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Abstract. We shall consider a finite range model on a square lattice Z* and
show the existence of bubble, tubular and lamellar phases by estimating the
correlation functions at low temperature.

Introduction

In many systems such as the mixture of water and soap we can observe the
phenomena of changes of the geometrical structures according to the density.
When we dissolve the soap in water, the system changes from the dissipative
state into the state of hexagonal structure, then into the state of lamellar
structure and finally into the state of gel. The interaction in the real substances
seems too complicated to be analyzed mathematically.

In this paper we shall show that such a phenomenon is realized even in the
simple model, though our model may not be the simplest one. Consider the 3-
dimensional square lattice Z3. We arrange oil-particles and water-particles on
sites of Z>, and also arrange soap-molecules on bonds of the lattice. Taking
into account the orientational tendency between the hydrophobic group and
the hydrophilic group of soap molecules, we set up the interactions between

the “components” whose ranges are 1, ]/2, and 2.

We shall prove that the system changes from the state of bubble structure
into the tubular structure and finally into the lamellar structure as the density
of oil-particles increases by estimating the volume of disordered phase.

We state our results rigorously in Sect. 2 after preparing the necessary
definitions in Sect. 1. Section 3 is devoted to the proof of theorems. In this
section we consider the correlation functions of Bloch walls and derive several
properties of them. As our model does not have simple symmetry in the Ising
model, we extend Heilmann’s method [3] to obtain the upper bound on the
correlation functions.

By using this estimate we obtain the unique solution of the correlation
equation, and we also have several properties of correlation functions by
refining the Minlos-Sinai method [1, 2].
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1. Description of the Model

Consider a 3-dimensional square lattice Z>. Suppose that each site of Z* can
be occupied by any of the two types of particles called oil-particles and water-
particles, and that each bond of the lattice can be occupied by a soap-molecule
or nothing. We denote a soap-molecule by an arrow (—), and regard the head
of the arrow as a hydrophobic group and the tail as a hydrophilic group. (See
Fig. 1)) For simplicity we denote an oil-particle and a water-particle by an o-
particle and a w-particle respectively.

Before describing the interactions on the system we prepare some terminol-
ogies which will be used in the sequel. Let |x—y| be the Euclidean distance
between x and yeZ3. We say two sites xeZ> and yeZ? are adjacent if |x — |
=1. A subset V of Z? is called connected if for all xeV and yeV (x=+y) there
is a path in V x,=x, x,, ..., x,=y such that x; and x;, , are adjacent (i
=1,2,...,n—1). For a given VcZ3 we denote the set of all sites of Z>\V
adjacent to some sites of V by 0V and the set of all sites of V" adjacent to some
sites of Z*\V by 0,,V. We say that a pair of bonds is “perpendicular” if they
contact at one site and are perpendicular. Let T be the totality of sites and
bonds in Z>3. In the usual way the configuration space is defined on T.

Now we describe the interactions between the “components” in the follow-
ing.
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1) The interaction potentials between oil-oil pairs, oil-water pairs, and
water-water pairs, at a distance r, are given by

Fig. 3

U,,r)=0

_feo  for [r|=1 (gy>0)
Yol )—{0 otherwise

U, ,0=0.

2) Soap-molecules interact with particles located on the nearest sites to the
molecules as follows; if a hydrophobic group of a soap-molecule contacts with
an o-particle or a hydrophilic group contacts with a w-particle, the interaction
is repulsive and its potential energy is given by 2eg,, while if a hydrophilic
group of molecule contacts with an o-particle or a hydrophobic group contacts
with a w-particle, it is attractive and its potential energy is given by —g,.

3-1) Two soap-molecules located on two parallel bonds interact with each
other as follows; the interaction is attractive if they point in the same direction,
while it is repulsive if they point in the opposite directions, and the potential
energies depend on distances between them and are shown in Fig. 2.

3-2) Two soap-molecules located on a perpendicular pair of bonds interact
with each other as follows; the attractive interaction with potential energy —e,
(e,>0) is given if it is one of the 12 types of pairs shown in Fig. 3, otherwise
the repulsive interaction with energy ¢y (g4 >0) is given.
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3-3) No interaction is given to the remaining pairs of soap-molecules.

4) We set the chemical potential at 8 u for an o-particle and zero for others.

Next we introduce the notions of the block configuration and the block
energy. Let S be the dual lattice of Z>. We call the totality of sites and bonds
in a unit cube a “block” and represent it by its center teS. Note that ¢, ¢,, &,
and eg-pairs are common to two nearest neighbour blocks and molecule-
particle pairs are common to four nearest neighbour blocks. We now define
the total potential energy E,(¢) is a block teS under the configuration ¢ by

E(&)=3(—n;(&)e; +ny(&) ey —ny(&) e, +ng(E)eg)
—n3(8)e3 +1,(8) ey — un(Q)

+% (the total energy of particle-molecule pairs in t), (.Y

where n(&), n;(&) are the number of o-particles, ¢-pairs (i=1,2,...,8) in teS.
Let X be the set of all configurations in a block. Put Q=25 We say weQ
is consistent if for each nearest neighbour pairs of blocks (¢, t,)

w(t1)izlnzz = a)(tZ)ltlnu)

where ()|, ~,, is the restriction of the block configuration w(z;) on the
common part t, nt, of the blocks ¢, and ¢,.

Let Q be the set of all consistent configurations, then there is a one-to-one
correspondence between the original configuration space and Q. For each £eQ
and each nearest neighbour pair of blocks (¢,, t,), we define the mutual poten-
tial energy E, ,,(¢) between ¢; and ¢, by

E,, ,(&)=73(—esns(8)+eenq()), (1.2)

where n5(¢) and n(¢) are the number of &5 and g pairs in t;Ut, under &
respectively.
Further, the block energy E(t; &) of the block ¢ is defined by

Et; O=E(EO)+3 Y E (). (1.3)
sift—s|=1
For any V<S, let Q, be the set of all consistent configurations in V. We
say éeQV is consistent w1th respect to weQ if (& w)eQ, where (£ w) is the
configuration given by

(& w)(1) ={

E(t) whenever teV
w(t)  otherwise.

Let Q,,,w be the set of all configurations éeQ, consistent with we Q.

With the notions above we define the Gibbs distribution. The Gibbs distri-
bution in the finite set ¥ =S, with the boundary condition weQ is the proba-
bility distribution

(&)= exp{—BUy(¢Elw)}  (EeDy.), (1.4)

V()
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where U, (¢|w) and Z,(w) are given by

Uyllo)= ) E@(&w), (1.5)
teVouov

Zy(w)= Z exp{—BU,(lw)}. (1.6)
Eev,

A random field {X,; teS} on Q is called a Gibbs random field if for every
finite V <8 its conditional distributions are given by

PriX,=¢(1), teV|X,=w(t), teS\V}=PF, ,() (.7

for all éeﬁv’w and almost all we Q.

2. The Statements of the Results

In this section we state our results. We shall show that the system changes
from the state of the bubble structure into the tubular structure, and finally
into the lamellar structure as the value of u increases. Also we shall consider
the asymptotic properties of the canonical Gibbs measures in the limit as

N . . .
V—Z3, N— o, V—m*, where n* is the density of o-particles.

To begin with we consider for which configurations the block energy in
each block takes minimal value. Assume that the interaction parameters g, &,,
and ¢, are sufficiently large compared with other interaction parameters, then
E, (&) (£€Z) can take minimal value only at the following ten types of con-
figurations in X. (See Fig. 4.)

Let X, be the set of all A;-type configurations in X (i=0,1,...,9). We
catalog the numbers of elements in these sets:

#(Zo)z #(29)'——1, #(21)2 #(22)= #(25)= #(26): #(28)=8
#(2,)=#(2,)=12, and #(Z,) =6.

Let II, be the set of all configurations w in Q such that w(t)eX; for each
tesS. Clearly the number of elements in X, is equal to the number of elements
in II;. It is easily seen that each element of II,, II,, and II, expresses,
geometrically, the bubble structure, the tubular structure, and the lamellar
structure respectively. We also note that the block energy E(f; w) is inde-
pendent of te S whenever well; (i=0,1, ...,9).

Under the following three conditions c-1, c-2, and ¢-3

c-1) 3eg+4e,>3e,+2e5+ 265

c-2) e tes>2e,

c-3) Min(e, +e5+eg,2e;+3e5+65)>e,>2¢8; +es,
the following assertions are obtained;
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) if ueK,=[0,pu,), then E(t;w,)<E(t;w) for all w,ell; and all

we\Il,,

2) if peK,=(u,,u,), then
wel\Il,,
3) if ueK,=(u,, 1), then

A

wel\Il,,

E(t;w,)<E(t;w) for all w,ell, and all

E(t;w,)<E(t;w) for all w,ell, and all

1 1 _1 1 _1 1
where uy =3¢, -6 —5es, Uy =38,—76;—¢3, and py=7&, +e3+7¢.

Put I1,= {0, 0, ...,

oW} (i=1,2,4), where N, =8, N,=12, and N,=8. By

using the assertions above and the Heilmann’s argument, we can prove the

occurrence of phase transitions.
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Theorem 1. For any fixed ueK,; (i=1,2,4) and any finite subset C<S, there
exists a function g,f), tending to zero as ﬂ tends to infinity, and at least N,
distinct limiting Gibbs measures w(,, (j=1,2,...,N,) which satisfy the following
estimates,

PoX,=of(t);teC)z1-g ()  (=1...N)

for sufficiently large p.

To describe the next result we introduce the following definitions. We fix a
finite cube V' =S and a boundary condition welIl, UII, Ull,. For any ¢ GQV’W
the block teV is called static if &(s)=w(s) for all s satisfying |s—¢t|<1, and is
called active if it is not. For any well, and any peK,, E(t; ¢) is the minimal
value if t is static under éeQV o The totahty of active sites is denoted by B(¢).
For any éeQV o there is a unique decomposition of B({) into the connected
components {B,(¢), ..., B,(&)}. A couple B;=(B,, (¢(t); teB)) of the connected
component B, and the configuration on it is called B-wall (Bloch wall). We say
B is an outer B-wall if it is contained in no other B-walls. We call the region
enclosed by the outer boundaries of outer B-walls “the disordered phase”, and
denote it by D(£). On the other hand the region O(&)=V\D(¢) is called “the
ordered phase”. We say B, =(B,, (£(t); te B,)) is congruent to B,=(B,, ({(t);
teB,)), if B, is superlmposed on B, by the translation T and &(t)={(T(t)) for
all teB,. A congruence class of B—wall is denoted by 7, and the set of such
congruence classes is denoted by I'. Also the volume of the region enclosed by
the outer boundary of y is denoted by v(y).

Put
o*(B, )= ZF v(y) p(7; B, W),
Ve
where p(7; B, p) is the limiting correlation function of yeI' and is defined in the
next section.
Let N, (6) be the number of oil-particles in V' under the configuration
feQV’w. For each je{1, 2,4}, put

n;-k*=uj—_Zr(ujv(y)—<n(7)>)p(?; B, 1),
Ve
where u, =%, u,=1%, u,=3%, and {(n(y)) is the expectation value of N,; in the
Gibbs ensemble Y(y; 8, u) whose exact definition is given in the next section.
From the estimates of correlation functions given in the next section, we have
n¥* (B, w—u; as f— oo

For any function f(£) on Q, , we denote the expectation value and the
variance of f(&) with respect to the probability measure P, , by {f), , and
V. »(f) respectively.

As for the expectation values and variances of N;(¢) and D(¢), the follow-
ing estimates are obtained.

Proposition 1. For any well;, ue K,;, and every sufficiently large f, the following
assertions 1)-4) are satisfied.

1) KNoidy, o, —0E* VI <F(B)VIE, Fi(P)LO exponentially as f— 0.

2) KDYy, — (B, W VI| < Ey(B) VI, Fy(B) 10 exponentially as p—co.
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3) W ouWNo) <Es(B)IVI, F5(B)|0 exponentially as f— oo,
4 Vy o uD)<FE(BIVI], F(B)LO exponentially as f— co.

We define the canonical Gibbs measure P} () by

Py o()=P, ,(:INy(O)=N).

Note that P} is independent of p.
Our main results are included in the following two theorems.

Theorem 2. For any ueK,; and any well; (i=1,2,4) there exist functions f(p)
and h(p), both of which tend to zero as [ tends to infinity and satisfy

Py o(ID@)I=o*[VII> f(B)IVIH) <h(B) (2.1)
Py o(INuy(&) =i * [VI|> f(B)[VI*) <h(p) (2.2)

for sufficiently large f.

Theorem 3. For any well; (i=1, 2,4) and every sufficiently large P, there exists
a function g(P) tending to zero as f— oo, and satisfying the following; for each o
and each N satisfying

O<a<i and |[N—n#*B, wVII<F,BIVI* (uek),
we have
1

By (D)= 0*[VI|>gBVIH) < C(ﬁ)W’

(2.3)

where C(f) is some constant.

3. Correlation Functions of B-walls

In this section we define the correlation function and derive the several proper-
ties. For a finite cube ¥ =S and a boundary condition we @, let 7, ,(B) be the
probability that B is contained in some configuration as a B-wall. Let 4, ,(B)
be the set of all configurations which contains B as a B-wall, then 1, ,(B) is
expressed in the following form,

TV,w(E) =

Y. exp{-pU (&)} (3.1)

Zy (o) Eedy o (B)

We define the energy of B-wall B by

E(B)=YE(t;¢) (¢edy ,(B). (3.2)
teB
Note that E(B) is independent of ¢e4,, ,(B).
We modify the definition of E(¢;¢) so that the minimal value is zero by
subtracting the minimal value. With the modification above the definition of
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B, () does not change. We can express 1, ,(B) in the following form,

- 1
TV,w(B)=

exp{—BE(B)}, (3.3)
Zy(@) eeay i) Beg@)
where B(¢) is the set of all B-walls under ¢&.

To prove the Theorem 1 we shall show the estimate,

Ty.o(B)<exp(—c, B [BI), (3.4)

where ¢, is the absolute constant.

If the estimate (3.4) is obtained, Theorem 1 will follow by the standard
argument that if the configuration of a block t is not given by w(f) it must be
inside some B-wall.

For any ,ueK and a given configuration ieQV »» We take one B-wall B(¢).
We say B(¢) is o{)-type if £(1)=w{(t) for all elements in the outer boundary of
B. (Note that each block in the outer boundary of B is static, so that the
configuration in the outer boundary of B is given by some element in II;.)

In case of ueK,, there exists a lattice translation T; ; which transforms any
w{"-type B-wall B into any other w{"-type B-wall. As ‘the energy of B-wall is
invariant under the translation, we can easily obtain the estimate (3.4) by
employing the Peierl’s argument.

On the other hand, in case of ueK, UK,, we must use the Heilmann’s
method [3] in order to obtain the estimate (3.4). By using the reflection
transformation, Heilmann has obtained the upper bound on the probability of
a given contour in the models, where one has more than two structures, each
of which can be transformed into any other structures by a reflection. To
extend Heilmann’s method to our model we have only to notice the following
three facts 1)-3).

1) Each o-type B-wall (j=2 or 4) can be transformed into any of the
other types B-walls by the reflection or composition of reflections.

2) There exists a lower bound on the energy of a B-wall which is pro-
portional to the number of elements of a B-wall.

3) The energy of B-wall is invariant under the reflection.

Next we introduce the correlation functions of outer B-walls and the
correlation equations.

Let V be the finite subset of S. We denote the region enclosed by the outer
boundary of V' by 0(V), and call the set In(V)=0(V)\V inner region of V. For
any pek; and any well;, put Yy ,={B= (B,,...,B); a family of B-walls in V
which doesn’t enclose the inner region of V} and Y“}“‘w— {B=(B,,....B); a
family of outer B-walls in V' which doesn’t enclose the inner region of V}. It is
easily seen that each outer B-wall in BeYy, , or I'}" is w-type.

For a given B-wall B, the inner region of B is uniquely decomposed into
connected components {1, (B) . n(B)(B)}

Put J(B)=I,(B)\0,,I,(B). As the configuration in 0B is uniquely deter-
mined by the configuration in B, the configuration in each 6J,(B)=0, I,(B) is

uniquely determined by B and is denoted by w,(B)ell,, We introduce the
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following probability measure on Y, ,

n(B)

B »(B)= HeXp( BE(B)) HZ(J )5 @, (B)),

Z(V.w
where

Z(J (B B)=" Y [lexp(~BE(B)).

BeYy,(B), wi(B) BeB

Now we define the correlation function of outer B-walls as follows,
pV,w(El’ ""Bs)= Z R/,w(B)

As we proved the estimate (3.4) we can prove the following lemma.

Lemma 3.1.
pV,w(Bla "‘9Es)< neXp(’“ﬁc1 |B;])
i=1

for sufficiently large B, where c, is an absolute constant.

These correlation functions are related by a chain of equations. By the
similar way as Minlos and Sinai have derived the correlation equations in
Ising model [2], we have

pr(Bb“'r J=exp(— E(B )){Pv,m(gzw-wgs)

(2]

0 py By ...,BLF, ... ,F)

112 LR 7%

§’2)pV w(BZ," sBng)} lf S>1,

B B (3.5)
pv,w(31)=eXp(—E(B )

— 1)
{1+ Z k’ E%’lka w( P9 lk) Zg)cho(H)} s=1

where the sum X!) extends over all k-ordered pairs (F;,...,F,) in Y3, such
that each F, intersects or touches B,, and the sum 2‘2’ extends over all
elements H in Yy, which contain B; within its interior region.

Let N, be the set of all k- ordered pairs of outer B-walls in Z3, Put

X={®=(dh>1;|P|| <0},
where ¢,: N,—R and
jol=sup| sup 16,By.... kmz mexple, 1B
(Bis-ees Bi)eNi

Then X becomes a Banach space. We express the correlation equations in Z°
in the equation on X.
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Taking into account (3.5), we define the linear operator 4 as follows,

(A®)(B,,...,B)=exp(—BE(B))) {(ﬁs_ \(B,,...,B)

o8]

by u(By.BE, . F

R TERRRE] lk)

326 (B,, ..., ﬁ)} (3.6)

where X9, and X are defined in the similar way as in (3.5) (for s=1 we set
¢,=0).

Then the correlation equations in Z* are expressed in the following form

Po=Ap,+A, (37)
where A€X is given by

AB,, ..., B)= otherwise.

{exp( BE(B)) if s=1

We shall derive the several properties of correlation functions in ¥ and Z>
in the following. Let y, , be the linear operator given by

(XV,wq))s(Eb e ’Es)=XV,w(E1) e XV,w(Es) (»bs(Els ""Bs)’

(B)= 1 if B,V and B, is o-type
Xy, 2= otherwise.

where

Then yy ,py.,€X and (3.5) becomes
pV,w=XV,wA+XV,wAXV,pr,w‘

Taking into account the following two facts 1) and 2), we obtain the
following lemma.

1) Y. exp(—pc |Bl)< Zczexp( Bec k)|0 as f—>o0

B;w-type, B30

2) > exp(—pc, IBI)<Cs(ﬁ) exp(—(Bc, —Inc,)k),

B;w-type B0, |B|>k
where ¢;(f)~1 as f—co and ¢, is an absolute constant.

Lemma 3.2. |A| <1 for sufficiently large p.

From this lemma Equation (3.7) has a unique solution. We call this solution
a limiting correlation function. Concerning the limiting correlation function
and the correlation function in ¥, we can derive several properties similar to
the way Minlos and Sinai derived them for the Ising model [2].

The following two lemmas are used to derive estimates for the expectation
value and the variance of the volume of the disordered physe and the number
of O-particles.



414 K. Kuroda

Lemma 3.3. If each of {B,, ...,ES} is w-type and is included in V] then

|pr( 1o+ ) pw( 10 'rEs)l
<c4(ﬁ)(2exp(—c1 BB+ B exp(— (B¢, —Inc,)d(B,,...,By; av)) B8

for sufficiently large S, where p,(+) is the limiting correlation function and
d(By,...,B;dV) is the distance between B, u... U B, and dV.

R )

Lemma 3.4 (Clustering Property). If both B, and B, are w-type and are
included in V, then

|pV,w(El9E2)_pV,w(El)pV,w(Ez)l
<cs(B)Rexp(—c BB+ Bl exp{—(Be, ~Inc,)d(By, By B9

for sufficiently large f, where c<(f) is the constant depending on f.

The proof of these lemmas are given in Appendix A.

Let I, be the set of all w-type congruence classes. The expectation value
and the variance of |[D(&)| and N, (&) are given in the following forms by the
standard arguement.

<|D(f)|>v,w=_2 U(V)BZ Pv.o(B), (3.10)
rele By
VV,w(lD(é)I)z Zr v(yy) U(Vz)B Z {pv,w(gpgz)"pv,w(E1)PV,w(E2)}
Beihe
+ 2 00 EZ pv.o(B)(1=py ,(B)), (3.11)
Tl BeV
<Noix(~f)>v,w=“,-lV|“Zr: (;0(7)=<n())) va,w(g), (3.12)
if well;, e -
W oWou(@) = Zr (u;0(9 ) = (TP 0(y,) —<n(7,)))

Z {pV,w(Bl’ Bz) - pV,w(El)pV,w(Bz)}

Biej1Bi <V
B2ey2BaycV

+ Y (u;0(0) —<n(®))* Z pv,0B)1=py oB)+ 3 V;(Nou)l}Z_pV,w(E), (3.13)

yel, yel,
V! BCV 7€lw

if well;, where {(n(y)) and V,;(N,,) are the expectation value and variance of
the number of o-particles in the ensemble Y (3, §, 1). By using Lemmas 3.3 and
3.4 Proposition 1 is easily proved.

Proof of Theorem 2. Let m(f) be the function satisfying the following 1) and 2),
1) m(f)|0 as f—c0
2) Fy(p)/m*(p)l0 as f— oo,

where F,(f) is the function given in Proposition 1. Put f(8)=F,()+m(f).
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From Proposition 1 and the Chebyshev’s inequality, we have

B, oUID@I=0*VII> f (B V) <B o (1D —=<IDODy o) >m(B) V]?)
F,(B)
Sm B

Hence the assertion (2.1) is proved. The proof of (2.2) is just the same as the

proof of (2.1).
For the proof of Theorem 3 we first prove the following proposition.

(3.14)

Proposition 2. For any pekK;, any well; and every sufficiently large B, the

following estimate is obtained,
1
B, (N (&) =N)>c4()

VE (3.15)

where N is the positive integer satisfying |N—n3“*|V|l<F1(,B)|VI% and cq(p) is
the function of B satisfying c¢(f)|0 as f— co.

The proof of this proposition is given in Appendix B. Taking into account
the fact that the measure BY, is independent of u, we have the following
estimate for sufficiently large V,

BY,(ID(&)I=o* [VII>gB) VIF*9)
<Rx",w(I|D(£)I—<|DI>V,wI>%g(ﬁ)IVI’“"‘)

> 3.16
BN (9 =N) (310
where peK;. From Proposition 2 and Chebyshev’s inequality, we have
s K, 1
BY (D)= 6% [VI|>g(B) VI <4—2)__ G.17)

cs(B)g2(B) V>

Hence, Theorem 3 is proved.

Appendix A

The purpose of this appendix is to prove Lemma 3.3 and Lemma 3.4. We state
the proof in the following several steps. (See also [2].)

1) Let V;, V, be two finite subsets of Z3, and d(V,,V,) be the part of 0V,
which doesn’t belong to d7V,.

v oPY o =Xvi0d Xy 0PvoT v, ol (A1)
XVl,prz,co=XV1,wXV2,prz,w+XV1,wA' (Az)
From (A.1) and (A.2), we have

My Voo =0 vyt v v e (A.3)
where

My iVao = Avi,oPvieo  XvioPv,o
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and
ivao= 10 A0y 0Pyre = Ivre PV,

Let {B,,...,B,} be the set of w-type B-walls contained in V, then

o B B)=exp(~pEB) | 3

K= (Fi

Y PvaoBa..BoF, ... F)

Zsz w(BZa AR ss H)] s

where the sum in the first terms extends over all k-pairs {F, ,...,F,} each of
which intersect or touch B, and at least one element of which intersect or
surround 0(V,,V,), and the sum in the second term extends over all sets {H}
which surround B, and intersect or surround d(V,,V,). As in [2], we have

lCVl,Vz,co(Ela . 7§s)l

s |B1]
< [Tesn( ,BcllBl){Zk( NS exp(—pe, B

B;B>0

. exp(—fc, |Bl)
B;B20,|B|>d(B1,0(V1,V2))

fes)

£y y exp(— e, IBD}

m=1 B;B30,|B|>m+d(B1,0(V1,V2))

<cz(Byexp(—(Bey—Incy)d(B,,0(V,, 1)) Is_lexp(“ﬁcl |B;l)

i=1

|Bi} 0
{Zk( >W(ﬁ)k~1+ Zlexp(_(ﬁﬁ_lncz)””)}
<D, (Byexp(—(fe, ~Inc)d(B,..... B Vl,Vz)ﬁzexp( Be)b,

(A.4)
where

_ Low(f! | exp(—(Be, ~Iney)
Dl(ﬁ)—c3(ﬁ){§1§lgk< 2 ) +1—CXP(“(C1“Incz))}.

2) For a given subset W of Z>, we define the Banach space X(W) by

X(W)={0eX; [Py < oo},
where

k
1@y =sup| sup 9u(Br..... Bl [ exp(pe,)™

-exp((Be,—Inc,)d(B,, ..., By: W))] .

The following lemma is proved similarly to the proof of Lemma 3.3 in [2].
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Lemma A.1.
1) If ®eX (W), then APeX(W).

2) [ Allxgw, <1 for sufficiently large p.
3) From (A4),{y, v, ,€X(0(V},V,)). From (A.3) and Lemma A.1 we have

|7/IV1 Va, w( . )|
<%exp(—(ﬂc1—lnC2)d(B1:. . VlaV ljl(zexp ))IBil’ (AS)

where D,(B)= HAHX(W)'
By taking the limit as V,—Z.> and putting V, =V, we obtain Lemma 3.3.
4) Taking into account the fact that

pv,w(gl_agz)
pV,w(Bl)

:pV\ﬂ(Bl),u)(EZ)’

we obtain the following estimate from (A.3).

lpV,w(EUEZ)—pV w(B_ )pV m(E )]
:Pv,w( )],DV\G(B1 (B )— pV,(u(EZ)l
<Cs(ﬁ)(zeXp(—(71!3))]8‘“]32)eXp(_(ﬂC1—lncz)d(Blsz))? (A.6)

where cs(ﬁ)=%.

Appendix B

In this appendix we prove Proposition 2 in the following several steps.

1) Let N(y)(&) be the number of outer B-walls which is congruent to yel,
under the configuration ¢eQ, ,. As for the expectation value and variance of
N(7), the following estimates are obtained by using Lemmas 3.2 and 3.3.

<N(’)7)>V.w,u:< ZB pV,w(B) (wenjaluEKj) (Bl)
Bey,B<V
KN@GDv.o—pM VII<co(B) Iyl exp(=pe, IyD V] (B2)

VV,w,u(N(,y)): Z (pV,w,u(El’EZ)_pV,w,u(El)pV,w,u(Ez))

Bi,B2e?y
Bi.Ba<V

+ Z pV,co(E)(l_pV,w(E))s (B3)

Bey
B<vV

Vi ounN@) <cs(B) 19* exp(—Be; DD V. (B4)
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2) Define
T1={¢eQy ,;IN®E)—p() V]I
<Blylexp(—%Be, [p)IVI? for all Fel}.

By using Chebyshev’s inequality, we obtain the following estimate.
P,,’w,u(ﬂ)>§ for some B>0 and sufficiently large g. (B.5)

3) Put 9(X)={{e"; the totality of outer B-walls under ¢ is X}, where X
=(B,,...,By is a family of outer B-walls. For any well; and any pekK;, the
expectation value of N, in 1(X) is given by

Nypsgy=u; V= . ;) —<n@))NF; X), (B.6)

yelow
where N(y;X) is the number of B-walls in X which belong to y€I,. We note
that
IN@; X)—p,() VII<Blylexp(=3Bc, Iy) V]*

for all yeI,. Hence

KNG 50— VI Y (Kn@)> —u;0(0) p(3) +u

751::0

<BIVIF ), Kn(3)) —u;o()lIylexp(~3Bc, 7))

yelo

=4(B)IVI%, B.7)
where (f5)|0 exponentially as f— co. Similarly we have
Ve (Noa) <A(B)* V. (B.8)
4) We take one element y,el, whose inner region In(y,) is not vacant.

Put
MP@)= Y (v(yo)—Ng, (&)

BieX,B.¢70

MP@)= % (B)-Np(0) (X)),

BieX,B.¢70

(B.9)

where N (£) is the number of o-particles in 6(B;). In the ensemble T(X) we can
write

Ny (&) =1V | =MD (&) — MP(), (B.10)

and MY(§) can be represented as a sum of independent identically distributed
random variables numbering N(7,;X) terms. As for the expectation value of
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MY in 1(X), we have
(MDY 550 =(0(70) = <n(To))) N (7o X). (B.11)
Taking into account that
INo: X) = po(To) VI <B lylexp(—3Bci Iy VI3,

D) (M) =N (70; X) D(n(7)) >3 p0 (7o) [V | (B.12)

we have

for sufficiently large V.
Because N(7,;X)>2p(7,) [V], we can apply the local limit theorem to M.

Put x(B)=F,(B)+34(p). )
For each m satisfying [m—(M") ¢ | <x(B) [V]*, we have
E](X)(M(l)(f):m)

_ 1 exp{- (m—<MD) g 40)?

V27 N(Fy; X) D(n(7,)) 2N(70; X)D(n(7,))

! k(B .
g EBNEEY YA EEN 1 0 V-z
27 (7o) Dln(Fo)) [VI* o (= o) O™
DBIVIH, -

}(HO(IV]‘%))

where D(f) is some function of .
From (B.7), (B.8) and (B.13), we have

Pﬂ(X)(Noil(é) = N)
=Py, (M) +MP(&)=[V|=N)

> > Py (M (&) =m) Py, (MP (&) =|V| = N —m)
Im— MOIE) [ <k BV [E

W(Iﬁ? P (<N s+ {0 = N — MO < e(B) [V[2)
[Vf,) P (IMP() — (M | <20(8) V)
3D
>Z lV(lﬁ_ . (B.14)

Hence, we have
B o(Nyy(&)=N)>E, ,(T) B(N,; =N)

(B
145
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