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Abstract. Possible ergodic properties of Gibbs states are discussed by con-
structing a number of examples. In particular existence of Gibbs states which
are mixing but not extremal is shown.

Any invariant state ρ which is an extremal Gibbs state, [2], [6], [8], is mixing
[6], i.e. for any f,geL2(ρ)
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In this note we discuss the question to what extent the converse holds, i.e. if any
mixing Gibbs state is extremal. In particular, we construct an example of a mixing
non-extremal Gibbs state.

More precisely, we consider a hierarchy of ergodic properties: ergodicity, weak
mixing, π-fold mixing (n>2), extremality in the set of all Gibbs states, each
property being stronger than the preceding one. By considering suitable fer-
romagnetic finite range interactions we obtain equilibrium states which are

- ergodic but not weakly mixing
- weakly mixing but not mixing
- mixing (i.e., 2-fold mixing) but not 3-fold mixing, and thus not extremal

Gibbs states.
Construction of ergodic but not weakly mixing states is trivial: average over

translations of any periodic not Zv-invariant extremal Gibbs state yields here an
example. One can obtain such examples already in two dimensions. The other
examples are more complicated and are constructed in dimension three or higher.
At the end of this note we discuss a result of Ledrappier [7] which stimulated
working out of the examples below.

We adopt the following definitions [4], [1]. Let ΘC be a compact Zv-space (i.e.,
Έv acts on 3C by homeomorphisms). We denote by /H>τα/5 αeZ v, the induced
action of Έv on C{$) and by E1 the family of all Zv-invariant states of C{β\ For
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a = (a\ . . , α v ) e Γ , rc>0, finite ΛcZ\ we let

\a\ = max {\aι\: i = 1,..., v}, Λ(n) = {αeZ v: \a\ < n}

A set J C7LV is of zero density Ίί |JnΛ(n)|/|Λ.(n)|-»0 as n—>oo. A state ρeE1 is ergodic,
respectively: weakly mixing, mixing, if for any / # e C(βC)

1 y

respectively:

1 v.

lim,x, _ «, ρ(/ τxgf)

J is n-fold mixing if for any / 1 ? ...5/BeC(f)

Weak mixing is equivalent to existence for any f,ge C(3C) of a set J of zero density
such that

We note that to check any of the above properties it is enough to verify it for a
family of functions, linear combinations of which are dense in C{3C\

Invariant extremal Gibbs states are n-fold mixing for each n5 [6]. Thus an
equilibrium state which is mixing but not 3-fold mixing is not an extremal Gibbs
state.

The present paper is, in a sense, a continuation of [9], and we adopt the
notation of that reference. In particular 3C = {— 1,1}\ JL = ZV, is the configuration
space of a spin 1/2 system with the natural action of Zv σA, where A is a finite
subset of IL, is the usual product of spin variables and the (translation invariant)
Hamiltonian is

- Σ °* (!)
Be®

We will consider only finite range interactions: in each case there is a finite
subfamily J * 0 C ^ such that each element of & is a translate of ^ 0 . ρ+ is the
translation invariant extremal Gibbs state corresponding to inverse temperature β
obtained with " + 1 - boundary conditions at infinity", and ρ° is the thermody-
namic limit of ρ°Λ as Λ-+ΊL.

exPj8 X σB(X)
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ρ° is translation invariant but not extremal in general. Most of our examples are
obtained by taking ρ° for suitable J* and large β.

For two subsets C, D of ΊL let C + D be their symmetric difference

C + D = (C\D)v(D\C).

Then ^(1L), the family of all finite subsets of IL, with the + operation is an
(abelian) group let J 1 be the subgroup of ^f(Έv) generated by ^ .

For any interaction of the form (1)

ρ°{σA) = 0 if Aφ& (2)

Q°(σA) = ρ + (σA)
 i f ^

and β is large enough [10], and for all models we will consider, [5] allows us to
check that

ρ + (σA) φ 0 V A e &>f(lL)9 for large β. (4)

Let (Mn), n=l,2,3,..., be the following property of J* (Av ...,An are elements
of ^y(IL)): (M^ for any AvA2φ& there exists a set JcΈv of density zero such that

^ ifxφJ.

(Mn,n^2) for any A19...9AnφΛ9

if all \xi — xjl i+j, are large enough. Assuming (2)-(4) we will now show that for
n ̂  2, if ρ° is ^-mixing then (Mn) holds (in fact ρ° is rc-mixing if (Mk) holds for k ̂  n).
For if At ... Anφ$ then for ^-mixing ρ°

β° Π r»(°A)h Π Q>Λ)
\ί=ί I i=l

n

as min|χ. — x̂ l-> oo, and \\ ρ°(σA) = 0 by (2). On the other hand if (xk .) i = 1,..., n,
iήzJ i=l

n

fc= 1,2,... are such that \xkJ-xkJ\^k, ϊ'Φj, and £ τXk .(At)e^ then
ί = l

as /c^ oo, which is non-zero by (4) here the first and the third equality follow from
n

σc'σD = σc+D (VC> £*) a n ( ί second from (3) and £ τXk . ( ^ . ) G ^ . Similarly one shows

that for weakly mixing ρ°, (MJ holds.
On the other hand, (M1) implies that ρ° is weakly mixing; since linear

combinations of {σA :Ae^f(L)} are dense in C(ΘC) it is enough to show that for any
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AVA2 there exists a set JcZv of density zero such that

AσAi-τx(σA2)) ^ ^ , e V ^ V j - (•)

If both 4̂X and ^42 are in U then by (3) and the fact that ρ + is mixing one can take
j = 0; if ^ e J , A2φ$ then ^ x+τ x(y4 2)<£j and by (2) ρ°(σAl τx(σAi)) = 0 and
ρ°{σAi)ρ°(σA2) = 0 and therefore (*) holds with empty J. lϊAl9A2φ0ί let J be as in
(Mj/Then *

is zero for xφj (by (2)) and (*) holds again.
In exactly the same way one shows that (M2) implies that ρ° is mixing. Thus we

see that ρ° is weakly mixing but not mixing if (Mx) holds but (M2) does not hold,
and that ρ° is mixing but not 3-fold mixing if (M2) holds but (M3) does not hold.
Since (4) depends on $ only, and not on &, corresponding ergodic properties of ρ°
at low temperatures depend only on $ too.

Example!, (layered Ising Model). (Mx) holds but (M2) does not. L = Z 3 ,

ao = {B19B2],

^ = {0,^}, B2 = {09e2}.1

The same &, and therefore the same ergodic properties of ρ° at low temperatures,
are obtained if we enlarge J*o by

which yields a "connected" model.
Here Ae^ iff each plane perpendicular to e3 intersects A at an even number of

points. Thus if Av A2φ$ then A1+τxA2φ$ for all x with large enough x3, which
proves (Mx). To see that (M2) does not hold it is enough to take Aί=A2 = {0} and
observe that Ax +τneiA2e$ for all n. (4) holds here since ρ + for this model is a
product of corresponding states of two-dimensional Ising models for which (4)
holds. Thus we obtain a Gibbs state which is weakly mixing but not mixing.
Another example is provided by the model of [9, Sect. 4].

We conjecture that as soon as @>f (ΊL)/$ is infinite and (4) holds, ρ° is weakly
mixing.

Example 2. (M2) holds, (M3) does not the proofs are much more complicated than
in Example 1. IL = Z 3 , 0go = {Bl9B2},

B1 = {0, ev e2}, B2 = {ev e29 2e3} .

To prove (M2) we first notice that it is enough to check it for A2 =AV For suppose
for any n there exists xeZ3 such that |x| >n and aί +τxA2eέ$. Then for any n there
exist xu x2eZ3 such that \xί — x 2 |>rc and Aι +τxιA2e&, Ax +τX2A2e&. But then

and therefore A2 + τXί_X2(A2)e$. Now we reformulate the problem in the
algebraic language of [5] and use the algebra to solve it.

1 ev ...,ev is the canonical basis of Έ
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In the notation of [5, Sect. 3], writing X = {eί}, Y={e2}, Z = {e3},
3, we have

p g
F 2 [ Z 3 ] ( = 0>f(Z3)). Now A + Ψ ) G I means that there are P, β e F 2 [ Z 3 ] such that

where the multiplication on the right hand side is understood in the sense of

(l+X*YpZy)Ά =

Multiplying both sides here by a suitable monomial XaΎβ'Zy\ and assuming
A C Έ\ we see that there exist non-negative integers λ, μ, η, ρ, σ, τ, (λ9 μ, η) φ (ρ, σ, τ),
and P9QeF2[X9Y,Z] such that

(AΓλy' tZ>'+ZβyσZτ) X = P J 5 1 + β JB2. (5)

Let R =Xλ YμZv +XQYσZτ then (5) is equivalent to the fact that R A is in the ideal
J of ¥2\X, y, Z] generated by J3 l9 £ 2 . We will now show that if AφJ then the
preceding statement implies that ReJ which in turn will be shown to lead to a
contradiction.

Let Φ be a homomorphism IF2[X, Y;Z]-»F2[Z] such that

and since B^l+X+Y, B2

1) = Φ(B2) = 0,i.Q.9 J^Cker(Φ). In fact J^ = ker(Φ). For, as is easy to see, each
element oϊΨ2[X9 Y,Z~] is congruent m o d ^ to an element of F 2 [ Z ] and ker(Φ) has
trivial intersection with the later.

Now, if R AEJ then Φ(R) Φ(A) = Φ(R A) = 0 and since IF2[Z] has no zero
divisors it follows that either Φ(R) = 0 or Φ(A) = 0. But Φ(A) = 0 would contradict

. Hence Φ(JR) = 0, which is the same as

(Z + Z2)λ(l + Z + Z2fZn = (Z + Z2f{\ + Z + Z2)σZτ

or

Since the polynomials 1 + Z , 1 + Z + Z 2 , Z are prime in F 2 [ Z ] , the last identity
implies that λ = ρ9 μ = σ9 λ + η = ρ + τ9m contradiction with (λ9 μ, 77) φ (ρ, σ, τ).

The above argument shows also that if m Φ n then 1 + Z m and 1 + Z" are not
congruent mod^, that therefore @>j.(JL)/& is infinite, and that in particular one
point subsets are not in J*. Since, obviously,

by [5], (4) holds. Thus to show that, for large β, ρ° is not 3-fold mixing, it is enough
to exhibit sequences (αj 0 0, (bj°°5 (O°°J of points of IL such that {αn, i?π, c n }e^ and

min{\an-bn\,\an-cn\,\bn--cn\}-*cQ as n-^00.

To this end, since B2ne$ and
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[5, Sect. 3.9], define an = 0, bn = 2nev cn = 2ne2. Then the above conditions are
satisfied proving that (M3) does not hold.

Remark. As is not hard to see the above proof of (M2) depends on two properties
oϊ^:onM being a prime ideal of F 2 [ Z 3 ] (we used the homomorphism Φ to prove
it) and on & not containing two-point sets. The first condition is the harder to
satisfy and to check since it requires the elements of B to be of an irregular shape.

We note that as soon as $ Φ ̂ j(IL), (Mw) is not satisfied for m large enough: if
A is any element of ^ , v4Φ0, n = Card,4, then (Mn) does not hold. The proof
repeats the argument preceding the remark:

A {2a:eA}e$

consists of n points with separation increasing to infinity as m->oo.
We now put our construction in a different perspective. Considering the natural

group structure on 2£, σA are characters of ΘC and

is a compact Zv-invariant subgroup of 3C, £f acts on the set of Gibbs states [9],
Ge£f\ρ\->ρG, and for a probability measure / l o n ^ let

then

where μ(σA) is the integral with respect to μ of the restriction of the character σA to
the subgroup £f of 9C, Suppose now ρ + (σ^)φ0, V ^ e ^ Ί L ) . Then since ρ+ is π-fold
mixing for each n, ρμ is rc-fold mixing iff μ is. If λ is the Haar measure of £f then
λ(σA) = 1 iϊ σA\£f = l and λ(σA) = 0 otherwise, i.e.

Λ(σJ = l if

0 if

Therefore for large enough j8, ρA coincides with ρ°, and thus ergodic properties of
ρ° are related to ergodic properties of the Haar measure of Sf under the action of
Έv by automorphisms of Sf. In particular, (Mλ) is equivalent to weak mixing, and
(MJ, n ̂  2, to rc-fold mixing of the Haar measure.

In case of an action of 7L by automorphisms of a compact abelian group,
ergodicity is equivalent to mixing [1], [4]. In case of a Zv-action, v > 1, ergodicity
is still equivalent to weak mixing but as Example 1 shows it does not imply 2-fold
mixing anymore.

While I have been aware for some time, [11], of the above construction of
Gibbs states with various mixing properties, the present examples have been
worked out in Spring 1979 after hearing from A. Katok about Ledrappier's
example (cf. below). The state constructed in [7] can also be considered as a Gibbs
state, in the sense of [8, Chap. 1]. The interaction would then be zero but due to
the fact that the space is small (in particular, the pressure is zero) it has the
somewhat pathological property, when compared with the usual systems of
statistical mechanics, that every state is a Gibbs state.
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The example of Ledrappier [7] fits into our framework as follows. His space X
is the group y c { l , l } z 2 of J* consisting of translates of

B = {0,2eί9 2e2,2e1 + 2β2, ex + e2}.

According to the Remark, to obtain mixing here it is enough to show that $ is a
prime ideal of Ψ2\7ί2~\ and that it does not contain a two point set. $ is prime since
& is a principal ideal generated by the prime element

B = 1 +X YΛ-X2 + Y2 +X2 Y2,

and & does not contain a two-point set since it obviously does not contain sets
with less than four elements and the argument of the remark shows that the system
is not 5-fold mixing. The same argument shows that the measure of the £P defined
by translates of

is mixing but not 3-fold mixing. And more generally, on TD\ if ^ consists of trans-
lates of a B which is prime in IF2[ZV] and which is not "one-dimensional", the group
Sf with the Haar measure and the natural action of Zv provides a system which is
mixing but not |£|-mixing.

Our examples have to be more complicated than the above since in two
dimensions ferromagnetic Gibbs systems have finite number of phases at low
temperatures and no principal ideals are allowed for 3$, [5]. Finally, we note that
our argument with B2n shows that ρ+ is the only state of the form ρμ which is
n-fold mixing for any n. Thus existence of Gibbs states which are n-fo\d mixing for
each n but not extremal is an open question.
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