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Abstract. Inequalities between successive moments of the time dependent
auto-correlation function are derived. Furthermore, we prove that they
provide an infinite set of characterizations of an equilibrium state.

I. Introduction

As is well known, the time auto-correlation function is an important quantity
for the study of macroscopic systems both from a theoretical as well as from
an experimental point of view. In particular we have in mind response theory.
In practice, computations in this theory are generally stopped after the first
moment because of lack of information about the higher moments of the auto-
correlation function. If this is the case, one speaks about linear response theory
[1-4]. Indeed it is not always easy to establish a radius of convergence for this
auto-correlation function expressed as a power series in the time variable [5].
Motivated by this problem, we study in a rigorous way the relation between
successive terms of this series expansion for KMS-states and derive inequalities
between them (see Theorem II.4 and 5). Furthermore we prove that our in-
equalities are best possible in the sense that each of them characterizes equilib-
rium or KMS-states (see Theorem III.2 and 3).

First we introduce the scheme in which we work. Let Jί be a von Neu-
mann algebra on a Hubert space ^f and H a self-adjoint operator on ffl. Let
Ut = expίtH, ίelR such that t^oίt=Ut U* is a continuous one parameter
group of *-automorphisms of Jί. Let Ω be a normalized element of Jf cyclic
for Ji. We denote by ω the vector state determined by Ω.

For any /ej^f^IR), denote by / the Fourier transform §dxf(x)eιkx=f(k) of
/ Denote by Jί0 the algebra generated by the set

{x{f)eJf\x(f) = \dtf(t) <xtx, xeJίJe®},
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where Q) is the set of C^-functions with compact support on R. Remark that
Jί0 is a strongly dense *-subalgebra of Jί. We define the derivation L on Jί0

by

L" *(/) = *" *(/<">) n = l,2,.... (1)

We define the symmetrized nth order moment of the auto-correlation function

for n = 0,1,2,....

II. Inequalities for Moments of an Equilibrium State

In this section we derive correlation inequalities for the symmetrized moments
(2) when the state ω is an equilibrium state or KMS-state for the evolution at

determined by the derivation L.

Definition ILL The state ω of Jί is called a KMS-state at inverse temperature
β = l if it satisfies the following condition: the set JίΩ belongs to the domain
Q){Alj2\ where A =exp( — H\ and for all x.yeJί we have

(i) HΩ = 0
( \Ί\ (Λ ' y (~) A / I; O^ — (λ) Cs Ύ O )
1111 I LA Λ i ύ , ZJ y ΩΩ I — 11/ ύ ώ ; Λ ώώy .

First we derive an integral representation for the moments.

Lemma II.2. // ω satisfies the KMS-condition, then for each xeJίo,x^0, there
exists a probability measure μx on R + = [0, oo) such that

where

Furthermore, let f_1(λ) = —-—, λeJR + . If m_1(x) is defined by
A

then the Duhamel two-point function

1

{x,x)^=\dt\\Δtl2xΩ\\2, (4)
o

satisfies (x,x)^=m_ x(x).

Proof Let H = \λdEλ be the spectral resolution of H on 3/e. By the KMS-
condition:

ά\E*Ω\2 λά\EΩ\2, xeJi.
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Define the probability measure μx on R + , for xφO:

_(1 + e~ λ) d{\\EλxΩ\\2 + \\Eλx* Ω\\2)
μ^ *= \\x*Ω\\2+\\xΩ\\2 '

which is well defined as ω is separating. Formulae (3) follow by a straightfor-
ward computation and the remark that

() HnxΩ, xe

To prove (4), compute

() ί ?^ d{\\EλxΩ\\2+\\Eλx*Ω\\2).m_1(x) ί

Using again the KMS-condition

Lemma II.3. The functionsFn: R + - > R + (n = l,2,...) git ew foj

(i) f 2 « ( / " ) ^ 2 n + 1

ί/zβ function F: (0,1] ^ R + given by F I ) = ^ t h j ^ , are well defined and

exconvex.

Proof (i) Check that

(2n)2y2n-1FJl

>

n(y2

and remark that

Inserting this inequality in the last term of (*), yields F ^ ^ O for all n ^ l .
To prove (ii) we use the following characterization of convexity [6, Appen-

dix I, Theorem A.2] :

1 a1 F2n_ί(aί)

d e t l a2 F2n_1(a2)

1 a3 F2n_1{a3)

for 0^a1^a2^a3. Taking

(**)

and using the monotonicity of the function

on
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the condition (**) becomes, after interchanging two columns,

det

1 yf
1 y2

2" y\n-H\xy2

y\n yi"-1thy3

for 0^y1 g y 2 g y 3 , which is equivalent to the concavity of the function

< 0

Compute:

y2n+1(2n)2ch2yG^_ί(y2n)=(2n-l)(y-shychy)-2y2thy^0,

as yrgshychj/. Finally the convexity of the function F given by F(y~1thy)
= ythy is easily seen by computing its second derivative:

F»
\ y I (y-shychy)3

It is sufficient to prove that

y -+f(y) = 2 j / 2 — y th y — sh2 y

is negative. However

y γ x

f(y) = $dx—~γ- j(iz8(z-chzshz)chzshz. Π
0 ch x o

In the follwing theorem we derive inequalities between successive moments.

Theorem II.4. // ω is a YJsAS-state, we have, with the notations of above, for
xeJi0 and

b) forn = ί,2,...

2 "m 0 (x)/ = 2 2 n + 1 m 0 (x)

2 '- 1 m 0 (x)/=2 2 "m 0 (x)- ( 7 )

Proof. The result of the theorem is now an immediate consequence of Jenssens
inequality applied to the representation of the mn(x) obtained in Lemma II.2
using the convex functions F and Fn (n = 1, 2, ...) of Lemma Π.3. •

Remark that the inequality (5) has been obtained before by Falk and Bruch
[7], the special case of inequality (7) with n = 1 was first derived by Martens and
Verbeure [8]. The other inequalities relating higher moments are new as far as
we know.
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Furthermore from the formulation and the proof of Theorem II.4 it looks
as if the inequalities (5), (6) and (7) are different in nature. We write all the
inequalities in a more organized way and obtain a chain of inequalities such
that all of them are of the same nature. Moreover this way of writing enables
us to complete the series with the upper bound of the Duhamel two-point
function, as derived by Roepstorff [9].

In order to do this, use the monotonicity of the functions fn (n =
— 1,1,2,3,...) given in Lemma II.2 to define the (positive) means Mn(x) (n =
— 1,1,2, 3,...) of the moments by

Furthermore define the mean N0(x) by

ω([x,x*])
thN0(x) = (9)

mo(x)

Theorem Π.5. // ω is a KMS-state, with the notations of above, we have for all

(10)

Proof First we check that N0(x) ̂  M _ ̂ (x) is equivalent to the known upper
bound for the Duhamel two-point function:

if ω([x,x*])*0
ω(xx*)

ω(x*x)

^ω(xx*+x*x) if ω([x,x*]) = 0.

Indeed, this inequality can be written as

ω([x,x*])

2- 1 m 0 (x)" l ω(xx*)'
2 ω(x*x)

or in the notation of (8) and (9)

M_i(x) = N0(x) '

where we used the formula

arcthr = log( ) if 0 < r < l .
\ί-r/ ~

The case ω([x, x*]) = 0 is immediate. The equivalence follows by remarking

that the function XG!R+ -> is monotonically decreasing.
x
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Now we prove that M_ 1 (x)^M 1 (x) is equivalent with inequality (5). In the
notation of (8), the inequality (5) reads as

The equivalence follows from the remark that the function xe]R + ->x thx is
monotonically increasing. Furthermore, we prove that M 2 f J (x)^M 2 n + 1 (x) (n
= 1,2,...) is equivalent with inequalities (6). In the notation of (8) inequalities
(6) read:

2 H M 2 n ( x ) 2 η = M2n(x)2n^

or M 2 Π ( X ) _ - M 2 M + 1 ( X ) by the monotonicity of x-*x2n+1 thx on R + . Finally
M2n_1(x)^M2n (n = l, 2, ...) is equivalent with inequalities (7):

written in the notation of (8) or M2 π(x)_-M2 w_1(x). Combining all these
inequalities we get the chain (10). •

This theorem yields an infinite set of inequalities between the consecutive
moments of the autocorrelation function in such a way that each inequality
contains only two normalized moments. It is clear that this result is important
to study the properties of the time dependent autocorrelation function (see e.g.
[5]). But instead of proceeding to applications, we want to examine in the next
section the question: how good are these inequalities? In fact we prove that
they are the best possible ones in the sense that it is sufficient to impose
inequality (5) or inequalities (6) and (7) for a single value of n in order to
characterize a KMS-state.

III. Characterizations of Equilibrium States

We start with the set up outlined in the introduction; Jί is a von Neumann
algebra acting on a Hubert space ffl with normalized cyclic vector Ω; H is a
self-adjoint operator on Jf defining the one-parameter group (α,),^ of auto-
morphisms of Jί. The derivation L is defined on Jί0 in (1) and the momenta
mπ(x), n = l,2, ...,xeJίQ in (2). Finally we define for xeJί0

1

m_1{x) = \ds(xΩ,oiis{x)Ω). (11)
o

In the case of a KMS-state this definition coincides with the one in Lemma
11.2.

First we prove that if the odd order moments are real valued then the state
ω( ) = (β, Ω) of Jί is αΓinvariant.

Lemma III.l. Let neN, then m2n_ί(x) real for all xeJί0 implies that ω(at(x))
= ω(x) for all xeJί.
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Proof. First we treat the case 72 = 0. Take x = x*eJί0. The reality of m_1(x)
implies

1

j ds{(Ω, oί_is(x) xΩ)-(Ω, x otis(x) Ω)} = 0 .
o

Replacing x by 1 +x yields

Replacing x by Lx yields

(Ω,(chL-l)xΩ) = 0

implying (Ω,L(x)Ω) = 0, by functional calculus. If n = l,2,..., take again x
# 0 , then the reality implies

Again replacing x by 1 + x yields

(Ω,L2w-1(x)Ω) = 0,

implying again (Ώ, L(x) Ω) = 0. Π

Now we prove the main results of this section. In the following we use the
notation introduced above and extend the definitions of M_1(x) and N0(x) (see
(8), (9)) to the limit cases m_1(x) = 0 and |([x,x*])|=mo(x).

Theorem III.2. Let jVo = {xeJίo\mo(x)>Q}. If for all XEJVQ one of the follow-

ing conditions holds:

(i) m_ 1 (x)^0 and No(x)^M_x(x)

or (ii) m_ 1(x)^0, m ^ x ^ O and M_ί(x)^M1(x),

where M_1(x) and Mj(x) are defined in (8) and N0(x) in (9), then the state ω is a
KMS-state.

In the next theorem we give another infinite set of equilibrium conditions.
In Theorem III.2 there are no other conditions to impose on the dynamical
system except for the inequalities. For the other inequalities of Theorem II.5 to
determine a KMS-state, it is clear that a supplementary condition is needed in
general because they become trivial in the case that H = 0. As in our notation
β is always absorbed in H, this would also correspond to the exceptional
situation that β = 0 or T=oo. We impose a condition on the evolution to
eliminate the degeneracies of the Hamiltonian, namely:

Jίa = {xeJf\at(x) = x, ίElR} (12)

is abelian.
Remark that this condition is much weaker and of a completely different

nature than ergodicity or clustering which are nonlinear conditions on the
state often used in characterizations of equilibrium states [10-11].
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Theorem III.3. Let jVo = {xeJ^o\mo{x)>0}. If the evolution satisfies condition
(12) and if for a fixed n = l,2 5 . . . and for all xeJ^ one of the following
conditions holds

(i): m2n_1(x)^O,m2n+1{x)^O and M2tt_1(x)^M2n(x)^M2n+ί(x),

or (ii): m2n_ί(x)^0 and M2n(x)^M2n+1(x)^M2n+2(x),

where Mn(x) (n = l,2,...) is defined in (8), then the state ω is a KMS-state.

The proofs of Theorems III.2 and III.3 will be performed in a number of
steps.

Lemma ΠI.4. Condition (i) of Theorem III.2 implies that ω is a KMS-state.

Proof The time invariance of ω follows from Lemma III.l. If xeJf0, the proof
of Theorem II.5 shows that condition (i) is equivalent to the upper bound of
the Duhamel two point function

ω(x*x)

^ ω ( x x * + x*x), if ω([x,x*]) = 0.

On the other hand if roo(x) = 0, then (x,x)» = 0 by Schwartz inequality and the
inequality remains valid.

The rest of the proof follows from [12, Theorem II.4]. •

Lemma III.5. Any state satisfying condition (ii) of Theorem III.2 or conditions
(i) or (ii) of Theorem III.3 is separating.

Proof Let xeJί such that ω(xx*) = 0. It is sufficient to prove that ω(x*x) = 0.
Indeed then for all yeJi:

yx*Ω implies xy*Ω = 0,

and as Ω is cyclic, x = 0. Now we prove this by contradiction. Therefore let
ω(x*x)>0. As ω is time invariant (Lemma III.l) there exists a self-adjoint
operator which we again denote by H and such that

at(x)Ω = eίtHxΩ.

Let H = $λdEλ be the spectral resolution of H and /e®, then

and
ω(x/(x/)*) = 0,

because for all t1 and t2:

by time invariance and Schwartz inequality. As ω(x*x)>0 there exists
such that ω((x / )*χ / )>0 and so
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It follows now from condition (ii) of Theorem III.2 by applying f_ί on
the inequality, that:

which is a contradiction, proving the first statement of the Lemma.
To prove the other statements of the Lemma, compute with the notations

of above
mk(xf) = μk\f(λ)\2d\\EλxΩ\\2 (13)

R

/c = 0,1,2,.... If (i) or (ii) of Theorem III.3 are satisfied, then m2n+1(x) is
positive on JV0 and the expression (13) implies that the spectral measure
d\\EλxΩ\\2 has its support in R + . Take some λ0 in this support. Choose a
sequence of functions ( ^ 6 ] N in 3} such that

supportj^= U o - - , / l o + - and j^(/l)>0 for λe \λ0—-, λo+- ,
L v υ J \ υ υ\_

then for/c = 0,1,2,...

lim mkyf^=λk

0. (14)

From the inequalities (i) or (ii) of Theorem III.3

Hence

However by (8) and (14), the left hand side of this inequality tends as /-* oo

7 2 2 " - 1 mo(x,J \2

and for the right hand side

\\mf2n{2M2n{xf)) = lim m2n%^ = λ2n.

After substitution we get

11 v 2 « - l / ; χ 2 w - l

( ) * ( ) Λ(y)
implying that λo = 0 or the support of the measure d\\EλxΩ\\2 is reduced to
zero, hence HxΩ = 0.

Therefore, if ί l 5 ί 2 e R then ω(x*x) = ω(α ί i(x*)α ί 2(x))>0.
Let J4t be the mean over R, define the map Φ oi Ji m Ji by
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then Φ(x)eJiOi, and as Jίa is abelian

ω(x* x) = ω(Φ(x)* Φ(x))

= ω(Φ(x) Φ(x*)) = Jίt ω(Φ(x) αf(x*)) = 0,

asα f (x*)Ω = 0. Q

Proof of Theorem 1112. The proof that (i) implies the KMS-property is given
in Lemma III.4. Now we proceed to the proof that condition (ii) of Theorem
III.2 implies the KMS-property. From Lemma ΠI.l the state ω is again time
invariant and we consider again {Eλ}λ9 the spectral resolution of the Hamil-
tonian as in Lemma III.5.

For any X + 0 , X G J " , denote

dμx{λ) = d\\EλxΩ\\2

9

dvx(λ) = d\\Eλx*Ω\\2,

and for f

Let feSi such that XyΦO, then from Lemma III.5 mo(xf)>0 and from con-
dition (ii) with x = x / ? respectively (xy)*, we get

o{xf)l rno(xf)

o(xf) I mo(xf)

Also from Lemma III.5 support μx= —support vxφφ; take /ί0GSupport μx and
a sequence ( / ^ e N in <2) such that

support^= \λo--,λo+-1 and fM)>° f o r ΛeJλ0 —-, Ao + ^ | -

Using the convexity of the function F (see Lemma II.3) we sum up the in-
equalities (15) and (16) with the weights respectively

e

eλo

 Λ 1
r — - and A o + 1

to get:

= Ί)λ\JAλ)\ s I11)

mo(xf)
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Taking lim inf (lim) of both sides of (17), we get by the mean value theorem

μx{fe)

(Λ)

(18)

Suppose now λo>0 (the case λ0<0 can be treated in the same way), then from
(18)

Take now lim of (16). Observe that the function F is decreasing and use
inequality (19) to get subsequently:

'4+ι ° ~~+ι

> F | l i m

\

Hence

and together with (19):

The case λo = O yields immediately from (15) and (16) that

lim ——— = 1.

Hence

for all /l0Gsupp^x. But this is well known to be equivalent to the KMS-
condition [10]. Π
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Proof of Theorem 1113. If the conditions of Theorem III.3 are satisfied, then
the state ω is separating and we consider again for every x e J , xφO the
measures μx(λ), vx(λ) and the sequence of functions (/^e ] N, as in the proof of
Theorem III.2. Consider first the situation that condition (i) is satisfied, then
for 2 0 > 0 , /l0esupport μx

mo{xfg)

(21)

<-ιthM2n(xu).

Take lim of this inequality and use (21) to get:

μx(L)

Hence

Analogously from M2n(x)^M2n+ι(x):

The same inequalities are deduced for λo<0 in a similar way, therefore

-—γ—77 = eλ for ΛφO. (22)

Suppose now that the measure μx(λ) is atomic in A = 0.
Let Eo be the projection on the invariant vectors and Φ the mean of

αf, as in the proof of Lemma III.5, then using condition (12):

(Ω, x*£(0) xΩ) = (Ω, Φ(x*)Φ(x)Ω)

= (Ω,Φ(x),Φ(x*)Ω)

= (Ω,x£(0)x*Ω),

proving that (22) holds for λ = 0.
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Suppose now that condition (ii) is satisfied, i.e. for all xeJi

From (21) for 20esupport μx

Therefore

' - 1

Hence for λ0 Φ 0

dvx(-λ0)

The case Ao = 0 is treated as above. •

As it was remarked above, Theorems III.2 and 3 constitute an infinite set of
correlation inequalities which are strong enough to impose equilibrium on the
system. As far as the first condition is concerned, it is known that it can be
written in a form [12] which gives an easy interpretation of the inequality in
terms of a notion of stability [13]. It is evident that it would be instructive to
look for the appropriate notions of stability corresponding to the other set of
inequalities.

Another aspect of the result which we want to stress is that we give the
characterization of KMS-states by means of maximum three powers of the
generator of the time evolution.

References

1. Kubo, R.: J. Phys. Soc. Japan 12, 570 (1957)
2. Mori, H.: Progr. Theor. Phys. 33, 423 (1965)
3. Naudts, J., Verbeure, A., Weder, R.: Commun. Math. Phys. 44, 87 (1975)
4. Verbeure, A., Weder, R.: Commun. Math. Phys. 44, 101 (1975)
5. Dupuis, M.: Progr. Theor. Phys. 37, 502 (1966)
6. Dyson, F.J., Lieb, E.H., Simon, B.: J. Stat. Phys. 18, 335 (1978)
7. Falk, H., Bruch, L.: Phys. Rev. 180, 442 (1969)
8. Martens, R., Verbeure, A.: Lett. Math. Phys. 3, 413 (1979)
9. Roepstorff, G.: Commun. Math. Phys. 46, 253 (1976)

10. Haag, R, Kastler, D., Trych-Pohlmeyer, E.B.: Commun. Math. Phys. 38, 173 (1974)
11. Pusz, W, Woronowicz, S.L.: Commun. Math. Phys. 58, 273 (1978)
12. Fannes, M., Verbeure, A.: Commun. Math. Phys. 57, 165 (1977)
13. Fannes, M., Verbeure, A.: J. Math. Phys. 19, 558 (1978)

Communicated by H. Araki

Received February 21, 1981






