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Abstract. The positive mass theorem states that for a nontrivial isolated
physical system, the total energy, which includes contributions from both
matter and gravitation is positive. This assertion was demonstrated in our
previous paper in the important case when the space-time admits a maximal
slice. Here this assumption is removed and the general theorem is
demonstrated. Abstracts of the results of this paper appeared in [11] and [13].

Introduction

An initial data set for a space-time consists of a three-dimensional manifold N, a
positive definite metric gip a symmetric tensor pij9 a local mass density μ, and a
local current density Jl. The constraint equations which determine N to be a
spacelike hypersurface in a space-time with second fundamental form p.j are given
by

where R is the scalar curvature of the metric gijt As usual, we assume that μ and J1

obey the dominant energy condition

An initial data set will be said to be asymptotically flat if for some compact set
C, N\C consists of a finite number of components 7V15 ...,Np such that each JV f is
diffeomorphic to the complement of a compact set in R3. Under such diffeomor-
phisms, the metric tensor will be required to be written in the form

and the scalar curvature of N will be assumed to be 0(r~4).
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With each Nk we associate a total mass Mk defined by the flux integral

which is the limit of surface integrals taken over large two spheres in Nk.
This number Mk is called the ADM mass of Nk (see Arnowitt, Deser, and

Misner [1]). Classically it was assumed that the first term in the asymptotic
expansion of gtj is spherical. It was pointed out by York [11] that physically it is
more desirable to relax this assumption to the one mentioned above. The method
in this paper will work assuming only this general asymptotic condition of York.

In order for the total mass to be a conserved quantity, one assumes ptj = 0(r~2)

and

In this formulation, the (generalized) positive mass theorem states that for an
asymptotically flat initial data set, each end has nonnegative total mass. If one of
the ends has zero total mass, the initial data set can be obtained from the metric
tensor and the second fundamental form of a spacelike hypersurface in the
Minkowski space-time. (In particular μ and Jl must be identically zero.)

We proved the positive mass theorem assuming the condition that ]Γ p\ \ = 0 in
ϊ

our previous paper. In this paper, we demonstrate the validity of the general
theorem by reducing it to the previous case. It should be mentioned that the
classical attempts in proving the positive mass theorem have been to treat the
important case ]ζp| = 0 first and then reduce the general case to this case by

ΐ
asserting the existence of maximal slices (see, e.g. [2]). While we have similar steps,
the basic ingredients are very different. For example, in the former method, it is

necessary to prove that the space-time admits a slice with £ p\ = 0. Not only is the
i

existence of such a slice unknown, but also the space-time is expected to be more
restrictive if such a slice does exist. Our approach can be described as follows.

We deform the metric gtj and ptj in two steps. In the first step, we consider the
product manifold N x R with the product metric and extend p^ trivially to be a
tensor defined over N x R. We want to find a hypersurface N in N x R which
projects one to one onto N and whose mean curvature is the same as the trace of
Py over N. One of the motivations for considering such a hypersurface is that if N
is a spacelike hypersurface in Minkowski space-time, the solution N can be
identified with a linear slice of the Minkowski space-time. The second step is to
observe that if such a hypersurface exists, the induced metric on this hypersurface
can be deformed conformally to one with zero scalar curvature. If we can prove the
existence of the hypersurface which is asymptotic to AT in a suitable manner, we
can prove that the total mass of N is the same as that of the hypersurface N. We
have then reduced the positive mass theorem to the case that we treated in our
previous paper.

It happens that the hypersurface does not exist in general. Surprisingly its
existence is closely related to the existence of apparent horizons in the initial data
set (even if we assume the initial data set is nonsingular). The relation can be
explained as follows. We perturb the equation that governs the hypersurface and
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prove that the perturbed equation admits an entire solution with the required
asymptotic behavior. When the perturbation tends to zero, we prove that the
hypersurfaces defined by the perturbed equations converge smoothly to a
hypersurface. Although the hypersurface satisfies the required asymptotic con-
ditions, it need not be a graph over N. The set over which it is not a graph has
boundary consisting of spheres which are apparent horizons. By conformally
closing these apparent horizons, we carry through the argument outlined above.

It should be pointed out that in a previous attempt by Jang to solve the
positive mass theorem, the equation defining the above hypersurface was con-
sidered. However, our geometric interpretation of the equation and our way of
using it are completely different from his. (He used a method outlined by Geroch
which up to now has been unsuccessful in proving positivity of mass.) While Jang
observes that the equation is not solvable in general, he provides no method to
circumvent this situation. It should be emphasized that the major effort of this
paper is to overcome this difficulty. For a historical account of the previous efforts
to prove the mass theorem, see the references in [9]. We wish to point out that our
method in this paper also works to prove the mass is positive for an initial data set
with singularities, provided they are surrounded by apparent horizons.

For the reader's convenience, we suggest the reader to skip sections tWo and
three for the first reading. They can read the first two paragraphs of pp. 238-240,
statements of Propositions 1-3.

1. Statement of Results

As in the introduction, let N be an oriented asymptotically flat three dimensional
manifold without boundary. Let ds2 be a positive definite metric on N. Suppose
that N is of smoothness class C4, and that ds2 is C3. Assume that on each Nk there

3

exist coordinates x1, x2, x3 in which ds2 has the expansion ds2= ]Γ g.jdxldxj

U=ι
with the g.j satisfying the following inequalities for positive constants /C 1 ? /c 2 ,/c 3

1,
-

3

where r2 = ]Γ (χ')2 and d is the Euclidean gradient. Note that (1.1) implies that the
ί=l

Christoffel symbols Γjk fall off as 0(r~2) and the curvature tensor as 0(r~3) as
r->oo. We assume that the scalar curvature (Ricci scalar) R falls off like r~4, i.e.,

l+r5)-1 (1.2)

for constants /c4, fe5.
We suppose also that on N we are given a symmetric two-tensor ptj which on

each Nk satisfy the inequalities

\Ptj\ + r\dPij\ + r2\ddPij\ ^ /c6(l + r2) - 1 (1.3)

for a constant fe6. We assume the trace of ptj satisfies the faster falloff

(1.4)I?'
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As was mentioned in the introduction we will be assuming the dominant energy
condition holds on N, i.e.,

We will refer to the triple (JV, ds2,p^ satisfying (1.1)-(1.5) as an initial data set. Note
that we have weakened the asymptotic assumption on gtj from that assumed in
[9]. In [10] we have established the main result of [9] under this weaker
assumption. We state our first theorem.

Theorem 1. Let (N9ds2

9ptj) be an initial data set. For 1^/crgp, we have Mk^Q.

We will also prove that if some Mk is zero, the initial data set is trivial. For this
we need to assume ds2 is C4 and expand (1.1) to include the following assumption

\dddbtj\ + ISδδδfeyl ̂  fe8(l + r4)- 1 . (1.6)

Theorem 2. // (JV, ds2, ptj) is an initial data set satisfying (1.6), and Mk — 0 for some /c,
then (N,ds2,p^ can be isometrically embedded into four dimensional Minkowski
space M as a spacelike hypersurface so that ds2 is the induced metric from M and ptj

is the second fundamental form. In particular N is topologically IR3.

2. The Basic Equation and Local Formulae

In this section we derive the basic formulae describing the local geometry of
hypersurfaces in N x R Suppose (N, ds2, ptj) is an initial data set as defined in
Sect. 1. We form the Riemannian product A Γ x I R with (positive definite) metric
ds2 + dt2 where ίeIR is a coordinate. We suppose that Σ 3 £Λf xIR is a smooth
hypersurface, and let e l5e2,e3,e4 be a local orthonormal frame for Σ with e4

normal to Σ and e1,e2,e3 tangential. Let w l 5 w 2 , w3,w4 be the corresponding dual
orthonormal coframe of one-forms. We may write the structural equations for
J V x I R

4 4

d™ab- Σ W α c Λ W c b = - 2 Σ ^abcd^c Λ Wd > (2 2)
c = l c , d = l

where Rabcd is the curvature tensor of JV x IR. We adopt the convention that letters
α, b, c, . . . run from 1 to 4 while the letters ij, k, ... denote indices between 1 and 3.
We define the second fundamental form of Σ, which we denote A = (hίj)1 <itj<3 by

where (-)\Σ indicates restriction of a one-form to Σ. The mean curvature H of Σ is
then given by H=^hu. Restricting (2.2) to Σ and using (2.3) we derive the

curvature equation

~ Λ / f c ) > (2 4)
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where Rijk^ denotes the intrinsic curvature of Σ. Applying the exterior derivative to
(2.3) and using (2.2) we derive the Codazzi equation

D&j-Djh^Rw, (2.5)

where D is used to denote co variant differentiation with respect to the metric of Σ,
and Dkhtj is defined by

Σ DkhίjWk = dhtj + Σ hίkwkj + Σ hkjwkί . (2.6)
k k h

We now exploit the special structure of N x IR. Let υ be the downward unit
parallel vector field tangent to the IR factor, and consider the function <e4,t;>
defined on Σ, where < , ) is the inner product of TV x IR. For a smooth function φ
on Σ, the co variant derivatives Dtφ, DfijCp, and the Laplacian Δφ are given by

dφ = Σ (5^)w- , d(Dtφ) + Σ (D .φ)w β =
ί j j

Aφ=Σ5ίDίφ.
ί

We calculate zl<e4, u> by observing that v = Σ <t;, efl>βfl is parallel, so the covariant
α

derivative £)aυ in N x IR is

0= Σ(Dbv)a^ = d<v,ea>+Σ<v,eb>wba. (2.7)
& b

Using (2.3) we then get

d<<?4, vy = - Σ <ϋ, β >w/4 - Σ Λ0.<ι;, e^w^ .
i i,7

Thus by (2.6) and (2.7) we have

k k

Taking the trace and using (2.5) we get

e4>. (2.8)
ί,k k \i,k

We will need to compute D^D^i^ so we define

Σ CD A^o K = <W0 ) + Σ ΦΛM*

>,,. (2-9)

Applying the exterior derivative to (2.6) we then have

A^ K Λ W f c = - 2 Σ fcfcAiΛ»
fc,^,m

~2 Σ ^Λ^m
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Equating coefficients then gives

DeDkhίΓDkD(hίΓ - ΣhmjRmiίk- ΣΛJW (2.10)
m m

We wish to calculate Δhij= Σ^ΛΛj in terms of the mean curvature H, so
k

we use (2.5)

Δhίj=ΣDkDjhik+ΣDkR4ίjk, (2.11)
k k

where D^R4ίjk is defined by

We may express this in terms of D^R4ijk by using (2.3)

D,R4ίjk = D,R4ijk - R4i4khsj-R4ijAt + ΣRmijkhmt . (2. 12)
m

We now use (2.10) in (2.11) to get

k k m,k m,k

Finally, we apply (2.5) once more, together with the symmetry of (h^) to obtain

Δhij=DiDjH+ ΣDkR4ijk- Σ hmkRmίkj
k m,k

m,k k

Using (2.4) and (2.12) we finally have

\m,k

m,k m, k

ί4hjk+ Σ Rmkik^mj'
k m,k

We are not especially interested in the particular form for this equation, but we
want estimates independent of Σ9 so we note that we have the matrix inequality

\m,k

where cί depends only on fcl5fe2,fe3 (not on Σ). We are using \A\2= Σ^fj- We now
i>j

calculate Δ\A\2 as follows:
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Therefore, we have

+ ΣhίJDiDjH-c2(\A\2+ί) (2.13)
i,j

for a constant c2. Since ±A\A\2 = \A\A\A\ + \D\A\\2, we get

\A\A\A\* (Σ(DAj)2-\D\A\\2\-\A\*
\ij,k )

-\H\\A\3 +ΣhijDί5jH-c2(\A\2 + l ) . (2.14)

We now record the following observation of [8]. We may write the first term T on
the right of (2.14) as

i,j,k k \i,j

This implies that

Setting k = ί and m =j in the sum implies

\i, j

where we have used the Schwarz inequality. By (2.5),

Putting these into (2.15) and using the inequality (a — b)2^a2 — b2 we get

M

This implies that

ί , j , k

Combining this with (2.14) then gives

c^p + l). (2.16)
i,J

Inequality (2.16) will be important for the estimates of the next section.
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For the remainder of this section we specialize to the case when Σ is the graph
of a function / defined on N. In this case we may extend our orthonormal frame
e^ e2, e3, e4 to AT x R in such a way as to be parallel along the 1R factor. We also
suppose that the given data, pij9 μ, and J are extended parallel along the R factor.
We assume that e4 is taken to be the downward unit normal to Σ so that
<u,e4>>0 everywhere on Σ. Thus the following hold on N xR

R = Σ Rabab
a,b

Jb=ΣDaPab-ΣDbPaa>
a a

where Rabcd is the curvature tensor of N x R Since eί9 e2, e3, e4 is now extended in a
natural way to all of TV xR, we introduce the following notation [cf. (2.3)]

j
This defines ^ ftj4wf as a one-form on Z1. We wish to refine (2.8) in our setting. First

ί
note that since N x R is given the product metric, and H is constant along the R
factor, we have

0 = Σ (J
k

where e4H is the directional derivative of H in direction e4. Putting these into (2.8)
then gives

A^v9e4y=(^^RMi-e^H-\A\2Vv9e^. (2.18)
V i I

We now notice that

so by (2.4) we have

where R is the intrinsic scalar curvature of Σ. Thus by the definition of μ we have

We will also need to have an expression for e4 /^ p.\ in terms of J, so we notice
that

(2-20)
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and we have

Σ DaPiίwa = dpu + 2 Σ PjίWji + 2pί4w4i.
« j

Summing on i and equating coefficients of w4 we have by (2.17) and the symmetry

>>^+2£p.A4- (2.21)
. i / i

We also have

which gives

Z

Summing on i and using the definition of D we have

Combining this with (2.20) and (2.21) implies

-ΣpiAj-iΣpiA*. (2.22)
iJ i

We now combine (2.18), (2.19), and (2.22)

-2(μ-J4). (2.23)

We now observe that since e4 has been extended to be parallel along v we have by
(2.17)

i

= Σ O. ei>Aί/; + <v> e4> Σ hj4ej
iJ J

Since Dj(v, e4y = Σ <^ ei>^ we have
i

^.4=-<r,e

4>-1Dj<t;,e4> = -5j(log<!;,e4» . (2.24)

Hence if we compute A log <t>, e4> we have
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Putting this into (2.23) and using the energy condition (1.5) we have

0 ̂  2(μ - \J\) ̂ R-Σ (htj ~ Pif ~ 1Σ (Λi4 ~

(2.25)

We now introduce the equation which Σ will be required to satisfy. It is an
equation proposed by Jang [5]. We will study the solutions of this equation later
in this paper. The equation is

More explicitly, if Σ is the graph of a function /, it is the equation

(1 + Df2Γ 1/2 0" W= Σ0yPy > (2-27)

where gtj is the induced metric on Σ

Qij^Qij + fxJxJ

fifj

l l l+\Df\2

Geometrically (2.27) says that we prescribe the mean curvature at each point of Σ
to be equal to the trace of the restriction of ptj (extended to N x IR) to Σ. We will
study solutions of (2.27) having the asymptotic behavior

|/| = 0(r-1/2), |d/| = 0(r-3/2), \ddf\ = 0(r^l2), \dddf \ = 0(r~Ί'2} (2.28)

at each inifinity of TV.
The inequality (2.25) is closely related to Eq. (2.27). In fact, (2.27) expresses the

fact that H—ΣPίί does not change along vertical lines, so that vlH— Σ

Assuming Σ satisfies (2.27), by (2.25) we have

-Pi4). (2.29)

It will afford us some convenience in the proof of Theorem 1 to assume strict
inequality in (1.5). We prove a simple perturbation result which allows us to
do so.

Lemma 1. Let (N.ds2^^) be an initial data set. Given a number ε>0, there is a
function φ > 0 on N satisfying
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on Nk with \Ak\ <ε so that (N, φ4ds2, (p2ptj) is an initial data set with mass density μ
and current density J satisfying μ>|J|.

Proof. If φ > 0 is a function on N9 then we can compute

μ = φ~4(μ — 4φ~1Aφ)

\iJ

where K = J + 4φ~1φ^p. Thus if we let

we have Tl = |J|-μ^O, and

Tφ = ±φ5(\J\-μ) .

The linearization of Tφ at φ = 1 is given by

which is an isomorphism on suitable spaces, so by the implicit function theorem
we can find φ near 1 so that Tφ <0, hence μ > \J\. [For example, one exhausts N by
compact subdomains Ω and solves the inequality Tφ = f<Q on Ω with φ = l on
dΩ. Once one solves this equation, one can see easily that φ converges to the
require solution when Ω tends to N. The existence on compact subdomains follows
by applying the implicit functions to the map T:H2(Ω)-*L2(Ω).'] The asymptotic
conditions for φ are easily shown.

3. The a Priori Estimates

In this section we prove the estimates which are needed to show existence of
solutions to (2.27). We concentrate first on the local interior estimates, and then we
construct suitable "barrier" functions [see (3.20)] to control the behavior of
solutions at infinity.

We study a slightly more general equation then (2.27). Let F(x) be a given C2

function on N and suppose μ l 5 μ2, and μ3 are constants so that

. (3.1)
N N N

Suppose / is a given C3 solution of

(32)(3 2)

We propose to derive suitable estimates on / and its derivatives in terms of μ l 5 μ2,
and μ3. We let c1?c2, ... throughout this section be constants depending only on
(N.g^p^ and μ1? μ2, μ3. We will not explicitly denote the dependence on μ1? μ2, μ3.
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We will use the notation of Sect. 2 for the graph of/ We first observe that by (2.4),
(3.1), and (3.2) we have

so inequality (2.25) implies

Multiplying this inequality by φ2 where φ has compact support on the graph Σ of
/, and integrating by parts, we find

Σ ί

^ - 2 ί φ Σ Φt<P) (Λi4 - P

Using the inequality 2ab^a2 + b2, we get

V ]/^x g j \Dφ\2 ]/^dx + c2 ί (\A\ + l)φ2 ]/jdx (3.3)
Σ Σ Σ

for any φ with compact support on Σ. We now replace φ in (3.3) by the function
\A\ φ to obtain

flW|/0^J|5|^ (3.4)
I I I

Expanding, and integrating by parts, the first term on the right becomes

J (\A\2\Dφ\2 + 2φ\A\ <5φ, D\A\> + φ2 \D\A\\2} ]/jdx
Σ

= l\A\2\Dφ\2yjdx-lφ2\A\Δ\A\\/jdx.
Σ Σ

Putting this into (3.4) then gives

Σ Σ

2 3where we have absorbed \A\2 into \A\3 + 1. We now use (2.16) to get

ί Σ (AΛ/p2l/fe
Σ i,j,k

-C4f S h^Dfij

We integrate by parts the second term on the right and absorb to get

ί Σ ( W V \/ϊdx g c5 ί \A\2\Dφ\2

Σ ί,j,k Σ
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We now get rid of the second term on the right by observing that (3.2) says

, and we have

Σ DaPii™a = dPii + 2 Σ PjiWji
a j

so summing on i we get

which implies 1), and hence by (3.1) and (3.5) we have

ί Σ (Dkhij)
2φ2}/ίjdxίc6$\A\2\Dφ\2}/jdX

Σ i,j,k Σ

. (3.6)
Σ

We observe that (3.4) directly implies

Σ i , j , k

Combining this with (3.6) and absorbing the term involving \A\3 back to the left we
get

Finally, we may replace φ by φ2 and absorb to get

]/ΪJdx ^ c9 ί \Dφ\* VHdx + c9 f φ
4 ]/^dx (3.7)

Σ Σ Σ

for any Lipschitz function φ with compact support on Σ.
We now choose ρ0 with 0<ρ 0 rgl so that for any point x0eN, the geodesic

exponential map is a diffeomorphism on the ball with center at x0 of radius ρ0.
That such ρ0 exists follows from the conditions (1.1). We let B^(X0) denote the
geodesic ball in Λ f x l R centered at a point X 0 e]VxR For any point
X0 = (x0, f(x0)) in Σ, we will give estimates on Σr\B*(X0) for suitable σ > 0. We first
bound the volume of ΣnB*(X0) by observing that (3.2) implies

so we apply the divergence theorem on the four dimensional volume
BΪ(X0)n{(x,x*):x4<f(x)} to obtain

Vol£n^(*0))^10a
3 (3.8)

for any σ^ρ0, X0εΣ. The results of Hoffman and Spruck [4], generalizing the
methods of Michael and Simon [6], now show that there is a number ρ1 with
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0<ρ1 ̂ ρ0 so that the Sobolov inequality holds on Σr\B^β^Q). In particular, it is
true that

for any Lipschitz φ vanishing outside Zn£^(AΓ0). Since H2 is bounded by (3.2), we
may apply Holder's inequality and (3.8) to prove

(fφ6l/^V / 3^ιιflW^
\Σ ) Σ \Σ ]

If we take ρ1 small enough that c12ρj^|, we get

(3.9)

for any Lipschitz φ with support of φ contained in ΣnB^βCo). We emphasize that
both ρ^ and c13 are independent of X, Σ.

We let ρ denote the geodesic distance function to X0 in N x 1R, and observe that
|Dρ| = 1 and hence |5ρ| ^ 1 on Σ. We choose φ in (3.7) to be a function of ρ
satisfying

1 for ρ<£l

for ρ^ρx — i j —

With this choice of φ, (3.7) and (3.8) imply

gc 1 4 . (3.10)

Note that we are taking ρ1 to be fixed, so we have not bothered to explicitly
denote the dependence of c14 on ρ^

We now show that \A\2 is pointwise bounded. To see this, let u = \A\2 + 1, and
observe that by (2.13), (3.1), and (3.2)

Multiplying both sides by a nonnegative function ζ vanishing outside ΣnB%ι_(XQ)9

and integrating by parts we get

f f
Σ[

, Duy-c15(\A\2 + iχ - 2 X Dtζ /£ h^H\ - 2

for any such ζ. It follows from (2.5) that Σ/V^. gc(|5/ϊ| + l), and from the
_

discussion preceding inequality (3.6) that \DH\2 ^c(\A\2 + 1). We therefore have the
following inequality

(3.11)u] ]/̂
j
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for each nonnegative ζ vanishing outside ΣnB<Bi_(X0), where the functions bt, e are
2

Since bi and e satisfy

by (3.8) and (3.10) we have

sup (ΣIMV ί \e\2]/HdxZc1Ί.

A standard iteration technique (see [7, Theorem 5.3.1] now gives the mean value-
type inequality

u(X0)^cί8 I j u2ygdχU2\ (3.13)

for a constant c l g. Note that this iteration technique works because we have the
Sobolev inequality (3.9), and we may use the distance function ρ in place of
standard Euclidean distance. Also, it is crucial that \e\ is bounded in

and 2>^dimΣ...f, so that the structural conditions [7, 5.1.3] are satisfied. It
now follows from (3.8), (3.10), and (3.13) that |y4|2(Z0) is bounded, so we have an
extrinsic curvature bound

ci9. (3.14)
Σ

We summarize what we have proven in the following proposition.

Proposition 1. Suppose f is a C3 solution of (3.2) with function F satisfying (3.1).
There is a constant c19 depending only on the initial data (]V, gίj9 ptj) and on μ l 9 μ2, μ3

so that (3.14) holds.

We discuss the consequences of this result. If X0EΣ, we let (y1,y2,y3,y4) be
normal coordinates in TV x IR centered at X0 so that the tangent space to Σ at XQ is
the y1y2y3-spacQ. Thus, if the metric ds2 +dt2 for N xIR is given by

a,b

we have

O)=<?„„, - ( θ ) =



246 R. Schoen and S.-T. Yau

for 1 :gfl,fr,c:g4. In a neighborhood of XQ9 Σ is given by the graph of a function
w(y\ y = (y1, y2,y3) on the )Λj;2j;3-space. The equation (3.2) satisfied by Σ is

\DW\2]\ \DW\

where W(Y} = w(y) — y4, Y = (y1,y2,y3,y4). This gives an equation for w of the form

3

Σ B^y, w, dw)wyiyj = C(y, w, dw) (3.15)
U=ι

for y near 0, where Btj(y,w,p) and C(y, w,p) are smooth functions of their
arguments, dw = (wyι,wy2, wy3) is the Euclidean gradient, and (5̂ .) is positive
definite with

Btj(09 0,0) - δtj, C(0,0,0) = 0 . (3.16)

The length of the second fundamental form of Σ is given by

\A\2= Σ (Vc- \DW\ } \ \DW\ } '

From this expression, one sees that (3.14) implies

3 / 3

ij=ί \ ί=l

in a neighborhood of 0. We can now prove a gradient bound on w as follows.
Given a Euclidean unit vector ξ in the y1j;23;3-sPace

?

 and a radus ρ, we define Sξ(ρ)
by

SJρ)= max V Γv
ς O ^ ρ ^ ρ ίT

J

1

By the mean value theorem, (3.17), and the fact that Myl(0) = 0, we have for all small

ί?

Elementary calculus now implies that there is a ρ2 >0 (depending only on c21) so
that Sξ(ρ) remains bounded for 0<ρ^ρ2 (thus w is also defined on the ball of
radius ρ2). Because of this and (3.17), we then have

sup (|w(y)| + |3w(j;)| + |33w(y)|)^c22 (3.18)
|y |^e2

for constants ρ2 >0, c22 independent of Σ. We will want to improve (3.18) a little so
we define for 0<α^l, the Holder norm on {|y|<ρ} by

l |Λ | | . f f f = sup l^-^I

We can now prove

Proposition 2 (Local Parametric Estimate). Under the hypotheses of Proposition 1,
there is a £3>0 depending only on the initial data and μ1,μ2,μ3 so that for any



Positive Mass Theorem. II 247

X0eΣ, the local defining function w for Σ (as discussed above) is defined on
{|y|^£3}5 and satisfies for any αe(0, 1)

sup (|w(j;)| + \dw(y)\ + \ddw(y)\ + \dddw(y)\ + \\ dddw\\a ) ̂  c23(α) ,
M ^ β 3

where c23 depends only on α, the initial data, and μ1,μ2,μ3. Moreover, we may
require

We also have the following Harnack-type inequalities

sup O4,ι;>^c24 inf <£?4,ί;>
ΣnBΪ3(X0) ΣnB%3(X0)

Ύ Ύ

sup |Z>logO4,ι;>|^c25 .
ΣnB^(Xo)

Ύ

Proof. The estimate for |<5dδw| and ||dδδw||α ρ3 (for ρ3^ ̂ ρ2) follows from (3.15),
(3.16), (3.18) and standard Schauder estimates for linear elliptic equations with
Lipschitz coefficients (see [7, 5.5]). Because of this estimate, Eq. (2.18) represents a
uniformly elliptic equation on {\y\ ̂  |ρ2}, so the following Harnack inequality (see
[7, 5.3]) holds

sup <^e4>(y,w(y))^c25 inf <^,e4>(

for ρ3 small enough. It is also standard (see [7, 5.5]) that
sup |δ<ι;, β4> (y, w(y))| ̂  c26 sup |<t;, e4> (y,

Combining this with the Harnack inequality on {|y|rg2ρ3} we have

sup |5<t;,β4>(y,w(y))|^c27 inf \(v,e4y(y9w(y))\
\y\iQ3 M = 2ρ3

which implies the stated estimate on |Dlog<t;5e4>|. Finally, we note that by (2.24)

on Σ. Also, |,4|2 = £ |De. e4|
2, so we have

i

on Z1, and hence on N x IR. Recall that e4 is extended to N x IR by parallel trans-
lation along vertical lines. From this it follows that we may take ΣπB±ρ2(XQ)
ς {y y4 = w(y)} since any adjacent components of Σr\B^β3βζQ) would necessarily

have a normal vector e4 bounded away from e4(X0) hence for ρ3 small such a
component could not exist. This completes the proof of Proposition 2.

Our next task is to discuss the behavior of / at each infinity of N. For this
purpose, we add to our hypotheses (3.1), (3.2) the following assumption on F

F(x) = tf(x) + G(x) on N

l+r4)-1 on Nk (3.19)
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for each k, where ίe[0, 1]. Assuming that f(x) tends to zero on each Nk, we will
give estimates on the fall-off of / and its derivatives. We first give a bound on / by
constructing suitable "barrier" functions near each infinity. For Λ>0, /?e(0,l), we

define a function f(r) for r^Aβ + ί on each Nk by

f(r) = A (s2β + 2-A2Γi/2ds .
r

The following properties of / are easily checked
i

0<f(r)<c29Λr-β for r>Aβ+1,~ ~

(3.20)

The Euclidean mean curvature He, (with respect to the downward normal), and
square length \Άe\2 of the second fundamental form of the graph of / are given by

We wish to compute the mean curvature H of the graph of / with respect to ds2.
Using (1.1), it is not difficult to see

H(x, /(*)) ̂  H*(x, f(x)) + c30r-! \Ά'(x, f(x))\

for r^Aβ + 1 on each Nk. This implies

(3.22)

We will show that / is a supersolution of (3.2) for suitably large_Λ For this
purpose, we estimate the trace of the restriction of pab to the graph of/. Using (1.4)
we have , ^ -.

where we have denoted the trace of the restriction of pab to the graph of / by P, so
by (3.19) and (3.22)

where we have used r^.Λβ+1 to get the last inequality. From here we see that if
Λ = Λβis chosen sufficiently large (depending on β as well as the other data), then

H-P<G (3.23)
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i
for r^:ΛP+1 on each Nk. In a similar way we see that for A large we have

-H-P>G, (3.24)

so that the function — / is a subsolution of (3.2). We can now estimate / and its
derivatives near infinity.

Proposition 3. Suppose f is a C3 solution of '(3.2), with function F satisfying (3.1) and

(3.19). Suppose also that \imf(x) = Q f o r each Nk. For any βe(0, 1), there is a
x-» oo

constant C3 3 = c33(β) depending only on β, the initial data (N.g^p^ and the
constants μ1,μ2,μ2,μ4,μ5 so that

\f(x)\ + \x\\df(x)\ + \x 2\ddf(x)\ + \

for any xeJVk, any k.

Proof. The estimate of |/(x)| comes directly from the properties of/ Indeed, for any
positive number L we observe that (3.23) implies that f + L is also a supersolution
since the equation H — P = G is insensitive to translation in the vertical direction.
Since / tends to zero at each infinity, we observe that for L sufficiently large we

i
have f(x) + L > f(x) for each x with r = \x\^.ΛP + 1. Define L0 by

Then L0 ^0, and we show that L0 = 0. To see this, we suppose on the contrary that
L0 >0. Since / tends to zero at each infinity, it follows that there is a point x0e7V

i
with x0| ̂ Aβ+1 such that fΛ ^(x0) + L0 =/(x0). We note that it is impossible that

\x0\=Λβ+1 since f + L0 has infinite slope for such points by (3.21) and hence the
inequality / + L0^/ would be violated at points near x0. Thus we have

|x0 >Λβ+1 and the function / —/ has a minimum at x0 so we have

'd2(f-f)\
„ .„ . (xn) is a nonnegative definite matrix.
nvlrlγj /, dxldxj

It follows that

We denote this matrix by Blj, and we see that by subtracting (3.2) from (3.23) we
get

Since Bij is positive definite, this contradicts the nonnegativity of the matrix of
second partial derivatives. Therefore L0 = 0, and we have shown /(x) ̂  /(x) for
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i

\x\^ΛP+1 which implies by (3.21) that f^c(β)r~β. A similar method using (3.24)
shows —/£Ξ/ hence

on each Nk.
It is now elementary from Proposition 2 and (3.25) that |δ/|, \ddf\, and \dddf \ are

bounded near infinity. In fact, standard Schauder estimates (see [7,5.5]) applied to
(3.2) in the ball U(x) = {y:\y-x\<l} then give

\df(x)\ + \ddf(x)\ + \dddf \ίc3S(β)\x\~β (3 26)

on each Nk. We now view (3.2) as the following linear equation

To improve the bounds (3.26) on the derivatives of/, we fix a point x0eNk and
define coordinates x = (x — x0)/σ, σ = |x0|/2. In terms of 5c, our equation becomes

-^/^^ίx) (3.27)

for 3ce 0^(0) = {|3c| < 1}. It follows from (3.26) that the Holder coefficient \\df\\ βtϋί(0)

satisfies

Therefore, Eq. (3.27) is uniformly elliptic, and the coefficients satisfy [by (1.1), (1.3)]

c3Ί(β) sup |σ
jcel/ι(0)

Standard methods (see [7, 5.5]) then show

|δ/(χ)| + IW)^^
\Uι(0)

for xe U1/2(Q). Writing this in terms of the original coordinates x and using (3.25)

[Note that in dealing with (3.27), we do not have a bound on ίσ2, the coefficient of
/, but we are using the fact that tσ2 ^0 which makes the sign of this term helpful in
deriving the estimates.] A similar method by differentiating the equation gives
estimates for \dddf \. This completes the proof of Proposition 3.
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4. Proof of the Existence

In this section we prove existence of solutions of (2.27), asymptotic to zero at
infinity, and defined on the exterior of a finite family of apparent horizons. We also
study the asymptotic behavior of these solutions on the apparent horizons,
showing that they are asymptotic to the cylinder in N x IR over the horizons.

To solve (2.27) we introduce an auxilliary equation for se[0,1], ίe[0,1].

H(f)-sP(f) = tf9 (4.1)

where H(f\ P(f) are given by

, ^/M_D^

We first solve (4.1) for ί>0, and then study the limit as t->0. We will look for
solutions of (4.1) in a weighted Holder space B2'β for any /Je(0, 1) defined in the
following way. We let τ(x) be a weight function on N satisfying τ ̂  1 on N, and
τ(χ) — r(x) on each end Nk. We then define a norm

11/11 2>f = sup (τ"(x)|/(x)| + τ1 + '(x)\Df(x)\
μ xeN

where \\DDf \\β x denotes the Holder coefficient in the ball Bτ(x^2(x)

- «*
xι,x2eBτ(X)/2(x) α(X1,X2)

where d(x l 5x2) is distance. We let B2'β be the Banach space of C2'β functions on N
with finite ||/||2,^ We first solve (4.1) for ί>0. This turns out to be straightforward
because in this case we can derive a priori bounds on / and \Df\. To see this note
that we have

f*J

Differentiating (4.1) in the direction of xfc, we have

-tP fJ>

(4.2)

where Rίk is the Ricci tensor of N, arising from the commuting of covariant
derivatives. This implies in particular that the function u = \Df\2 satisfies an
inequality of the form

(4.3)
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where Aij is positive definite, B\ C are bounded on N (independent of s, ί). If
feB2'β satisfies (4.1), then we have the following bounds

supίl/l^, sup t ID/I ̂ μ2, (4.4)

where μ1?μ2 are constants depending only on (N.g^p^. To prove (4.4), we simply
note that since / tends to zero at infinity, either sup/^0, or / has an interior

N

maximum point. Using (4.1) at this point we would have

Similarly we show max( — £/):gc2, thus proving the first inequality of (4.4). The

second comes from the fact that u = \Df\2 tends to zero at infinity, so using (4.3) at
its maximum point we find

sup t\Df\2^c, su
N N

which gives the second part of (4.4). The following lemma can now be proved.

Lemma 2. Suppose ί>0, andfeB2'β satisfies (4Λ)for some βe(0, 1). Then there is a
constant c4(β,t) depending on β,t as well as (N.g^p^ so that \ \ f \ \ 2 > β ^ c 4 ( β , t ) .

Proof. This lemma is a straightforward consequence of (4.4). We note that since
ID/I is bounded, (4.1) and (4.2) are uniformly elliptic equations. In particular,
standard estimates (see [7, 5.3]) applied to (4.2) imply a Holder estimate on Dkf
with exponent αe(0, 1) for some α. Thus /has a C l j < χ bound. This implies a bound
on the Holder modulus of continuity for the coefficients of (4.1), so we have (see
[7,5.5]) a C2'α bound on / In particular, we get Lipschitz bounds on the
coefficients of (4.1), so we can bound the C2'β norm of /for any βe(0, 1). The decay
near infinity ςan be derived, for example, using the barrier method of
Proposition 3. This completes the proof of Lemma 2.

We can now easily solve (4.1) for f >0.

Lemma 3. For ί>0, there exists a solution feB2fβ of the equation H(f) — P(f) = tf.

Proof. We use a standard continuity method. Let S = {se [0, 1] : (4.1) has a solution
fseB2>β}. We will show that S = [0,1] by noting first that OeS since /ΞU is a
solution of H(f) = tf. We then show that S is both open and closed (hence
S = [0, 1]). The fact that S is closed follows from Lemma 2, since if {sn} is a
sequence in S with sn-+s, and/Sn is a solution in B2>β of H(fs J — snP(fs J = tfSn, then
by Lemma 2

In particular, this bound is independent of π, so we can choose a subsequence of fSn

converging uniformly along with its first and second derivatives on compact
subsets of AT to a limit fs satisfying H(fs)-sP(fs) = tfs. Moreover, \ \ f s \ \ 2 t β ^ c 4 ( β 9 t ) 9

so that fseB2>β for any J8e(0, 1). Thus seS, and S is a closed subset of [0, 1].
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To prove that S is an open subset of [0, 1], we use results for linear equations
together with the implicit function theorem. Let s0eS, andf0eB2)β be a solution of

We wiU snow tnat tnere is εo>° so tnat if 5eC°> 1] and

\s — s0 |<ε0, then seS. We define a Banach space B°'β for j8e(0, 1) to be those
Holder continuous functions h on TV so that the following norm is finite

xeN

where as before \\ \\β x denotes the Holder coefficient taken on the ball Bτ(x)/2(x).
We then observe that T:B2>β xJSL-+B°'β xR defined by
T(f,s) = (H(f)-tf-sP(f),s) is a C1 mapping and Γ(/0, s0) = (0, s0). The lineariza-
tion of T at (/0,s0) is the operator L0:B

2>β xR-^β0^ xR given by L0(^,τ)
= (Lτ

0(^),τ) where

£τofa) ̂  Σ ̂ /Vty + Σ BlDiη -tη- τP(/0)

It is fairly elementary to show that L0 is a linear isomorphism from B2'β xR to
#0'^ xR Applying the inverse function theorem for Banach space, we see that T
maps a neighborhood of (/0,s0) onto a neighborhood of (0,s0). In particular, there
is ε0>0 so that (0,5) is in the image of T for |s — s0 |<ε0; i.e., there exists fs

satisfying H(fs) — sP(fs) = tfs. This shows that S is an open subset of [0,1], and
completes the proof of Lemma 3.

We now study the limit of the solutions constructed in Lemma 3 as ί tends to 0.
For this purpose, the estimates of Lemma 2 give no information since the
constants become large when t is near 0. In fact, it is not generally true that the
solutions of the perturbed equation converge as t tends to zero. Instead we use the
parametric estimates of Sect. 3 to analyze the limit.

Proposition 4. There is a sequence {ίj converging to zero and open sets Ω+, Ω_, Ω0

so that if fι satisfies H(ft) — P(/ ) = tji we have :
(1) The sequence {/J converges uniformly to + GO (respectively — co) on the set

Ω+ (respectively Ω_), and {fy converges to a smooth function f0 on Ω0 satisfying
(2.27) on Ω09 and (2.28) on each Nk. _

(2) The sets Ω+ and Ω_ have compact closure, and N = Ω+uΩ_^jΩ0. Each
boundary component Σ of Ω+ (respectively Ω_) is a smooth embedded two-sphere
satisfying HΣ — ΎΐΣ(pίj) = Q (respectively HΣ-

srΎΐΣ(pij) = 0) where HΣ is the mean
curvature ofΣ taken with respect to the inward normal to Ω+ (respectively Ω_) and
Tr^p^ ) is the trace of the restriction of ptj to Σ. Moreover, no two connected
components of Ω+ can share a common boundary.

(3) The graphs Gt of ft converge smoothly to a properly embedded limit
submanifold M0QN xR Each connected component ofM0 is either a component of
the graph o//0, or the cylinder Σ x R£ N x R over a boundary component ΣofΩ+ or
Ω_. Any two connected components of M0 are separated by a positive distance.
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Remark. The two-spheres making up the boundary components of Ω+ and Ω_ will
be referred to as apparent horizons in N (see [3] for explanation).

Corollary 1. If the initial data (N.g^p^) contains no apparent horizons then (2.27)
has a solution on N satisfying the asymptotic conditions (2.28).

Proof of Proposition 4. The assertions of (3) are a direct consequence of
Propositions 2 and 3, for by the local estimate of Proposition 2 we can find a
sequence {£.} so that the Gt converge to a properly embedded limiting submanifold
M0. The fact that M0 is nonempty, and is a graph near infinity satisfying (2.28) on
each Nk then follows from Proposition 3. The Harnack inequalities of Proposition
2 immediately imply that any connected component of M0 has everywhere finite
slope and hence is a graph, or has everywhere infinite slope and hence is a cylinder
Σ x R over a compact surface ΣQN. We will show that £ is a two-sphere
momentarily. We first note that the convergence of G{ to M0 also determines Ω+,
Ω_, Ω0. Our other assertions are clear except for the analysis of the boundary
components of Ω+ and Ω_.

We first analyze the boundary dΩ0 of Ω0. In order to do this, we observe that
the Eq. (2.27) is translation invariant in the sense that for any αelR, /0 — a is also a
solution of (2.27) defined on Ω0. Let G0 α denote the graph of /0 — α, and note that
by the estimates of Proposition 2 there is a sequence a{ tending to + oo so that the
graphs G0 > f l. converge smoothly on compact subsets of N xIR to a limiting three
dimensional submanifold of N x R By the Harnack inequality of Proposition 2,
each component of this limiting submanifold is a cylinder over a compact surface
in N. We denote this limit by Σ+ xR where Σ+ is a family of compact surfaces in
N. It also follows from (2.27) that Σ+ satisfies the equation HΣ+—ΎrΣ+(pij) = Q
where HΣ+ is computed with respect to the normal pointing outward from Ω0. We
show that each component Σ of Σ+ is a two-sphere by using (2.29) on G0 α.. We let
φ be a smooth function of compact support on G0 fl. and multiply (2.29) by φ2 and
integrate by parts as in the derivation of (3.3) to arrive at

Z2 J
Go, a, Go, aι

where P = 2(μ— |J|) can be taken strictly positive by Lemma 1. It follows that for
any φ with compact support on I" x R we have

do
-00 [Σ \ -00 Li

ώc, (4.5)

where dσ is the area elements of Σ, and K, V are the intrinsic Gauss curvature of Σ
and the covariant derivative operator of Σ. Let χ(x4) be a function satisfying χ(x4)

^ 2. Let ζ be any function on Σ,= 1 for |x4| ̂  T, χ(x4) = 0 if |x4| ̂  T+ 1, and L
C/.X

and choose φ=χζ in (4.5) to obtain

-K + P)ζ2dσ\ χ2dx
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00

Dividing both sides by J χ2dx4 and letting T tend to infinity we get

σ (4.6)
Σ Σ

for any smooth function ζ on Σ. Choosing ζ=l, we get

Since P is positive, by the Gauss-Bonnet theorem we conclude that Σ is a two-
sphere.

By similar reasoning we can choose a sequence at converging to — oo so that
G0 flι converges to a cylinder Σ_ xIR where Σ_ is a collection of two-spheres Σ in
N satisfying HΣ — Tr^p^ ) = 0 where HΣ is computed with respect to the inward
normal to Ω0. The fact that the graph G0 is properly embedded implies that /0(x)
converges either to + oo or — oo as x tends to a boundary point of Ω0. Using this
fact, it is clear that dΩ0 = Σ+vΣ_.

From the construction of M0, it follows that any boundary point of Ω+ or Ω_
which does not lie in dΩ0 must lie on a cylindrical component Σ xIR of M0. For
such a Σ, we can verify (4.6) by using (2.29) on the graphs Gt , so we conclude that
such Σ are two-spheres satisfying the appropriate equations. This concludes the
proof of Proposition 4.

We can derive a little more information about the behavior of /0 near dΩ0 from
the preceding result. In fact, if we let Σ be a boundary component of Ω0, say for
definiteness that /0 tends to + oo near Σ. (A similar argument works if /0 tends to
— oo.) If we let θ be a coordinate on the two dimensional sphere Σ, and ίeIR be
along the linear factor of Σ x IR, then we can define a coordinate system on a
neighborhood of Σ x IR in N x IR by taking the fourth coordinate ρ to be the
distance function to Σ x IR, say ρ > 0 in Ω0 x R Let & be a small neighborhood of Σ
in N such that the coordinates (θ, ί, ρ) are nonsingular on Q x R It is a
consequence of Proposition 4 that for T>0 sufficiently large, the 3-dimensional
manifold G0n(0 x(7^ oo)) can be expressed by the equation ρ = g0(θ,t) for a
smooth function g0 on Σx(T^oo). Moreover, it follows that lim 00(θ, ί) = 0

ί->oo

uniformly for θeΣ. Using this information and the equation that gQ satisfies, it is
easy to show that the derivatives of g0 up to second order also tend to zero as t
goes to infinity. We summarize this information.

Corollary 2. // Σ is a boundary component of Ω0 on which f0 tends to + oo
(respectively — ooj, then for T sufficiently large, the 3-manifold G0n($ x(T, oo))
(respectively G 0n(0x(— oo, — T)) can be represented in the form ρ = g0(θ,t)for a
smooth positive function g0 defined on Σx(T,ao) (respectively Σ x(— oo, —T)).
Moreover, given ε > 0, there is a number Tε ̂  T so that

for allθeΣ and t^Te (respectively t g - TJ.
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5. Proof of Theorem 1

We use the function /0 constructed in the previous section to prove Theorem 1. We
want to prove that Mfe^0, so we consider only that component of Ω0 which
contains Nk. For simplicity we denote the corresponding component of G0 also as
G0. Let φ be a bounded Lipschitz function on G0 which tends to zero and is square
integrable near (3Ω0) xR Multiplying (2.29) by φ2 and integrating by parts we
have

J (P-R)φ2 l/£dxg -2 J <p2£(ft j4-p i4)
2 ]/jdx

GO GO i

Note that no boundary terms appear in the above inequality because by (2.28) we
have

and φ->0 near dΩ0 xR whereas by Proposition 2, \hi4\ is bounded near dΩQ xR
By the arithmetic-geometric mean inequality,

^ V Σ (Λw - P**)2 + 21 W .

Combining these inequalities we have

I (P-R)φ2 ]/^dx^2 j \Dφf ]/ϊdx
GO GO

for any bounded Lipschitz φ on G0 tending to zero and square integrable near
(dΩ0) x R We next observe that by Corollary 2 we can deform G0 slightly in
(9x(T,σo) or 0 x ( — oo, — T) for each boundary component of Ω0 so that G0

coincides with Σ xR in Θ x(T, oo) or d? x(— oo, — T) and so that G0 satisfies

- j Rφ2 ]/^dx^3 j \Dφ\2 }/ϊjdx (5.1)
GO GO

for φ as above. Making G0 equal to (dΩ0) x R near infinity will, of course, destroy
the Eq. (2.27) which G0 satisfies, but we need only (5.1) to finish the proof, and this
modification of G0 will afford us technical convenience. We next remove all
infinities of G0 except that asymptotic to Nk. This can be done by a conformal
change of metric. Let Σ be a component of dΩ0, and note that by inequality (4.6),
the first eigenvalue λ1 of the operator A — ̂ K on Σ is strictly positive. Let d be the
first eigenfunction, say ζ1(x)>0 for xeΣ. It follows that the functions e±^Γίtζί(x)
are solutions of A— ̂ JR = 0 on Σ xR Let ̂ + denote those components of dΩ0 on
which /0 has limit + oo, and £f~ those on which /0 has limit — oo. Let GQ denote
the infinity of G0 asymptotic to N^ i.e., GQ = G0 n(Λ^ x R). For each / Φ /c, let \p£ be
a positive solution of A —^R = 0 on N^ satisfying

) as r->oo.
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Such solutions ψ^ can be constructed easily because of (5.1). Let ψ be a positive
smooth function on G0 satisfying the following

1 on Gk

0

on Gζ, /φ/c

ζί on G0n(ΣxIR) for

Cι on G0n(ΣxIR) for

Thus ψ tends to zero at each infinity except GQ. If ds2 denotes the induced metric
on G0, we define a new metric ds^ by ds^=\p4ds2. For /φfc, it follows from
(1.1) and (2.28)

on GQ. If we set yl = A2 -^ , ρ = |y|, and write ds2, in terms of the y coordinate systeml = 2

we have

(5.2)

for ρ near zero. On GQΠ^ xIR) for ΣE^)±, we have the expression

as ί-» ± oo where dσ2 is the metric of Σ. If we set ρ = (2]/λ^)~ίe±2}/τ~ί\ we then
have

ds2 = Ct(x) (dρ2 + 4λιρ

2dσ2) , (5.3)

for ρ near zero, xeΣ. If we choose a diffeomorphism of Σ with the standard S2

having metric dσ^ and write the flat metric in the punctured ball as dρ2 -f Q2dσ^ we
see that the resulting diffeomorphism establishes a uniform equivalence of
G0n(Σ xIR) with the punctured ball, i.e., lengths are distorted by at most a fixed
constant.

We see from (5.2) and (5.3) that it is possible to add a point to G0 for each
component of dΩ0 and for each GQ, /φ/c to form a new manifold (N0,dsQ) having
only one infinity Nk

0 = GkQ. If {P15 ...5PJ are the points we added to G0, it follows
from our construction that the metric ds2^ is uniformly equivalent to a smooth
metric in a neighborhood of each P , and that the scalar curvature £0 vanishes
identically for points close to each P.. If ζ is a bounded Lipschitz function on JV0,
the equation

together with (5.1) for φ = ψζ implies

5 } ψ-2\D0(ψζ)\2dv0- I R0ζ
2dv0ί8 J \D0ζ[2dv0, (5.4)

No No No

where D0, dv0 are the covariant derivative and volume form of N0. We will use
(5.4) in^the following lemma to construct a solution of A—^RQ.
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Lemma 4. There is a positive function u on N0 satisfying Au — ̂ R0u = 0 except at
{P1? . . ., Ps}. At each Pp u is continuous, and u is weakly harmonic in a neighborhood
of PJ. Moreover, u satisfies

A
u = l + — +0(r~2) as r->oo

on NO where the number Ak is negative.

Proof. Let Bσ be the bounded region of N0 determined by {r = σ}, and for σ large
we can find a function vσ satisfying

Λυa~ 8 R0Vσ = 8R0 OΠ Bσ

vσ = Q on dBσ.

This follows because (5.4) implies that the homogeneous problem An — ̂ R0u = 0
with zero boundary data has only the trivial solution. Moreover, υσ is Holder
continuous and weakly harmonic near each Pjf Inequality (5.4) then implies

5 $ ψ-2\D0(ψvσ)\2dv0ί ί\R0\\vσ\dv0.
Bσ Bσ

Since ψ is a bounded function, we thus have

Bσ Bσ

By the Sobolov inequality we thus have

Since R0 vanishes in a neighborhood U of {P1? . . ., Ps}, and ψ is bounded below on
N0 ~ 17, we thus have by the Holder inequality

\Bσ~U ] {No ] \Bσ~U

which implies

ί
Bσ~U

with c independent of σ. Standard theory then gives a uniform pointwise bound on
\vσ\ in Bσ ~ U. The Harnack inequality applied tovσ + l gives a uniform estimate of
\vσ\ in U. It is now straightforward (see [9, Lemma 3.2]) to prove convergence of

vσ + l to a function u satisfying Au + ̂ R0u = 0 on 7V0, u = ί-\ — - +0(r~2) on NQ.

The positivity of u follows by using ζ = min{u,Q} in (5.4) and applying Stokes
theorem in a standard way. This implies w^O, and that w>0 follows from the
Harnack inequality.

To show that Ak<0, we use ζ = u in (5.4) and integrate by parts to obtain

v0. (5.5)
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Note that although u may not be Lipschitz near PJ9 we can justify its use in (5.4) by
Lipschitz approximation. This completes the proof of Lemma 4.

We can now complete the proof of Theorem 1. The metric u4dsl on N0 has
zero scalar curvature, and is asymptotically flat in the sense of (1.1). If the results of
[9] and [10] were applicable we would conclude that Mk is nonnegative. But we
have

(5.6)

as can be seen from the definition of mass. Since Mk ^0 and Ak <0, it would follow
that Mfe>0. Note that we have been assuming μ>|J| to conclude Mk >0. In light
of Lemma 1 we would then have Mk^0 for an arbitrary initial data set.

It remains for us to justify the use of [9] and [10] to assert M°Ξ^O. The
problem is that the metric u^άs\ is not smooth at {P1? ...,PJ. We note, however,
that since the Laplace operator is uniformly elliptic near each PJ9 there exists a
positive Green's function G(p, q) asymptotic to zero on Nk. If we define ψ by

s

ψ('):= Σ G(Pp \ then φ satisfies
i= 1

Bk _ 9w = —- + 0(r ) on Nj.
2r

c~l\y\2~n<z\p(y)<zc\y\2~n for coordinates y at P^ .

For any ε>0, consider the metric (1 + εψ)4u4dsQ. This metric is now smooth with
infinities at each P .̂ It is easy to see that the results of [9] and [10] apply to show
that the mass on Nk given by Mk+εBk is nonnegative. Since ε>0 is arbitrarily
small we have M^O. This completes the proof of Theorem 1.

6. Proof of Theorem 2

In this section we prove Theorem 2 which states that if Mk = 0 for some k then the
initial data set is trivial. We first note that by Lemma 1 we can find a sequence of
initial data sets N(^ converging smoothly to N as *f->oo with mass Mj^->0 for the
fcth end and with JV00 satisfying μ < |J| for each f . Then we may apply the analysis
of Sect. 4 to construct graphs Gjf satisfying (2.27). By the estimates of Propositions
2 and 3 we may assume that the G0^ converge smoothly to a properly embedded
limiting submanifold having a component G0 which contains a graph over Nk

satisfying (2.27). We now examine the proof of Theorem 1. If we let U(^ be an
exhaustion of N x IR by bounded open sets, then we can choose \p^ the conformal
factor of Sect. 5 so that ψ^=ί on G^nl/^. It then follows from (5.6) and the final
arguments of Sect. 5 that M(

k

} + A(

k

}^0. Hence by (5.5) and the fact that M£°-»0
we have

lim J \f>u£\
2 ]/^dx = 0. (6.1)

Since G^ converge to G0, it follows that uf converges to a smooth positive
function u on G0 satisfying An — ^Ru = Q, u~l on Nk. Thus by (6.1) we have that
u = l on GO, and hence the equation satisfied by u implies that R = 0.
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Thus we may apply Theorem 2 of [9] (see also [10]) to assert that G0 is
isometric to the flat R3. In particular, N is diffeomorphic to 1R3 and the solution /
of (2.27) exists on all of N and has flat graph G0. Now the metric on G0 has the
form gij = gij + fxifxj, and since G0 is IR3, we can choose coordinates jc^x1,*2,*3)
on G0 so that 0^ = 0^. We thus have

This shows that if (x1,^2,^3,^4) are coordinates in M4, the Minkowski space with
3

metric £ (dx1)2 — (dx4)2, then the mapping Λf->M4 defined by 5c->(5c, /(5c)) is an
i = l

isometric embedding of N. The second fundamental form of this embedding is
given by

Note that \Df\2<l because gtj is positive definite. The corresponding expression
for htp the second fundamental form of G0 in TV x IR is

where \Df\2 is taken with respect to ds2. Direct calculation shows 1 + |D/|2

= (l — \Df\2}~1 so that hij = πij. On the other hand, since R = 0 we can integrate
(2.29) over G0 and apply Stokes theorem to show hij = pij. Therefore, we have ntj

= ptj and we have shown that the initial data set (N,ds2,ptj) is embeddable in M4.
This completes the proof of Theorem 2.
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