

(2.13)

(2.14)

Now it is possible to express 3tJk [/?] in terms of the scalar functions j / [p]
and &8[p~\. In fact, group theory shows that gfijk[p~\ must be of the form

= δ>k f(p) + P} Pk g(p) + εikί Pe (2.15)

2 Summation over repeated indices is implicit in (2.8) and subsequent equations
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Here εjur= + 1 if (j,k,ί) is an even permutation of (1,2,3), εjU = - 1 if (j,k,S) is
an odd permutation of (1,2,3) and εjk^ = 0 otherwise.

Let us calculate/(p), g(p) and h(p). Eqs. (2.12) and (2.13) give

and therefore

On the other hand, from Eqs. (2.14), (2.11) and (2.15) we deduce

P

= --εjk* εjkmp*pmh{p)
P

= -2iph(p% (2.17)

and therefore

ft(p)=+^#[p]. (2.18)

Now let us calculate the product ^A\_PΛ^BVPΛ\ starting from Eq. (2.15),
we may write

Bip)+P2 UAP) gB(p)+SΛP) h(p)l

gΛ(P) 8B(P) + V K(P) hB(p),

and with the help of Eqs. (2.16) and (2.18), we get

ί -s^A [p] ̂ B [P] - 1 ^ B [P] ^ B [P], (2 19)

where the functions s$ [p] and J* [p] depend only on the length p of p.
Let us bring (2.19) into Eq. (2.9).
We obtain the result

1 °°
AB (2π)2

On the other hand, in the definitions of sd\jρ\ and &\_p\ instead of
averaging over the orientations of the curve under consideration, we may
average over the orientation of p. Thus, Eq. (2.10) gives

(2.21)
Pri
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and Eq. (2.14) gives

-Jf (*,.*„„,) [S^ϋJ-^ί]. ,2.22)

Equations (2.20), (2.21), and (2.22) constitute the intermediate results an-
nounced in the introduction.

3. Representation of JAB in "Real Space"

In the preceding section, JAB has been expressed as an integral over a
variable p which has the dimension of a wave vector (the inverse of a length).
By performing a Fourier transform, it is possible to express JAB as an integral
over a length r. The transformation is not unique and various results can be
obtained. A simple way of obtaining the simplest result consists of replacing
j / [ p ] and ^ [ p ] in Eq. (2.20) by their formal expressions (2.21) and (2.22) and
integrating with respect to p. We may set rA = \rA1 — rA2\, rB = \rBί — rB2\ and we
shall use the following identities, which are derived in the appendix:

ίcosprA sinprA\ /cosprB sinprB\
P 2 2\ ! \ l ? \ )\ prl j? τ\ )

-rB). (3.2)
z 0 r

This shows immediately that JAB is given by

J τ~ 1 dr[^A(r) s/B(r) + <8A(r) ®B{r)\ (3.3)
oπ 0

where jtf(r) is derived from (2.21) and (3.1)

^(r) = JJ(dr1.dr2)ifl(r-r12), (3.4)

and @{f) from (2.22) and (3.2)

2 , r 1 2 ) ^ 0 ( r - r 1 2 ) . (3.5)

Thus we find exactly the results announced in the introduction [see Eqs. (1.8)
and (1.9)].
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4. Remarks

Obviously the function jtf(r) associated with a curve C is never identically
zero, since j/(0) —2L where L is the length of the curve. However, as was
noted in the introduction, £fi(r) may vanish for all r.

Let C be the mirror image of C. It is easy to see that

(4.1)

Therefore, if C coincides with C, ^ c ( r ) = 0. However, it is possible to show the
existence of curves C for which 3&{f) does not vanish. To establish this fact, it
is sufficient to find a curve C for which

j - [r2
= Π (dr,, dτ2, r 12) c5(r - r, 2) + 0.

Consider now the curve C shown on Fig. 3. The main contribution is due to
the central part, which can be made as long as we wish. Then, if we choose for
r a value which is much smaller than the radius R and the pitch H, we see that
the contribution of the central part comes only from the helix and has a
definite sign.

Equations (4.1) show that

Thus, in general, if C does not coincide with C, we have

Central
part

Fig. 3. A curve C for which @{f) does not vanish
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Appendix

The identities (3.1) and (3.2) are derived will the help of the formulas

π °? _ sinx °? ; 1-cosx ^ °? , x-sinx * _ cosx-l+x 2 /2
$ d x $ dx 2 ί J x = 6 ί ^ -4

Λ

2 =2 ί J x

 X
0 Λ 0

Identity

I - 1
6 prA p rB

1 °? Γcosp(rA —rB) —cos p(rA + rB)Ί

rArB o P L P2 J
Ί

γ γ 2 A B A B

1 1

Therefore, we have also

Second Identity

T -1 Λ [cosp?^_shιprA\ [cos p rB sinprΰ]
b ~ J P\ nr2 n2r3 n r2 n 2 r3 '

0 ί- PVA P TA -* L PVB P TB J

We note that

and then find

cos p f a - rB) - cos p{rΛ + rB) 1

0 LP P rA P γB

1 π . , , ̂  π

rXT2Ll^~

This can be rewritten as

71
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and we then derive Ib:

Therefore, we have also
6 Vj rB
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