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Abstract. The zero curvature representation is obtained for the two-
dimensional generalized Toda lattices connected with semisimple Lie algebras.
The reduction group and conservation laws are found and the mass spectrum
is calculated.

1. Introduction

In recent work [1] it was shown that the two-dimensional generalization of the
classical periodic Toda lattice (TL) is solved by the inverse scattering method and
the reduction from the complete Zakharov-Shabat equations was found. On the
other hand, Bogoyavlensky constructed the generalized TL connected with the
root systems of the semisimple Lie algebras [2] the classical TL then corresponds
to the root system of the type Ae_v The purpose of the present paper is to
generalize the results obtained in [1] on arbitrary root systems, in other words, to
give a two-dimensialization of the lattices constructed in [2]. This generalization
has some new features when compared with the system of type Λtf_1 [1]. The
results obtained are given in the most general form possible that enables one to
understand the invariant meaning of the formulae in [1].

The plan of the paper is as follows: in Sect. 2 we describe the generalized TL
and give a brief introduction to systems of roots. In Sect. 3 we construct a
reduction group from a complete Lie algebra. In Sect. 4 we compute the mass
spectrum of our systems and in Sect. 5 we investigate conservation laws.

2. The Description of the Systems

We shall investigate the relativistic systems with Lagrangians

L= Σdμφ
kd>'φk-Ϊ(φ,,φ)

k l (2.1)
0 l
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where the potential U has the following form. We denote

There are five infinite series (Λ^B^C^D^BC^) and five exceptional systems

2φ1), (2.2)

: U = Qxp2(φ2 - φ3) + exp2(φ3 - φ4)

+ exp2φ4 + expiφ1 — φ2 — φ3 — φ4) + exp( — 2(φ1 + φ2)),

EΊ : 1/ = V6 + exp(- φ1 + φ 2 + ... + φΊ - φ8)

+ exp2(-φ1 - φ2) + exp2(- φΊ + φ8),

+ exp2(- φ1 - φ2) + exp2(φ7 + φ8).

These types of potentials are constructed using some finite sets of vectors in
/-dimensional Euclidean space - the so called root systems. Now we shall give
some formal definitions [3].

Let § be an Euclidean /-dimensional space and α be a vector orthogonal to
some hyperplane in §. Then the reflection sα with respect to the hyperplane is of
the form

Consider a finite set of nonzero vectors R = {α} Cξ> generating § as a linear space
and satisfying the following conditions:

1. There is reflection sα for every α which conserves R:

2. The integrality condition

2 ^ φ Z , a,βeR.
(αα)
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The system of vectors R is called the root system and the dimension of the
space § is called the rank of the root system. Note that for a root α the vector — α
(and possibly + 2α) is also a root.

We shall consider only the irreducible sets in the following sense. Let the space
$ be the direct sum of the subspaces § 1 ? . . . , 9)r. For any i let R. be a root system in
§.. Then the union R = R1^J...uRr will be a root system in ξ>. If such a
decomposition is impossible, the root system is said to be irreducible. All such
systems were classified by Cartan. There are five infinite series and five exceptional
systems which have been listed previously.

We shall construct the potentials (2.2) by the root systems. The subset of roots
{oίj}=ΛcR is called admissible provided the vectors a,- —αfc are not roots for all
oίpttkeR [2]. All subsets of an admissible set of roots are also admissible. A subset
B in R such that

1. The vectors a ; e 5 are linear independent.
2. Every oceR is a linear combination of roots from B in which the coefficients

are all positive or all negative, is called the set of simple roots.
The number of simple roots is equal to the rank of a system R.

Let ω be a maximal root in JR, i.e. ω + £ kaot is not the root when all ka^0.
<xeB

Then the set A = Bvj( — ώ) is admissible. These admissible sets are listed in [3] in
an orthogonal basis (φ 1 , . . . , φe) in space $ for all irreducible root systems [for the
systems of type A^_v £ 6 , EΊ, and G2 the extended basis (φ1 ...φ^φ*+ι) in the
extended space is taken].

The potentials (2) may now be rewritten in the following universal form.

Denote φa = (φ,(x)= ]Γ φjocj for φeξ). Then all ten formulae in (2.2) expressed via

roots belonging to admissible set A = Bu( — ω) can be written as

U= Σexp2<pα. (2.3)
OLθA

In conical variables ξ = ^(x1— x0), yj=2(xi~^~χo) equations of motion take the
form

2φ{η= Σ > ' e x p 2 φ α . (2.4)
aeA

It follows from (2.2) that there are two nonequivalent systems of rank one
(scalar systems) corresponding to root systems A1 and BCί. They give the sinh-
Gordon equation

ξ 7 (2.5)

and the so-called Bullough-Dodd (BD) equation

φξη = e2*-2e-** (2.6)

(see [4, 5]). In [1] the latter equation was obtained by an additional reduction
from the system of type A2. These two systems should be added by the Liouville
equation

<Pξη = Wφ (2-7)
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Since a subset of an admissible set is again admissible then we can consider A as a
set of simple roots B and drop the maximal root. Equation (2.7) corresponds to the
unique simple root in A1 or BCV Equations (2.5)-(2.7) are the complete list of
scalar equations whose integrability follows from the group-theoretical approach.

In the following we shall only consider admissible root systems which contain
the maximal root. The systems obtained by the two-dimensionalization of finite
nonperiodic TL have been considered in [6].

3. The Reduction Group

Let U and V be two functions g(ξ,η,λ\ ξ.ηeJR, Ae(C, with values in the complex
Lie algebra (5. We consider the Zakharov-Shabat equation (the representation of
zero curvature):

dξu-dηv+ιu,v]=o eξ=d/dξ,dη=δ/δη. (3.1)

The purpose of [1] was to find additional conditions (reductions) on U and V
which are consistent with Eq. (3.1) (see also [7]). To handle this problem in our
context, we recall some properties of the complex Lie algebras.

Let §> be a Car tan subalgebra in the algebra (5 and (ft1?...,ft,) be a canonical
basis in § . There exists such a root system R = {α} in <r>, that for every root aeR
there is an element £ α e ©\§ such that elements (ft l 3..., ft,) and {Eα, aeR} form the
basis for the whole Lie algebra (the Cartan-Weyl basis). This basis satisfies the
following commutation relations

[ % £ J = α k£α ock = (oc,Xk), (3.2)

lR»Stj] = 0, (3.3)

α+j3 = 0, (3.4)

a+βeR,

where Naβ are some numbers.
It follows from the definition of a set B of simple roots that every root β can be
uniquely decomposed as

Σ
aeB

The number

( 3 6 )

is called the height of the root β. Evidently, this definition depends on selecting a
set of simple roots B. But the height of the maximal root does not depend on
selecting a set of simple roots. It is an invariant of the system R and is determined
via the Coxeter number h. The height of maximal roots is equal to h—l. The
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Coxeter number is given in Table 1 for all irreducible systems (see also [3]). In
what follows we fix some set B. The elements of the subset

Rb = {oceR\a(ot) = b{modh)}

are called homogeneous with a height b.

Proposition 1. All homogeneous root-subsystems are admissible.

The inverse statement is, generally speaking, wrong. There are admissible
subsystems which are not homogeneous. But the important admissible subsystem
Λ = Bu( — ω) which determines the potentials (2.2) is homogeneous of height 1
(̂ 4 = i^1). It is possible to construct a two-dimensional integrable system for every
admissible set of roots. Because a subset of an admissible set is also admissible, it is
important to classify all maximal admissible subsystems of roots. However, for the
sake of brevity, we restrict ourselves here with studying the maximal homogeneous
subsystems of roots only.

Now we shall define the Zh grading in the Lie algebra © as follows

® = © β β , (3.7)
α=0

where

®o = & ® * = Σ C A> cβe(C. (3.8)
aeRh

Evidently

[®β,©jg®β + b(modft). (3.9)

We fix the element Qeξ> by its coordinates on the basis of simple roots

β« = ( & α ) = ^ 9 *eB, (3.10)

where h is the Coxeter number. Let us denote by AdexpQ the adjoint representation
of expβeG in the algebra (5 where G is a complex Lie group with Lie algebra (S.

Proposition 2. Let a be an integer with —h<a<h, denote q— —— and feίηeS be

such one-parameter family

X)ψ)ά^λ*X)9 ;L ec (3,11)

that

AdexpQr)(λ) = x)(λq). (3.12)

Then the family (3.11) is homogeneous and belongs to ©α. The proofs of
Propositions 1 and 2 are left to the reader as an easy exercise.

The transformation AdexpQ generates cyclic group Έh and it singles out via the
condition (3.12) the subset ©α in the whole algebra (5. We call this group the
reduction group.
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Table 1

The root
systems

Λn_in>2
Bn n^2
Cn n^3
Dn n>4
BCn n^l
G2

E6

EΊ

sl(nX)
so(2π + l,C)
sp(n, C)
so{2n, C)
—

Gl
E6

ES

4

A.V.Mikhailov,

sφ+l,n)
sp(n, R)
so(n, ή)

su(n+l,n)

Gf
F*
El
Ef

M. A. Olshanetsky,

The Coxeter
number

n
2n
2n
2n-2
—

6
12
12
18
30

and A. M. Perelomov

Minimum dim.
irred. repr.

h
/z + 1
h
h + 2

2n+\
h + 1
2/ι + 2
2/i + 3
3/z + 2
8/2 + 8

Now we shall point out how the Zakharov-Shabat equation (3.1) is reduced to
the TL equation. Let the action of the reduction group leave solutions of Eq. (3.1)
unchanged. If we choose U and V in the form

ξ,η)

V(λ,ξ,η)=V0(ξ,η) + λ1V_1(ξ,η)

then Eq. (3.1) turns into

- dηV0 + lUo,Vo-] + lUvV_J=0, (3.14)

4 1 ,F 0 ] = 0, δ,F_ 1-[ί/ o,K_ 1] = 0. (3.15)

From Proposition 2 we get

Uo,Voe<5o = ξ>, l / i e ® l s K . ! £ © _ ! . (3.16)

For arbitrary function φ with values in ξ> let

U0=-dηφ V0 = dξφ, (3.17)

Then Eqs. (3.15) are satisfied and Eq. (3.14) is just the TL Eq. (2.4) [see (3.2), (3.4)].
The root system of type Λn^1 corresponds to the Lie algebra SL(n, C). In this

case the Coxeter number h is equal to n and the reduction group Έn was considered
in [1].

One can consider the auxiliary constraint on the elements U and V besides the
special action of the reduction group (3.12). Namely, let U and V belong to some
semisimple subalgebra (5. In [1] this was SL(π, IR) a subalgebra of SL(rc, C). In other
words U and V were real matrices. In the general case we shall consider the so-
called normal forms of complex Lie algebras which are singled out by the
condition of reality or, equivalently, Z2 group action (see [8]). So the generalized
TL singles out by the direct product 7Lh®ΊL2.
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Table 1 contains the information needed in what follows about irreducible root
systems, the corresponding complex Lie algebras, their normal forms, the Coxeter
numbers and the minimal dimensions of nontrivial irreducible representation.

Let us note that the root system of type BCn is a unique so-called nonreduced
root system. It contains roots a and 2α. This root system corresponds to symmetric
space with the transformation group SU(rc+1, n) but not to any other simple Lie
group1. The reduction group (nonabelian) was constructed for this root system in
[1] by a deep reduction of the system of type A2n. The usual reduction of the Lie
algebra bc(n+l,n) leads to the same result. But (for brevity) we reject the
consideration of real forms.

Now we describe which sort of elements Uo, Vo, Uv V_ί enter the Zakharov-
Shabat representation (3.14) and (3.15) for the classical normal forms of type Bn,
Cn, Dn, BCn and for the system of type G2

 2. Consider first the system of type Bn.
The fundamental representation has dimension 2n+1, and we get

= JBT

The fundamental representation of systems Cn has dimension 2n, so

U0=-dηφ9 V0 = dξφ

Φ = diag(φ 1 , ...,φn, - φ M , . . . , -φ1)

= JATJ

1 There are other symmetric spaces which correspond to this root system

2 The root system of type An_ί has been considered in [1]
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for series Dn the matrices Uo and Vo are the same and

For system of type BCn we consider the algebra SU(n+ l,n):

U0=-dηφ, V0 = dξφ,

IA B C

0 - B ,

F - D - i /

= (expφ",0, ...,0),

The matrices of fundamental representation of the algebra G2 have the size 7 by 7
then

φ = d iag^ 1 - φ2, φ1 - φ3, φ3 - φ2,0, φ2 - φ3, φ3 - φ1, φ2 - φ1)

4. The Mass Spectrum

We determine here the mass spectrum of the vacuum excitarions, i.e. of the states
which are near the minimum of the potential energy. Note that for systems of
type An_1 (the usual TL) this was performed in [9,1].

Let

ω= Σ^α α (4.1)
αeB
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Table 2

The root
system

— k\ k= 1,...,

C,

EΛ

5 6=2vί 2 , v7 8 = 0

14 J C O s ( - + — ( f c - l ) | + l l , fc=l,2,3, v7 = 6

/ 2 \

4l/3cos(— + — (fc-4) 1+6, fc = 4,5,6, v 8 = 0
\18 3 /

V l = 7 . 4 4 , v2 = 19.48, v 3-4.92, v4 = 12.89

v5 = 3.37, v 6 = 8,82, v7 = 2.23, v 8 = 0.85

be the decomposition of a maximal root on simple ones. We recall that the
Coxeter number is given by

Let us denote

Σ«« + 1 (4-2)
aeB

aeB

Proposition 3. The vacuum states φ of the systems with Lagrangίan (2.1) have the
coordinates

N). (4.4)

Proposition 4. T/ze mass spectrum mj corresponds to the eigenvalues of the matrix

Ω = 2NΩ, (4.5)

where N is defined in (4.3) and

Ωjk= X n^ak, (4.6)

aj are the coordinates of roots; —ωeRv with n_ω = l. We did not succeed in
solving this eigenvalue in general form. Note that only for the classical system, this
problem is reduced to the search of the zeroes of the Chebyshev polynomials of the
second type.
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Fig. l

For special cases we have used the fact that the characteristic polynomial of the
matrix Ω is factorized due to the action of the group of symmetries of the extended
Dynkin diagram. Note that this group coincides with the center of the universal
covering group of the corresponding complex Lie group.

We present here the eigenvalues vk of the matrix Ω (4.6). The genuine masses
are equal to (2Nvk)

1/2.
Unfortunately, for the system E8 we have computer calculations results only.

Figure 1 evidently illustrates the situation for the system EΊ on a complex plane.

5. Conservation Laws

To compute the conservation laws it is more convenient to make the gauge
transformation in the Zakharov-Shabat equation (3.1) and to pass to the pole
gauge, i.e. to reduce the matrix U1 to the diagonal form. The purpose of this
transformation is to reduce U to the form when the "diagonal" contains only
spectral parameter.

We will make the transformation in two steps. Let us act first on Eq. (3.1) by
the transformation A d ^ . ^ . It follows from (3.1), (3.17), and (3.18) that the
elements U and V will be replaced by the elements Ξ and Θ, respectively

U->Ξ=-2d F=
aeA

Equation (3.1) conserves, naturally, its form.

Next one should "diagonalize" the element F=

(5.1)

(5.2)

EΆ. For this, consider the

fundamental representation T of the algebra (5 of the least dimension. Let the
dimension of this representation equal d and F(μ) denote the characteristic
determinant

) = άQt(μI-T(F)),

where / is the unit matrix of order d.
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It follows from invariance F with respect to the reduction group, that

F(μ) = exp(f ί /)F(exp(-^) μ ) . (5.3)

Hence F(μ) has the form

where k = [_d/K]. Thus, the matrix T(F) has d—kh zero eigenvalues.
The rest of eigenvalues μ. are

μj = (vj)llh

9 (5.4)

where Vj are the roots of the polynomial

For instance, in the case of series An_v BCn these eigenvalues are the roots of
(2πi\

unity: μk = exp(—- kl

Thus, making a gauge transformation for (3.1) we arrive at the compatibility
condition of the form

dηχ = (-2W-1(dηφ)W+λQ)χ,

where matrix W diagonalizes T(F), i.e.

Q = W-1T[F)W, β = diag(μ1,...,μd),

K=W~1 Σ

Let us represent χ as

( ] ) (5-7)

where diagi^^O, S is a diagonal matrix, and / is a unit matrix.
Substitute (5.7) into (5.5) and separate diagonal and offdiagonal parts

(5.8)

(5.9)

ξ η (5.10)

The first two relations enable one to determine the asymptotic expansion of the
matrices R, S in inverse powers of λ and the third formula is the generalized
conservation law. Let us represent S and R as

00 00

s= Σ V*. R= Σ V * (5 n )
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Substituting (5.11) into (5.8) and (5.9) we get recurrent formulae for the coefficients

, (5.12)

Rk and Sk:

( 5 i 3 )

m + k — n

The conservation laws appear from (5.10) in differential writing as

^ 1 ) = 0. (5.14)

We have gotten d infinite series of conservation laws, since the diagonal matrix S
has d elements. However, just as the reduction group acts on the eigenfunctions χ,
so the matrix elements {Sk}jj(λ) become linearly dependent. For instance, in the
case of series Λn_ί and BCn the action of the reduction group is of the form

q = Qxp(2πί/h).

Since all matrix elements {Sk}jj(λ) are linearly dependent it is enough to calculate
only one series, e.g. {Sk}nn. Let us rewrite the recurrent formulae for this series in
components:

{sk}m=--Λ t <{^}mym

nt=l m=l

kn=-l Σ 4sU-kVη{Rn}jn, (5.15)

kn=--ΣQ~5kψtl-ns=1

These relations permit the calculation of the conservation laws. In the case of
the BD equation3 the density of the currents which are not full derivatives is of the
form

(5.16)

Note that S(3), S(4>, S<5) are full derivatives and S(6\ a modulo full derivative, is
reduced to the form

(this form coincides with the corresponding integral calculated by Bullough and
Dodd [4]). In the case of Λn(n> 1), the first nontrivial integral will already be S{3\

3 In what follows we shall give the conserved currents for the BD equation in the form
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For instance, for n = 2, the first nontrivial conservation law can be represented
as

f1=2Qxp(2φ2-2φ1)-2Qxp2(φ1-φ3) (5.16")

f2 = 2 exp2(φ3 - φ2) - 2 exp2(<p2 - φ1)

f3 = 2 exp 2(φ1 - φ 3) - 2 exp 2(φ 3 - φ 2 ) .

It is clear that at φ3 = 0, φ1 = — φ2 = φ the latter expression transforms into the full
derivative.

To obtain the second series of integrals of motion one should re-gauge the
compatibility problem to the form where the residue at the point 1 = 0 is a
diagonal matrix. We make the calculations according to the above scheme.

Note that if eigenvalues of the matrix Q are degenerate, the expansion of the
corresponding eigenvalues will lead to a series of nonlocal conservation laws and
only the first integral of this series will be local4.

Another method for finding the polynomial conserved quantities of S(k) can
also be proposed. To this end, transform the matrix equation

| φ (5.17)

to the "scalar form".5

Let us illustrate this transformation by an An_ 1 model. In this case Eq. (5.17) is
equivalent to the set of equations

(VP>i=M>.-.>(VtfP^=M. (5.18)
Excluding the components ψ2, ...,ψn we get the equation for ψ1

(dη-φ»)(dη-φ"η-
1)...(dη-φ1

η)ψί=λ"ψ1 (5.19)

or

(δ"η + a2δ;-2-a3d"η-i + ... + (-iraJΨl=λ"Ψl, (5.20)

where

^(φη)=^Σψiφk

η-2Σ
j<k k=ί

k

and the dots denote the terms containing the second and higher derivatives of φj

in η.

4 The nonlocal integrals for systems with degenerate eigenvalues were originally considered by
Manakov [10] when he studied the system of a multicomponent nonlinear Schrodinger equation

5 The connection between factorized operators and matrix operators was discussed also in recent
paper [11]
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in \
Representing ψί as \px =exp 2 J ϊiη^dη1 we come to the nonlinear equa-

\ -oo /

tion for the function χ(η)

1 (-lTan(φη-χ) = λ\ (5.21)

Expanding function χ in a series of negative powers of λ

χ = λ+ Σ *-kS(k)

k = 0

we get the recurrent relations which enable one to find the coefficidnts S(k\ They
indeed are the integrals of motion we were looking for.

For the BCn model we must put in these formulae n = 2*f+1 and φn= — φv

φn_ ί = — φ2 ... φό+ 2 = — φ^ φs + 1 = 0. After that the equation of interest will take
the form

We present more detailed formulae for n = 3: Eq. (5.19) takes the form

(d3

η + a2(φη) dη - a3(φη))ψ = λ3ψ, (5.22)

where

n + φ3

ηφ
2

η + ψ\ ψ\) - φ2

ηη - Ψ\Ά ,

Hence we get the equation for the function χ— generating function of integrals of
motion:

8(χ - Ψ3

η)(χ - Ψ2

η)(χ -Ψι

η)+4l(φ3

η - iM - x\

or

η))-a3(φη) = λ\ (5.23)

Writing down an asymptotic expansion for χ

we immediately find the expressions for conserved currents of rank 2 and 3 which
coincide with (5.17).

From Eq. (5.23) it also follows that some of the functions S{k) are full
derivatives, i.e. the corresponding conservation laws are absent. This result can
also be derived from the recent paper by Kaup who found the conservation laws
connected with the linear operator of the third order

d3+pd + q
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[as it follows from (5.22), the conservation laws of interest can be obtained from
these conservation laws]. Note, in particular, that the quantities S{k) in the
conservation laws for the Sine-Gordon equation can be obtained from the known
invariants for KdV equation by replacing u by 4φ2 + 2φηη. (This fact seems to be
known to specialists in this field.)

Consider at last the BD equation. In this case we must put φ1 —φ, φ3 = — φ,
φ2 = 0 into Eq. (5.22). Then it takes the form

and the equation for χ is

It can be easily seen that in this case all S(2k+1) are full derivatives and so do not
give new conservation laws. Thus, the following nontrivial S(k) exist: S(2\ S{6\ S{8\

Therefore, the S(k) with odd k as well as the values of the type Si4 + 6k) are absent
here. We present the explicit form for the sixth conservation law

δξ(3φ2

ηηη- ίθφ3

ηη + 60φ2

ηφ

(S{6) and S{8) were calculated by Boullough and Dodd). It can be shown that the
value S(6) exists if and only if f(φ) has the form

=±β or β=-2a,β=-^-.

Analogous results can also be obtained for the two-dimensional TL connected
with other Lie groups. These results will be published elsewhere.
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