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Abstract. The relativistic string model is investigated in a space-time of a
constant curvature (de Sitter universe). The fundamental differential quadratic
forms of the world surface of the string are considered as the dynamical
variables. The coefficients of these forms obey two nonlinear equations

9,ιι~9,22 = eφcosθ + Ke~φ, Θtll-θί22 = eφsmθ.

The Lax representation for this system is obtained.

1. Introduction

Relativistic string model has rather a long history (see e.g. [1-3]). In the
elementary particle physics the relativistic string was introduced as the dynamical
basis of the dual resonance models. In recent years the ideas of the string model are
used by the investigation of the mechanism of the quark confinement in hadrons
[4, 5] and by the representation of the Yang-Mills field theory in terms of the
functionals defined on contours [6-9].

In all papers devoted to the relativistic string model the flat space-time was
considered. We shall investigate this model in a space-time of a constant curvature
(de Sitter universe). If we take the viewpoint that the gravitation may play an
important role in the world of the elementary particles (see e.g. [10]), then the aim
of this paper will not be percieved as the abstract pure mathematical problem.

We shall use the differential geometry methods when the world surface of the
string is described by the differential quadratic forms rather than by the string
coordinates [11-15]. In this approach the string dynamics is defined by a system
of two non-linear equations. The differential geometry technique enables us to
construct the Lax representation for this system (more precisely, the so-called
"Zero-curvature equation" [16]).

2. Minimal World Surfaces in de Sitter Space-Time

The Nambu-Goto action of the relativistic string [1-3] can be easily generalized to
the curved space-time [17]
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dxμ dxv
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where xμ(ul =τ, u2 = σ) is the parametric representation of the string world surface,
gμv(x) is the metric tensor of the curved space-time, aij = xμ

ix
v

jgμv is the metric
tensor on the string world surface, xμ

ί = dxμ/du\ and K is a constant with the
dimension of the inverse squared length. The principle of least action, as applied to
the functional (1), leads to the problem of determining two-dimensional minimal
surface in the four-dimensional Riemannian space with metric gμv(x). The Euler
equation has the form [18]

KV .̂) = 0 , (2)

where ά = det||αί j ||, Dxv = _ _ — • (]/ — άaikxv

k) is the covariant Laplace-
1 -a

Beltrami operator with respect to the inner metric on the string world surface aij9

ΓJβ(g) are the Christoffel symbols for the metric tensor gμv(x). If the space-time is
flat, ΓJβ(g) = Q, and we obtain the well known result [19] in the theory of the
minimal varieties in Euclidean space Π*v = 0.

Further we suppose that the space-time has a constant curvature (de Sitter
universe). In terms of the Weierstrass coordinates zμ, μ = l,2,...,5 de Sitter
universe can be represented as the hyperboloid in the five-dimensional pseudo-
Euclidean space [20]

(z1)2 - (z2)2 - (z3)2 - (z4)2 + ε(z5)2 - &R2, (3)

where ε — +1 for the de Sitter space-time of the first kind and ε = — 1 for the
de Sitter space-time of the second kind.

Instead of solving equation (2) for the string coordinates x^u1, u2) with a given
space-time metric gμv(x) we shall use the differential geometry technique [18] by
which the string world surface can be described by its fundamental quadratic
forms a.(ul,u2\ ba](ίj(ul,u2) and torsion vectors vαj8| f(= — v^), i j=l,2; α,/J = 3,4.
The theorem on the embedding of the Riemannian manifolds tells that these
quantities will define a two-dimensional surface embedded in space-time of a
constant curvature up to its motion as a whole if and only if the equations of
Gauss

4

Codazzi
4

Ί i V f A> A ϊ ί^\
°a\ij;k-°a\ik;j- L e β\V βa\k° β\ίj ~ Vβa\j°β\ik) ' \D)

and Ricci

4

7=3

+ 9lm(bβ\ljba\mk-bβ\lkba\mj) = ̂  ̂  =? + 1 (6)

will be satisfied. In these equations the Latin indices take values 1, 2 and the Greek
indices 3,4. The left-hand side of Eq. (4), Rίjkl, is the Riemann curvature tensor
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defined by the metric tensor of the world surface of the string atj [18]. The semicolon
in Eqs. (4)-(6) means the covariant differentiation with respect to the metric
tensor αί7 .

The metric of space-time gμv(x) does not enter into Eqs. (4)-(6) explicitly. The
only consequence of the constant curvature of space-time is the second term in the
right-hand side of the Gauss equation (4).

From the equation of motion (2) it follows that the world sheet of the string has
to be a minimal surface [18]

. = 0, α = 3,4. (7)

On the string world surface the isometric coordinates can be chosen

αιι = -a22 = a, α12 = 0. (8)

In this coordinate system conditions (7) take the form

& « | i i = f c . | 2 2 > « = 3,4. (9)

Eliminating from the Codazzi equation (6) the torsion vector vί = {v1 =
v2^v4 3 ) 2} and taking into account (9) we obtain

with u± =u1±u2. Therefore

where q± are two arbitrary functions. As in the case of the flat space-time [21] it is
convenient to introduce the following variables

In terms of the new variables the Gauss equation (4) and the Ricci equation (6)
part from the system (4)-(6)

,

sm, = 8 2 ,

but the Codazzi equations (5) take the form

v 1 +v 2 = α _ > 1 + α _ > 2 , V 1 -v 2 = α + > 1-α + f 2 . (11)

The arbitrary functions q+(u±) can be eliminated from Eq. (10) by the
following change of variables
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Now Eq. (10) become

- = e«cosθ + Ke-«,

in which the mark ~ is omitted for the notation simplicity. Thus the equations of
motion which completely determine, in the given approach, the relativistic string
dynamics in de Sitter space-time are Eq. (12). These equations have to be
complemented with the boundary conditions if the relativistic string is of finite
extension. For example, for a closed string, 0 ̂  u2 ̂  π, we have

The change of variables

enables us to remove the constant K from Eq. (12)

Q~φ ,

t f β = ± l .

3. Lax Representation for System (13)

In differential geometry [18] the Gauss-Codazzi-Ricci equations (4)-(6) are
derived as the compatibility conditions of two systems of partial differential
equations of the first order which describe the moving frame on the string world
surface. Therefore, these equations can be taken as a pair of the Lax operators
required for solving the nonlinear equations (13) by the inverse scattering method
[22, 23]. In de Sitter space-time we introduce the Weierstrass coordinates (3) and
as the moving frame we take two tangent vectors zμ^zμ

2, two unit normals η^η^
and vector zμ. In the theory of relativistic string [1-3] vector z\ has to be time-like
and vectors zμ

2,η^,η^ space-like. With this fact and the choice of signs in the
quadratic form (3), we obtain the following equations [18]

%j=- Σb^-Ka^,

(14)
<ί=-&VhX1m-ΣW7?,

τ

which describe the motion of the basis

on the string world surface. The contraction with alj of the first equation in (14), by
virtue of (7), gives the known result [24] in the theory of minimal varieties
embedded in a space of a constant curvature, namely, the action of the Laplace-
Beltrami operator on vector zμ is
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Instead of vectors (15) we introduce the orthonormal moving basis

—1 — /-'ί 2 ~~ Ί /-? 3 ~~ / 3 > 4 ~~ "/4> 5~~ r> '
1/0 j/α Λ

Using (14) we obtain the following equations describing the motion of the basis
(16) on the string world surface

where

2

R

•s °
V*

0

0

0

R

0
b3\l2 4|12

1A

"f? R

0

| l 2

. ^εα

0 0

0 0

(17)

(18)

(19)

We can reduce the dimension of the matrix equations (17) in the following way.
The skewsymmetric matrices (18) and (19) describe infinitesimal rotations in the
five-dimensional pseudo-Euclidean space. Some matrix elements in (18) and (19)
are imaginary because the quadratic form (3) is indefinite. The matrix repre-
sentation of the minimal dimension of the 0(5)-group can be constructed in terms
of the usual (4x4) Dirac y-ma trices [25]. In this representation the 0(5)-gen-
erators are

/μ v=H)WvL
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In what follows we shall use the representation of the y-matrices in which

75=7ι727374 is diagonal [26]

JHV
where σk are the Pauli matrices,

Now we can correlate to Eq. (17) two systems of partial differential equations
each containing only four equations

$7=4 Σ <(Wv)a»v>»=fi> t, ;=U,

where \p = \p(ul,u2) is a four-component function and 4 x 4 matrices Ωj are

^= Σ <Vv, 7 = U. (22)
μ > v = 1

To write out these matrices explicitly we introduce the notation

ΊJλ\2

where α^ are again the (2 x 2) matrices. Using Eqs. (18)-(20) and (22) we obtain the
following expansions of aj

kl, 7, fc, /= 1, 2 in terms of the Pauli matrices σk

(23)

Vs -
21

in which

ρ±--expί|-±iα±j, θ = α + - α _ , ε = ± l

and vt, i= 1,2 is connected with α± by formulae (11).
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The compatibility conditions of the linear equations (21)

results in Eq. (13).
The transition to new variables ΰ1, ΰ2

enables us to introduce the spectral parameter λ into Eq. (21). This change of
variables retains the form of system (13), while the matrix elements ΩJ

ab (23) obtain
factors (λ±l/λ) (see e.g. [27,28]). We shall not perform here these simple
transformations.

4. Conclusion

The proposed model of the relativistic string in a space-time of a constant
curvature gives us one more example of a system of two nonlinear equations
integrable by the inverse scattering technique. This system was derived in paper
[29] by investigating the world surfaces with a constant mean curvature in the
four-dimensional Minkowski space-time. In the same paper the Lax repre-
sentation for this system was obtained in terms of 2 x 2 matrices. Therefore, it
would be interesting to reduce the dimension of matrices Ωj in the linear spectral
problem (21).
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