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Abstract. Using functional approaches, we investigate the large-J£ behaviour of
the Kth coefficient Eκ in the perturbation expansion for the ground-state energy
E(g) of the generalized anharmonic oscillator X2N with internal O(rc)-symmetry.
We establish the equivalence between the pure functional approach and the

method of Collins-Soper at any order in —. For that purpose, we first develop
K

an algebraic treatment of perturbation series and prove a theorem on Borel-
summable functions. Finally, we compute analytically the 1/K and 1/K2

corrections to the leading term for N = 2.

I. Introduction

Some years ago, Bender and Wu [1] investigated the large order behaviour of the
perturbation expansion of the energy levels of the anharmonic oscillator. More
recently, in a series of works initiated by Lipatov [2], functional techniques have
been applied to the determination of such behaviours. In the case of the
generalized anharmonic oscillator, the quantity of main interest is the ground-
state energy 1

E(g)=- lim - L o g T r e x p [ - r a ] , (1.1)

where

i = l ί=l \ i = l

and one looks for the large-X behaviour of the coefficients Eκ in the asymptotic
expansion

oo

E(g)= Σ Eκg
κ. (1.3)
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The functional approaches to this problem are based on a path integral
representation of the partition function:

- f dt[±(X2 + X2) + g(X2Π . (1.4)
-Γ/2 J

This integral has to be taken on the set of closed paths X(ί) with period T

X(-T/2) = X(T/2).

Among these approaches, we can schematically distinguish two methods. The
first one was used by Collins and Soper [3] for (N = 2, n— 1) and by Seznek [4] for
(N = 2,n) with some variants. It combines the functional techniques with the
dispersive approach used by Bender and Wu [1], which takes advantage of the
known analyticity properties of the function E(g) [5]. The other method is a pure
functional approach which relies on the known Borel-summability properties of
the function E(g) [6]. It was used by Brezin et al. [7] to determine the leading term
for any N and n, as also by Auberson et al. [8] for (IV = 2, n = l ) . These authors
gave Feynman rules different from those of the first method. But they recovered
the same contribution for the next-to-the-leading term.

The main purpose of this paper is to reconsider the problem for the
Hamiltonian (1.2) and to prove the equivalence of both methods at any order in 1/K.
In Sect. II, we apply the first one (Collins and Soper) just as it stands. In Sect. Ill, we
apply and complete the second method (Auberson et al.) by using:

(a) A theorem on Borel-summable functions which is proved in Appendix A.
(b) An algebraic treatment of simplification of the perturbation series, which is

performed in Sects. IV and V. This treatment consists in replacing simplification
rules on series of Feynman diagrams by derivations on formal series.

Then, we will see that both methods are equivalent, for they lead indeed to the
same final expression for Eκ at any order in 1/K. Finally, to test the validity of the
functional approach, we give in Sect. VI the analytic results of the two first terms
of the expansion for (N = 2, n) and of the third term for (JV = 2, n = 1). These results
are in agreement with those of Bender and Wu [9] and Zinn-Justin [10], obtained
by WKB or numerical methods.

II. The First Method

A. Principle

It is known [5] that E(g) is analytic in the complex g plane cut along the negative g
axis, and we assume that the partition function Z(g, T) has the same analycity
domain. Thus we can write a dispersion representation for both functions. The
K-ih order in g is projected out by Cauchy's formula:

^ A ) , (2.1)

Zκ(T)= -^S-^+ϊώsei-λ, T). (2.2)
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Making use of Eq. (1.1), discE(-λ) is related to discZ( — λ9 T) by

disc£(-A) = - ^ ^ l - l ^ - ' d i s c Z ' ( 1 3 a )

where ζ{ — λ9 T) and discZ( — λ, T) are defined by

λ,T). (2.3b)

As X-^ oo, the factor λ~(κ+1) becomes more and more singular at the endpoint
λ = 0 of the integrals (2.1) and (2.2). Thus if we know how discZ(-λ,T) and
ζ( — λ, T) behave for small λ, we can learn how Zκ( — λ, T) and Eκ behave for large
K. We use the saddle point method to evaluate discZ( — λ, T) and ζ( — λ,T) for
small λ.

B. Asymptotic Behaviour of ZK(T)

(a) The action to minimize is for negative g = — λ

S[X]= J dt[%k2 + X2)-M£2)Nl. (2.4)
-Γ/2

The leading saddle points are easily found to be

X c o l ( ί-τ ,u)= —=xo(ί-τ)u, (2.5a)

where

(i) μ = (2Nλ)N-1 (2.5b)
(ii) τ is an arbitrary time origine,

(iii) u an arbitrary unit vector,
(iv) xo(t) the solution of the equation

_ v _μγ _ γ 2 i Y ~ 1 = 0 (7 ScΊ
Λ 0 T Λ 0 ^0 \ί*.J<j)

with negative energy and period T. We set:

/ 0 = j X Q ^ W ^ J fc= \lΊ~' ( 2 6 ^
-Γ/2 |/ ^0

Then

-, iV-1 . ,

Around the saddle points, the quadratic terms are characterized by the second
Frechet derivative @ of the action.

1 : ί ! - ί 2 ) , (2.8)

<)\δ(t, -t2).
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(b) Since the action is invariant under "time translations" and "space ro-
tations", x0 and x0 are respectively eigenvectors with eigenvalue 0 of the operators
$)L and 3>τ. These are the so-called zero modes. To take care of them when
performing the integration, one can apply collective coordinates, Faddeev-Popov
or other standard methods [11]. We replace the variables X(ί) by τ, (n — 1) angles 0.
which characterize the direction u and Y(ί) orthogonal to the zero modes at the
point X c o l (ί-τ,u)

) = X c o l (ί-τ,u) + Y(t-τ,u), (2.9)

(2.10)

Γ T/2 I

The scalar product <f|g> of two paths f and g is defined by <f |g> = j f(ί) g(t)dt.
[ -T/2 J
Since <Xcol|Xcol> is independent of τ, u, Eqs. (2.10) imply for any path X(ί):

T/2

u j dtxo(t-τ)X(t)dt = 0, (2.11a)
-Γ/2

du T'2

j dtxo{t-τ)X(t)dt = 0. (2.11b)
°Vi -T/2

Tj2

Generally, <Xτ>= J dtxo(t-τ)X(t) will not vanish for any τ and Eq. (2.11b)
-Γ/2

have two solutions

"=+r <212)

Equation (2.11a) can then be written

^ ί H = 0 . (2.13)

|| <Xτ> II is a periodic function with period T. Its derivative has at least two zeros on
the period T. Since u is defined up to a sign, for any path X(ί), there are generally at
least four values of parameters (τ, u) to make the decomposition (2.9).

The integration domain for Y(ί) is perhaps not independent of (τ, u). But since
only the paths X(ί) not too far from one of the saddle points contribute
significantly, we can extend the integration of Y(ί) over the whole hyperplan
orthogonal to the zero modes. The Jacobian of the transformation (2.9) is found to
be

n-2 /v iχ\"~2
χ

J= Σ (sing,)"'1 -' ^ °°:_ / • [<Xcol|X> <Xcol|X> - <X|M|X>],
i=l llAcolll llAcolH

iχ\"
°°: / • [<Xcol|X> <Xcol|X> - <X|M|X>]

AcolH

(2.14a)

where M is the linear operator

MtJitu t2) = (Xcol(ί x) Xcol(ί2)) {δtJ - uiUj). (2.14b)
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J does not depend on (τ, u). The integrations with respect to τ and over the
2πn/2

directions of u give respectively the factors T and . The integration over the
Γ(n/2)'

orthogonal hyperplan gives the factor -

are the determinants of Q)h and

— i
where ΔL and Λτ

in the subspaces orthogonal to their respective
zero modes. Then we obtain for the leading term of discZ( — λ, T)

discZ(-/l,7>
-iT

Poll I

(2.15)

(c) The next-to-the-leading terms can be evaluated by standard Feynman
diagram techniques. The propagator G(ί, t') is the inverse of the linear operator 3)
in the subspace orthogonal to the zero modes. As for the vertices, they come from
the expansion in powers of Y = X —Xcol of the action and of the Jacobian. So, we
define (2N + ή) types of vertices:

L=
(2N-r)\ τ'2

(2Λ0! 4/2
dt-

= 3,4,2JV),

xo(ί)u-Y(r)

(2.16a)

(2.16b)

(2.16c)

(2.16d)

where i is the unit vector

i =

The propagator G(ί, t') and the (2N + n) vertices completely define our Feynman
rules.

(d) By substituting the expression of discZ( — λ, T) in Eq. (2.2), we obtain for
the asymptotic behaviour of ZK(T) after integration

2π"/2

N-ί
bt{T), (2.17)
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where B(μ, T)= ]Γ b^{T)μ^ is the sum over the Feynman diagrams built with the

propagator G(ί, if) and generated by the expansion in μ of the expression

2N r-r r-2

-[(I + VμU)(l + }/μV)-μiδij-uμjϊWiWj] . (2.18)

a\
Here and in the following, Ch

a denotes the binomial coefficient
bl(a-b)\\

C. Asymptotic Behaviour of Eκ

For ζ( — λ, T), the saddle point is the path X(ί) = 0. The expansion of ζ( — λ, T) for
small λ is just the ordinary perturbation expansion oϊZ(g) with — λ substituted for
g term by term

1

2sinhT/2

where 0t{β) represents the sum over connected Feynman diagrams constructed
/ d2 V1

with i IN leg-Vertices and "free" propagators (G o) o = - — τ + 1 δir

Making the change of variables (2.5b), we obtain for the product C 1 discZ:

N —'

with

and

00

A(μ,T)= ]Γ a^(T)μ^ = B(μ,T)Qxp —

In the limit T->oo, xo(t) satisfies

/ 0 and CίΓ) approach limiting values which have been evaluated by Brezin et al.

[7]
N

J\JN-12

N-

(JV-I;

N+l
N-ί

1

Γ2(N/N-

Γ(2N/N-

1)

1)'

and we will see in the next section that the coefficients a^T) tend to finite limits ae
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If we assume the commutativity of the limits λ-+0 and T-»oo, we can deduce from
(2.3) the asymptotic expansion of disc£ for small λ, and by integration, the
asymptotic expansion of Eκ at large order. Finally, one finds

1\KN-1 lΓ(2N/N-lψ-1)κ+n/2

2) fϊn/2)[Γ2(N/N-l)\

*a€ (2.25a)

with

JM — 1 Γ (NlN \λ
D= l i m — ~ — = ( 4 N ) N ~ 1 \iy/iy LJ o ?SKi

r-oo k2 Γ(2N/N-ί) { ]

and

00

>f= lim A(μ,T). (2.25c)

Equations (2.25) generalize results previously obtained by Bender and Wu [9]. It
now remains to prove the existence of the limit A(μ).

D. Finite Limit oj A(μ, T)

Let us expand the series B{μ, T)

a2N-l

π

(2.26)

We denote by 0ί{ί) the sum over connected Feynman diagrams built with /
vertices I2N and the propagator G. To express the monomial

2N-1
ia2N Π I^WVWij-uiuJWiWj]* (2.27)

r = 3

in terms of the components 0t(f) is a simple combinatorial problem. We have to
distribute the α vertices I2N amongst

a1 sets of the connected diagrams built with exactly 1 vertex I2N

α2 sets of the connected diagrams built with exactly 2 vertices I2N

otf sets of the connected diagrams built with exactly / vertices I2N

and α0 remaining vertices I2N.
Each monomial (2.27) can be decomposed into

Ψ, (2.28)
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where 3F is a function of the connected components containing at least one of the
vertices / r(3^r<Ξ2iV-l), U, F o r l(δij-uiuJ)WiWj']. Then SF depends only on the
indices ao,βr,γ,δ,ε, but not on α^(/^ 1). Therefore, substituting into Eq. (2.26) the
expression (2.28) for each monomial, we can factorize the components 0Kβ) and
finally we find

(2.29)

with 3F'(μ) characterized as # \ Inserting (2.29) into (2.22), we have

By proceeding exactly as Seznek [4] did for (N = 2, n), we can show that, at the
T-> oo limit, the only connected divergent graphs built with the propagator G are
those containing only 2ΛMeg vertices. These divergences are not worse than linear.
Moreover, such connected graphs diverge exactly as do the same graphs built with
the free propagator Go, so that their difference is finite. This last property comes
from the fact that G(ί, t') and G0(ί, t') have the same behaviour for large t and t'.
The existence of the limit T-> oo for A(μ, T) easily follows.

III. The Second Method

A. Expansion About Saddle Points

Expanding Z(g, T) in powers of the coupling constant g

00

Z(g,T)= Σ Zκ(T)gκ, (3.1)

one gets

where
T/2 772

S * [ χ ] = i ί dt(X2+X2)-KLog j dt(X2)N. (3.3)
- Γ/2 - Γ/2

The leading contribution to the action in the large- T limit comes from the

trajectories χ ^ _ ^ ^ = fci/χXo(ί_τ)u? (34)

where x0, u, τ, 70, and k are defined as in the first method. Then

Sκ[Xc o l] =-K Log(k2NI0) - NK Log(K/e). (3.5)

If we expand the functional integral for ZK(T) about the saddle points, we obtain

{ — ) κ (K\NK

, (3.6)
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where

(i) 3) is the linear operator (2.8),
(ii) P = kxlN~1u, (3.7)

(iii) Ir is defined by (2.16a) with ( l^r^2iV).
The operator ^ + |P><P| can be decomposed into a longitudinal and a

transverse part

(2 + \P}(P\)ii = ̂ Iuiui + Sιτ(δii-uiut). (3.8)

The functions x0 and x 0 are respectively eigenvectors with eigenvalue 0 of @L and
Wj. To extract the zero modes, we proceed exactly as in Sect. II. Therefore the
integration over the quadratic term gives the same Jacobian (2.14) and the factor

where ΔL is the determinant of 2>L in the subspace orthogonal to x0. Since X Q " " 1

belongs to this subspace, we can write

(3.9)

Noticing that

® i x 0 ( ί )=-2(JV- l )xg w - 1 ( ί ) , (3.10)

we obtain

The next-to-the leading terms can be evaluated by standard diagram tech-
niques again. The propagator @{t,t') is the inverse of the linear operator

in the subspace orthogonal to the zero modes. It is given by

(3 12)
1 + <P|G|P>'

where G is the propagator of the first method. As for the vertices, they come from
the expansion in powers of Y = X —Xcol of the action and of the Jacobian. So we
have (2N + n + 2) types of vertex /Γ(l^r^2JV), U, V, and Wt {l^ί^n) defined by
(2.16).

We are now in a position to write down the asymptotic behaviour of ZK(T)

where Sj is the sum over Feynman diagrams built with the propagator ^(ί, t') and
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generated by the expansion in —— of the expression

Vκ

Sj — exp
L

2N2 J
+ T2-Ί>Iι \j(U,V,...,Wi...) (3.14)

with

B. Simplification Rules

From Eqs. (3.7), (3.10), (3.12), it follows that

G\x2

0

N~ x u > = - |xou>, (3.15)

N

)/

d I" \N

The derivative - — ... - — IY H? is a homogeneous function of degree
8um2 dumr\r ')

(2ΛΓ-r + l). Therefore, by substituting xo{t)umi for 7mi(t) into (2.16a) and by
applying Euler's formula, one gets

(2N-r)! τ'2

( 2 Λ 0 ! J / 2

d ί

m i

Σ

m ^ « m i a M m 2 " a « r | | | |
•xf --( t)x0(ί)M m iym 2(ί)... 7^(0 = / , . ! . (3.17)

We will represent the propagators as in Fig. 1

\ J = ΛΛΛ/WW

G(t, t ' ) =

Fig.l 2 ( N V O 1 X O U > < X O U I =

According to (3.16) for any line in a diagram, we can proceed to the
decomposition:

rule I

We obtain a new sum of Feynman diagrams where there are only lines
and . Equations (3.15), (3.17), together with the particular forms of the
propagator and the vertices Ir, U, V, Wt imply on these diagrams the
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following simplification rules:

411

rule 2

N

2(N-I)lo

rule 3

where
(i) B, C may represent the same vertex (loop),

(ii) after simplification, the vertices without leg are scalars given by

Φ _ j 5 JJ _ j / _ i ^ (j/ĵ  _Q ; i=l,...,n.

For example we have

2(N-1) U°= 2(ΛΓ-1)'

V— -
2(iV-l)/0

We observe that the application of the simplification rules eliminates the lines -
and the vertices / 1. In Sect. V, we will show the following important result:

the final expression of the series of Feynman diagrams Sj after simplification is

1 K\ le

00

where, as in Sect. II, B(μ, T)= V

Γ\K(N-ί)+--ί
N-l

b,(T), (3.18)

is the sum over Feynman diagrams built
^ = o

with the propagator G(ί, ί') and generated by the expansion in μ of the expression
(2.18).

Substituting (3.18) for SΣ into (3.13), we obtain for the asymptotic behaviour of
ZK(T) at large order and at fixed Tthe expansion (2.17) of Sect. II. Thus, we obtain
exactly the result that was established by the previous method.

C. Asymptotic Behaviour of Eκ

We have now to calculate the asymptotic behaviour of Eκ at large order. It is
1

known [6] that $'(h) = E(hN~1) is Borel-summable in the variable h = gN-i, and we
assume that the same is true for £¥(h,T) = Z(hN~1,T). Then, according to a
theorem proved by Auberson et al. [12], LogJ^(/z, T) is also Borel-summable. On
the other hand, Jf(/ι, T) satisfies the conditions of the theorem of Appendix A.
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Then, by applying this theorem, we have :

LogZ(g,T)= 5 cκ(T)gκ

κ = o

with, at the order — , cκ(T) given by

cκ(T)=
rfN-ί

ί = 0

where ά{ is the general term of the series

V ή ι - d

i=o ι du

But ZK(T) is itself given by (2.17). Inserting (2.17) into (3.19b), we get

T4Ί)(-k«Ίo«Ίf
--Y

N-ί

with

is the general term of the product of two series

oo o

? - Z0{T)B(μ, T)

We can represent Z(g, T) by the ordinary perturbation expansion

Z(#,Γ) = Z 0 ( Γ ) e x p Σ ^

(3.19a)

(3.19b)

(3.19c)

( 3 2 O a )

(3.20b)

(3.22)

where 0t{β) represents the sum over connected Feynman diagrams constructed
with { 2AΓ-leg vertices and the "free" propagators Go. Combining Eqs. (3.19c) and
(3.22), we find

i ( ^ ) (3.23)

and, from Eqs. (3.21) and (3.23), we recover the expression (2.22) for A(μ, T).
In the limit T->oo, as in Sect. II, χo(ί) satisfies Eq. (2.23), / 0 and C(T) approach

the limiting values (2.24), and the coefficients aό{T) remain finite. If we assume the
commutativity of the limits K-^co and T->oo, we can deduce the asymptotic
behaviour of Eκ

Eκ=-\imC-4jβ. (3.24)
Γ 1

By inserting (3.20) into (3.24) and by taking the T->oo limit, we recover for Eκ

the asymptotic behaviour (2.25) that was established by the previous method.
Therefore, the equivalence of the two methods is proved.
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IV. Study of Simplifications

A. Preliminary

In this section, we will be concerned with the study of F e y n m a n d i a g r a m series
where F e y n m a n rules are defined by

(i) A symmetric p r o p a g a t o r 0 satisfying Eqs. (3.15) a n d (3.16).
(ii) Vertices 7.(1 ^ i ̂  2N) defined by (2.16a). {j)

(iii) An arbi trary n u m b e r ή of completely symmetric tensors T(t) of r a n k r •
U)

(/=1, ...,n'), and their associated families of vertices Ui9 with i legs (Orgi^r,.)
defined by 0 ) 772 U)

ut= ί Λ r W l . . . j o y m i ( ί ) . . . y j ί ) χ 0 ( ^ - i u Λ i + ι . .«ϊnΓ. (4.1)
-T/2

U)

(In fact Uo doesn't define a vertex and is just a scalar.)
In the following, we will generally omit the family index (/). The series S1 (3.14)

involves (n + 2) families of rank r=l, namely U, V,..., Wt

It is easy to see that Eqs. (3.15), (3.16), together with the particular form of the
vertices Jί? Ui imply the validity of the rules (1,2,3) on these Feynman diagrams. In
the two last ones, a vertex behaves as follows

(j)

Consider now the formal series in I.(i = 1,..., 2ΛΓ),..., £/,(/ = 1,..., rβ ... which
we call a vertex series. We define the degree of the monomial

Π(ί/ ...Πfr... (4.2)
1 = 1 ί - ί

by the total number of legs
2N rj

d = Σ « x ί + + Σ t f ί + (4.3)
ΐ = l i = l

To each 2<i-th degree monomial, we assign the sum over the (Id — 1)!! diagrams
that we can build from the vertices of this monomial. For example

This correspondence is one-to-one, and if we extend it by linearity on the set of
even vertex series, it becomes an isomorphism for the addition and the multipli-
cation by a scalar.

If the monomial is odd, we cannot build a diagram from it. So, we assign zero
to these odd monomials.

We want to study the problem of simplifying these Feynman diagram series. In
Sect. IV, we briefly indicate an algebraic method to solve this problem, and in
Sect. V, we apply it to the series ST (3.14). The principle of the method consists in
replacing simplification rules on diagrams by algebraic operations on vertex series,
owing to the previous isomorphism. These operations must preserve the parity of
monomials. For a more comprehensive study of this algebraic treatment, the
reader is referred to [13].
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B. Definitions

(a) To begin with, we focus on the simplifications on diagrams and give some
definitions which are inspired by those customarily used in graph theory.

(i) Partial graph: graph obtained by considering only the lines (and
neglecting ) and the vertices which are joined by them. It is generally made of
several connected components.

(ii) Subgraph: graph obtained by considering a subset of vertices and all the
lines which join them.

(iii) Tree: connected graph without cycles.
Let us now introduce the notions of simplifiable tree and root, which are basic

to our study of simplifications.
β

Consider the graph G = \VΆ \ denote by G the partial graph of that one obtained

A

by deleting the line (A1 B) and denote by Γ the connected component of G'
containing the vertex B.

The leg (1) attached to the vertex A is said to be a root if and only if the partial
subgraph [(A1 β ) u Γ ] is a tree whose vertices (except possibly the vertex A)
are vertices 7 (1 ̂  i ̂  2iV).

Then the partial subgraph {{A1 B)\JΓ~\ is called the simplifiable tree
generated by the root (1).

A leg of a vertex is said to be simplifiable if and only if it satisfies one of the
following conditions:

(i) it is a root of a simplifiable tree,
(ii) it belongs to a line .
We must pay attention of the fact that this is nothing more than a definition.

Indeed, a leg may be eliminated by simplifications without being simplifiable. On
the other hand, it is easily seen that repeating the rules (2) and (3) consists in
eliminating respectively simplifiable trees and lines .

(b) The general idea of this study is to disconnect simplifiable legs from other
legs by adding new vertices if necessary. If we examine closely the behaviour of
vertices during simplifications, we are led to introduce four new types of vertex
(ΐ,L,ϋ,R).

To each vertex /• (i = 1,..., 2N)9 we assign two vertices /• and Lt defined as It by
(2.16a).

To each vertex Ui (i = 1,..., r) of each family, we assign one vertex Ui defined as

Uι by (4.1).
Moreover we define the vertex £ as follows

were f represents any path such that <f|xou> =t= 0.
Finally, these vertices must satisfy the following conditions:
(ax) the R' leg is simplifiable;
(a2) all the vertices ϊi and ϋt have no simplifiable leg
(a3) L ( ί = l , ...,2iV) has at least ( i-1) simplifiable legs.
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More precisely, if we consider a monomial containing any type of vertex
(I,Ϊ,L,U,U,R) and if we apply the decomposition rule (1) on its associated
Feynman diagram sum, we only keep diagrams whose vertices satisfy the
conditions {α.} and we drop the other diagrams.

In what follows, it is convenient to identify

~ (4.6)
Uo = l/0 for each family.

The vertex R has been normalized so that the associated scalar R0 = l. It is
independent of the path f that is used to define it.

C. Algebraic Process of Simplification

We now give some algebraic results, the proofs of which will be found in [13].
From the properties of the vertex R and the simplification rules (2), (3), we can

write two "disconnection" rules (4), (5) and two new simplification rules (6), (7),
which are represented in Fig. 2. As indicated by their name, the first two ones
enable us to disconnect a simplifiable leg from the other legs. By means of these
rules, we can calculate the algebraic expression of the vertices

in terms of the other ones introduced in Sect. (IV.B). One finds

, J=2 (4.7)

ut=Σ Φp-K
j=o

As for the simplification rules (2), (3), (6), (7), they are used to prove that the
action of the vertices R and Iγ on a vertex series / is equivalent to derivation
operators D' and D" (with the usual rules for addition and product) characterized
by its images on the basic vertices

Rj = D\j) IJ=D"U) (4.8)

with

and
D"(R)=h

(4.10)
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rule 6 :

rule 7 :

R

-R

N
2(N-I)IO

Fig. 2. Disconnection rules (4), (5) and simplification rules (6), (7). (i) ^ is any subgraph and l£s]
is a simplifiable tree with root s. To keep the figure clear, the lines between @ , [α], . . . , Q are
not represented, (ii) In rule (5) B and C may represent the same vertex (loop), (iii) In rule (6), D is any
vertex t/f or L t ( ΐ ^ l )

Note that the actions of D' and D" on the vertices of type {/} or {U} may be
obtained merely by applying these derivations on Eqs. (4.7).

We still need another relation which we call "constant term relation"

Equation (4.11) is valid for any series not containing R (which also excludes
vertices of type {U} or {J.ΐ^2}).

We are now in a position to describe the algebraic process to simplify any
vertex series /(/, /, L, U, U, R):

(i) By means of Eqs. (4.7), express the series in a sum of monomials of the form

= M1M2

with

M2=

t = l

2 N

(4.12)

The simplification rules are concerned uniquely with M x whereas M 2 remains
invariant during simplifications.

(ii) If M : is even, eliminated the vertices R and / 1 by repeated application of
the derivations D' and D". When there is no more R or Iv proceed by using
Eq. (4.11) and apply again the derivation D'. And so on.... Whenever we use the
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derivations D' or D'\ the degree of the monomial decreases by two units. The
process stops when M 1 has degree zero, i.e. is reduced to a numerical coefficient.

(iii) If M 1 is odd, the contribution of M with regard to Feynman diagrams is
zero and we replace M by 0.

In this way, we can algebraically reduce any vertex series. Moreover, we deduce
the following consequence: After simplification, any vertex series /(/, /, L, U, U, R)
may be expressed in terms of the only vertices of type 7 and U.

To end this section, before simplifying Sj (3.14), we have to define the algebraic
framework and rules to solve this kind of problem.

D. Formalism

(a) Let us first give some definitions:

(i) We denote by«

and real coefficients.

—= the set of formal series with the indeterminate 1/j/κ
: J

(ii) We denote by £f the set of formal series with the indeterminate

{R9 Lβ ^ i S 2N)9 7f(2 S i ύ 2N)9..., t7f(l ^ i ̂  r),...}

and whose coefficients belong to J ^ [ 1 / ] / X ] . In addition, we define the
indeterminates

in terms of the previous ones by Eqs. (4.5), (4.7). £f forms a commutative
1

/-algebra under addition, multiplication by an element of sέ and product.

j
(iii) We denote by $F the mapping which assigns to a series / e Sf its image

after all the simplifications have been made

This mapping is well defined by the algebraic process [Sect. IV.C)] and it is a
^/-linear operator.

(iv) We denote by CT(/) the coefficient of degree 0 of the image series #"(/)
and we call it "constant term of /". CT(/) represents the sum over graphs of /
which are entirely reduced by simplifications. For a monomial M = M1M2 (4.12),
we have

(4.13)

with, if Mγ is odd, CT(M1) = 0.
For a series /(/., . . . , [/.,..., R\ it follows that

CT(f(Ii9..., Ui9..., R)) = Cl(f{Li9..., U0R\ ..., R)). (4.14)

(v) Two series / and g of £f are said to be equivalent when their images are
identical

(4.15)

This relation is an equivalence relation compatible with the addition and multipli-
1

cation by an element of , but not with the product. In the following, the
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equivalence of two series is always referred to this definition. We have of course

(4.16)

(b) Since ^f is a commutative j^-algebra, we may define derivations on it
which are completely defined by the derivatives of the basic vertices.

(i) We define in Sf the derivations -~-(2^/^IN). . .-^~-( l^ j^r) . . . which are
dlj dUj

the usual partial derivatives.
For a series f(Ii9..., l//5 ...,K), it follows from Eqs. (4.7) that

^ | | | Σ - | ( / ) (4.Π,

and similarly

^(/HΣC/K-^ω. (4.18)

(ii) Consider now the monomial M = M1M2 (4.12). We have:

^{^(M.M^ =CT(M1)ir(M2)= -LmM.M^)

and an analogous result for —«--. This is extended by linearity to any series of ^ :

(iii) We have seen in Sect. IV.C) that the operators D' and D" were derivations
characterized by (4.9), (4.10). They satisfy Eqs. (4.8) which must be now rewritten as:

Rf~D'(f), IJ~D"(f) (4-20)

The operator

"-"-ww^ (4 21)

is also a derivation of Of characterized by

Ί))* 1 " 1 '
(4.22)

0

For a series /(/ ; , . . . , £/;,..., R), it follows that

^ y Σ c ^ - ^ ( / ) . (4.23)

We have now introduced all that we need to solve the problem of simplifying
series like SΓ
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V. Simplification of 57

To begin this section, we derive a fundamental relation valid for certain series (in
particular for Sj) and we deduce an interesting property of these series. The
fundamental relation will be very useful to simplify SΓ

A. Fundamental Relation

Let S(K, p) be the vertex series

(K + p)Log(2f C ' 2 J V 7 7 4
I2 N2I\

kln

LlNk2ln

+lkHl
(5.1)

where p is any real and k =
'2N_

77"
Consider now the vertex series f(R, U, Ϊ)S(K, p) where f(R, U, I) is any series

containing no vertex L^l^i^lN), which also excludes vertices / f ( l ^ i ^
From Eqs. (4.20) and (4.21), we have

R N
f(R9ϋ,ϊ)S(K9p)'

1

k]/K
D\J{R,ϋ,ϊ)S{K9p) ]

and, using Eq. (4.23) and k2I0 = 2N

2N-1

2/V—1 2N I \ ~ ~
—j= R-Γτ 7=) S(K, p)f(R, U, I)
k]/K kl, ^

Since the equivalence relation is preserved under addition, the terms
I1S(K,p)f(R,U,ϊ) cancel out. On the other hand, we can replace f(R,U,ϊ) by

~ ~ / R V1

f(R, U,I)\l + — - = . Finally we obtain:
\ k]/κ)

(5.2)

This is the required fundamental relation, valid for any vertex series f(R, ϋ, I).
We now give an immediate application of (5.2): After simplification, the image of
any series f(R, U)S(K, p) contains no vertex ϊ2 which, in turn, is equivalent to

S(K9 p - ί)f(R9 U91) - S(K9 p)f{R9 U9

dl,
(5.3)

since \^^w—\ =® Using the expression (5.1) of S(K,p) together with (4.17) and

(5.2), Eq. (5.3) is easily established.
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B. Simplification of Sj

We want to simplify the vertex series Sj (3.14) and, more generally, Sj(K,p) defined
by

S ^ p H J(17, V,..., Wt ...)S(K,p) (5.4)

with

(i) J(E/,K...,Wί...) given by (3.14),
(ii) S(K,p) given by (5.1).
Sj{K,p) is a Feynman diagram series satisfying the properties of Sect. IV.A. It

involves (n + 2) families of type {U} with r=l everywhere. Furthermore

E/0 = l , F0 = l , (W0O=O, i = l,...,n.

Thus we can use the results of the previous section. After simplification, the series
j(K,p)) may be written as follows:

,(K,P))= Σ Π ϊVrϋa

α,/M'3, ,)'2N nι = 3

[ ^ ^ » ^ P ^ ] (5-5)
with

(5.6)

α and b being arbitrary real numbers. Combining Eq. (4.17) with (5.2), we find

d Cm I R \ 2 ~ m

S { K ) % 1 + — = S(K,p) (5.7), p ) = % 1 + =
'P) 2N(k]/K)m-2\ k]/κ

and, from Eqs. (4.18)

Then, if we carry out the differentiations and replace the vertices U and V by R,
owing to the property (4.14), we finally get

2N i Iζjn \γm

Π Γ7 Tĵ Γ
=3 /m \^' i > /

f ^ H s(κ'p)

where

(i) Cζ denotes the coefficient

IN

(ϋ) '= Σ
τn = 3

ra-2 oc + β
m 2
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Inserting (5.9) into (5.5) and shifting the index t in the second term, we have

1

1
* CTJI1

IΛ

Ώ

R
k]/K

-2tf

b{K,p)

2N

X-f

2N i

Σ Π i-rl^/.
(5.10)

The vertices ϊm, C7} K ^/ have respectively the same form than 7m, U9V,Wi but they
must be linked with the propagator G instead of (3. We recognize in the term
between brackets the general term be(T) of the series B(μ, T) defined in (2.18). Then

(5.11)

It now remains to work out these constant terms. The calculation is rather
technical and it is postponed to Appendix B. The final result is

CT 1 +
R

' a J 2 (fcj/K/ v ' * Ί 2πX i n i V"Γ^" r α / 2(ΛΓ

valid for any real a and p. Inserting (5.12) into (5.11), we get

'aJ2~'
(5.12)

(5.13)

K, p)) represents the image of Sj(K, p) after simplification. For p = 0, we find
the announced result (3.18).

Remark. We observe that the constant terms (5.12) do not depend on 70, i.e. on the
period T. To see the reason for this, it is convenient to renormalize the vertices
/j—>/j/0. Then the simplification rules (2), (3) read as in Fig. 3 so that a factor
proportional to l//0 arises at each step of simplification. Furthermore, in S(K9p)
the exponent of the factor 1/fc in front of each vertex is equal to the number of legs
of this vertex. Then, at each step of simplification of the series, a factor arises which
is proportional to l//c2i0, i.e. independent of Jo. Consequently, these constant
terms appear as pure combinatorial coefficients independent of / 0

 a n d they are
uniquely determined by the application of simplification rules to the series S(K, p).
They will have the same expression for any integral, functional or ordinary, if we
apply the same simplification rules on the same vertex series.

Fig. 3
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VI. Analytic Results for JV=2

We have seen that both methods give for Eκ the same asymptotic behaviour. For
= 2, one finds „

with α0 = 1. The coefficient α1 has been evaluated by Auberson et al. [8] and also
Collins et al. [3] for n = 1. In this section, we give aγ for any n, α2 for n = 1, and we
compare with the results of Bender and Wu [9] and Zinn-Justin [10].

A Preliminary

For n = 1, Auberson et al. [8] have proved that we can calculate the coefficients a£

by using the T-+co limit of the propagators GL(ί, ί'), G0(ί, ί') and also of the
vertices. This property is also true for GΓ(ί, t') and consequently for any n. Let us
give these limits: rz

xo(ή-
coshί'

with

sinhί sinhί'| 1 ( 1

4 [cosh2ί cosh2ί

1

/A sinhί
L cosh 2 ί '

coshί 3

' cosh2

3ί sinhί

1

ίcosh 2ί '

2coshί " 2cosh 2 ί '

1Γ coshί coshί'
Gτ ί, ί'->T TΓΊ + 7-

1

4 [coshί' coshί coshί coshί'

1
— 2 T T T T

with

1
uτ(t)

vτ(ή-> -

τ v v ' coshί'

sinhί

2 2 coshί

In the following, we represent the propagators as.

G0(t,t' )=++++++

GL(t,t')=
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We also define

m _ * o ( 0 _
]/2 "

and normalize the vertices as follows

i V

Fig. 4 y

B. Coefficient ax

For any n, a1 is given by

423

lly/

yo(t) yQ(t)

I y 7 ίiy/ϋygi

+ (n - 1 ) [̂ flW + fα?' + 6af + 2af + a

where α(

1

letter) represents the contribution of the corresponding diagrams of Fig. 5.

α,(c)= O - O

( i ) =

°:(e)= O O - ( X ) S

( f ) _ S**%jf"\ 44+V+\

'(g)= ( 0 ) B W — w ,

°.(h)° σ - o
Fig. 5. The complete set of diagrams for the correction in 1/K {N = 2, n)
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Table 1. Numerical value of diagrams
for the correction in 1/K (N = 2, n)

af

α < b )

a\c)

a\d)

a\

aγ

α ( ! h )

_ 1 1 9 .
~~ 4 2 0 '

_ _53_.
~" 240 '

= 3 3 6 '

71 .
~ 4 0 3 2 '

= ~Ίδ' >
5

1 7 .
~ 720 '

= ~48 '

af =

aψ =

α ( j k ) =

α(ί> =

fl(jm) =

< • =

13 .
960 '

~Tβ '•>

Ϊ44"'

~Tβ' >

. 3 .
8 '

1 .
8 '

l
8 '

Their values are given in Table 1 and we obtain

C. Coefficient a2 (only for n=ί)

We have

( f ) 2 α 2 =

(6.2)

letters

(α) .= 192

+ 48

+ 96

+ 16

α 2

( b ) = 5 7 6

α 2

( c ) = 9 6

+ 192

Fig. 6 α 2

ι α ; = 6 4

Figs. 6-8. The complete set of diagrams for the correction in 1/K2(N = 2, n= 1)

Ό + f v
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αie )= M52 96

+ 192

(f) - 96

α2

(S } = 576

Fig. 7 α 2

( h ) = 384

= 4

Ί

( k ) I Γ (α) ._ ( c ) _ (d)
α2 = 2 i [α, t l 2 α , +8α, J

Fig. 8
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where α(

2

letter) represents the contribution of the corresponding diagrams of Figs. 6-
8. The exact (and quite tedious!) calculation of these quantities shows that we can
express them as a linear combination of the four following integrals, the
coefficients being always rational:

λ _ 7 ° t2

 A _ π 2

^ t ί 6

C- \ , , dt--ίSy2j ,

" 3 6 ;

2£ represents the zeta function. The value of each contribution is given in Table 2

and we obtain

/4\2 _ 13259

[ϊ) a 2 ~~2 7 -3 4 '

Table 2. Numerical value of diagrams for the correction in \/K
2
 (N = 2, n = 1)

7 1439

20 2
5
 3

4
 5 7'

1763 723197

4900 2
3
 3 5

3
 7

3
'

17 300529
2
 2450 2

2
 3

2
 5

3
 7

3
'

,
d )
_2 27 4363

[e)
_ 221 . 27 „ 27076629

2
 2450 140 2

5
 3

3
.5

3
 7

3
'

2147 4311 J 7 _ _81_ 6956653

4900 4900 2450 4900 2
4
 3

3
 5

2
 7

3
'

( g )
_437 1233 9 27

 2
 48932993

"490 4900 4900 9800 2
6
 3

2
 5

3
 7

3
'

2011 1233 9 27
 2
 37238309

2450 2450 2450 4900 2
6
 3

4
 5

3
 7

3
'

289 135403
:
4900"

4
~3 5

3
 7

3
'

23 153 27 81
 2

 17978687

a2 -

j C A A

490 + 1225 + 4900 + 9800 2 5 -3 3 5 3 7 3 '

J24501
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D. Asymptotic Behaviour oj Eκ and Discussion

Inserting the values of aλ and a2 in (6.1), we obtain:
(i) for any n

Eκ (-3)*rίκ+^J 1 + —( ^- — I + 0 1 — y j , (6.4)

(ii) for n = 1

95 20099
(6.5)

This is equivalent to the results of Bender and Wu [9] and Zinn-Justin [10], which
confirms the validity of functional approaches.

In the analytic calculation of a2, we observe that the irrationals cancel out
when we add all the diagrams. This fact had been conjectured by Bender and Wu
[9] and it is reasonable to expect that the same is true at any order. However, the
mechanism of this cancellation is still mysterious.

Appendix A: A Theorem on Borel-Summable Functions

Theorem. Let f(z) be a Borel-summable function, such that

/W-ΣΛ- ^ ( A 1 )

= cn\aneiφnnh\l-

and F(u) an analytic function in the circle \u — fo\ <ρ.
Then

(i) the junction

g(z) = F(f(z)) = Σgnz
n (A.2)

is Borel-summable,

(ii) jor large n, gn is given at the order - \ by

0n=ίfn-A> (A.3)

where dk is the generic term of the series

k (A.4)

Prooj. (i) was shown by Auberson et al. [12].
(ii) is based on the following lemma.



428 V. R. Figerou

Lemma. Let S be defined by

S(n,p,r)= Σ α j . . . ^ ! ^ . . . ^ (A.5)
α i + ... + α^ = n

l^<Xi^n — r

with r^.p—1. Then for n large enough, S is bounded by

S(n, p, r) S k(p, r) (n-r)\{n- rf, (A.6a)

where k(p, r) is some constant. In particular

k{p,p-l) = kp-\ k = 2(l + 2b). (A.6b)

We shall prove the lemma by induction. It is true for p = 2:

4 = r
n-r-1

= 2rl(n~r)lrb(n-rf+ £ q\(n-q)\qb(n-q)b.
q = r+l

For n large enough, all the terms of the latter sum are

Thus we have
γ _Li /r_J_1

2 \ r

namely

S(n, 2, r) S k(2, r) {n - r) \(n - if

with

For any p, S(n, p, r) can be written

n-r r-(p-l)

S(n,p9r)= Σ qlqbS{n-q,p-l,p-2)+ Σ qlqbS(n-q,p-l,r-q).
q = r-(p-2) q=ί

Using the induction hypothesis up to p— 1, we get

q=ί

r-(p-ί)

which is of the form (A.6) and proves the induction hypothesis.

Proof of (ii). We start from the general expression of gn

p— 1 αi + ... +oίp —n
α ι = 1
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Let us separate this sum in three parts

^FJΛ'Σ Fp Σ fβi-f,p (D
p = 2 αi + ... +ap = n

1 ^α,
one of theα; ̂  n — r

+ ΣFP Σ faι-f*p (π)

p = 2 αi + ... + α p = n

+ Σ FP Σ faι-faP

From the behaviour of fn, there exists C( > c) such that

(A.

and, since F(M) is analytical

Then we have

(II) + (III) g ' Σ 4" «"CpS(«, P, »• +1) + Σ ^ a"CpS(n, p,p-ί).
Q Q

Applying the

(

previous

ττ\ i /TTTΊ
ilj-f-(lllj

lemma,

^Kd

'-

Kd

Kd

<

we can

1- 1 I f\V
—* / ̂  \
S I 1

^2\C/

- Σ (
p=r+3'

write

fc(p,r+l)

2

(hΓ\P

I Γ
vTi L""

For n large enough, all the terms of this last sum are smaller than the first one.
Thus, this sum will be majorized by

Hence

(II) + (III) ̂  C(r)an(n -r-l)l(n-r-lf

and, from (A.8)
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AY
Therefore, gn is given at the order - by (I), which is easily taken in the form

r k+ί

θn = FJn+ Σ fn-k Σ ^ Σ 4 •••/„„• (A.10)
fc=l i-2 αx + ... +ae-χ=k

l^α£^fc-(^-2)

On the other hand, in the neighbourhood of /0, we have

duw'

and, replacing u — f0 by the series

~F(u)
au 1 L-i I—i £ i—i

By comparing (A. 11) with (A. 10), we obtain the theorem.

Appendix B: Calculation of Constant Terms

(a) These terms are even series of si \—=\ with first coefficient equal to 1:

1 =i+Σ^ (B i)

Since they depend on three variables, we need three recurrence relations to
calculate them. The first one is merely the fundamental relation (5.2) applied to
constant terms

(b) The second one is based on the "constant term relation" (4.11). To establish
it, we start from the equation

2N

j (B.3)

From (4.14) and (4.11), it follows that

[ / n \2N 1

(1 + — H S{K,p-ί)\. (B.4)
In view of (B.2), (B.4) becomes

CT [(l + ̂ ~j2 S(K, p)] = ^ CΓ[S(K, p)]. (B.5)
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We want to generalize Eq. (B.5) and prove that

for any real a.
If we define the variable F by

/ n \2N-2

t+F=ll + ——\ , (B.7)

we have

/ n \α oo

\1 + -r-r=} = Σ<Vf* (B.8)
\ kyκι <?=o

with

α / + 1 2iV-2

(B.9)
αo = l .

Let us introduce the quantities

(B.lOa)

(B.lOb)

with i integer ^ 0 and p real. The dependence on the variable K is implicit. From
the fundamental relation (5.2), it follows that

We now prove by induction the following relation

This is true for / = 0. Indeed, Eq. (B.5) may be rewritten
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Assuming (B.I3) to be true up to £9 we have from (B.I2)

Using (B.I3.) for both terms in the right hand side, then (B.ll), we get for Eq. (B.I5)
the expression (B.13) with * f - ^ + l . Relation (B.13) is then established.

Coming back now to our series, we have using (B.10), (B.I3), and (B.9)

' + l

a
N — 2

Relation (B.6) is then established by using (B.lOa).
(c) Let d(K, p9 a) be the coefficient

d(K,p,a) =

CT
R

S{K,p)

(B.16)

If we replace the factors Γ{K + p + l) and Γ \(K + p)(N-1)+ d by the Stirling's

asymptotic expansions and take account of (B.I), d(K9p,a) is found to be an even

series of $ί\—— 1 with first coefficient equal to —:

\γκ) π

π ί = 1 A

Furthermore, the two recurrence relations (B.2) and (B.6) give respectively

We have seen that the constant terms are pure combinatorial coefficients which
depend only on simplification rules and series S(K,p). Consider now the path
integral

' T X2N(t)dt
-T/2

•exp
_ Γ

-T/2
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with a, p reals and n=ί. We may evaluate J by using the second method (Sect. Ill)
in two ways according to how we insert in the exponential

772 \κ 1 772 \κ+i

J X2Ndt) or J X2Ndt) .
-T/2 I V-T/2 /

By developing the calculations of Sect. Ill, applying the simplification procedure
of Sect. IV and V and using the recurrence formula (B.6), we finally arrive at the
equality

d(K+U p, a) = d{K, p + l,a). (B.20)

Then Eqs. (B.18)-(B.2O) together imply

d(K + l,p,a) = d(K,p9a). (B.21)

Combining (B.21) with (B.17), one gets

d{K,p9a)=-. (B.22)
π

The required formula (5.12) is then established.
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