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Abstract. The zero set of a momentum mapping is shown to have a singularity
at each point with symmetry. The zero set is diffeomorphic to the product of a
manifold and the zero set of a homogeneous quadratic function. The proof uses
the Kuranishi theory of deformations. Among the applications, it is shown that
the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a
singularity at any solution with symmetry, in the sense of a pure gauge
symmetry. Similarly, the set of solutions of Einstein's equations has a
singularity at any solution that has spacelike Killing fields, provided the
spacetime has a compact Cauchy surface.

1. Introduction

A momentum mapping is the conserved quantity associated with a symmetry
group acting on phase space. The purpose of this paper is to study the level sets of
a momentum mapping and, especially, the zero set. The main results of the paper
show that these level sets have cone-type singularities at any point (in phase space)
which itself has some symmetries.

Level sets of momentum mappings are important in several contexts.

a) The Topology of Hamiltonian Systems with Symmetry

The momentum mapping is conserved by a given Hamiltonian system with
symmetry, so knowledge of the level sets and their bifurcations can help in
understanding the qualitative features of its flow, as has been emphasized by Smale
(1970). In this context, one can reduce a Hamiltonian system with symmetry,
looking at the orbit space of a level set of the momentum mapping. This general
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procedure, due to Marsden and Weinstein (1974) generalizes the classical elim-
ination of 2k variables when k integrals in involution are known as well as Jacobi's
elimination of the node in celestial mechanics.

b) Constraints in Classical Relativistic Field Theories

Under certain general conditions, the constraints in Lagrangian field theories can
be phrased as saying that an appropriate momentum mapping vanish (see Gotay
et al., 1980). This idea first arose in general relativity and (classical Lorentzian)
gauge theory. The present paper grew out of our work in general relativity (Fischer
et al., 1980) and gauge theory (Arms, 1980). The study of the space of all solutions
to a classical relativistic field theory is thus closely related to the study of the zero
set of an associated momentum mapping1. This space of classical solutions plays a
key role in perturbation theory about a given solution. If this solution is a point of
symmetry for the gauge group generating the constraints, then first order
perturbation theory must be supplemented by second order conditions in order to
approximate solutions to the nonlinear equations.

Most of the work on classical field theory assumes that the space of
solutions forms a manifold, or has restricted attention to points where that
assumption holds. This is true, for example, in Marsden and Weinstein (1974), in
the work of Gotay et al. (1978) on the Dirac theory of constraints, in Segal (1978)
on Yang-Mills theory and in most perturbation work in field theory. In general
relativity however, Brill and Deser (1973) questioned this assumption, and found
that it sometimes fails. In fact it fails exactly when there is symmetry, i.e. exactly in
the cases of interest, for the known solutions which are perturbed are symmetric.
Similar phenomena for more general situations in general relativity were obtained
in a series of papers of Choquet-Bruhat et al. see Fischer et al. (1980) and
references therein. For gauge theories similar results are due to Moncrief (1977)
and Arms (1979a, 1980).

c) Perturbative Quantum Theory

The breakdown of classical perturbation theory near a solution with symmetry
has a quantum analogue that arises if one quantizes the fluctuations about a given
symmetric classical background solution. Even at first order, the quantized form of
the linearized constraints does not adequately capture the content of the nonlinear
constraints. Using the method of Dirac, one must restrict the linearized constraints
by certain second order quantum constraints in order to exclude some physically
spurious quantum states. An example was worked out by Moncrief (1978) it was
shown that without the second order conditions, states which violate the
correspondence principle would be allowed.

A similar phenomenon will occur in the path integral quantization of small
fluctuations about a symmetric classical background. One would find it essential
to expand certain projections of the constraints (which appear in the classical

1 Our work applies to Lorentzian field theories. The results for Euclidean field theories, such as
Yang-Mills fields on S4 or gravitational instantons are different; see Atiyah et al. (1978)
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action integral) to higher than linear order to accurately approximate their
contribution to the quantum theory.

This paper describes the structure of the singularities in the zero sets of
momentum mappings that occur at points of symmetry when the group giving rise
to the momentum mapping is compact or admits a local slice. We emphasize zero
levels rather than general level sets both for simplicity and because this covers
most of the examples of interest. In perturbation theory, it is assumed that the
linearized equations in a field theory such as relativity are a good approximation
to the original nonlinear equation i.e., the solution set of the nonlinear equations
when linearized, is diffeomorphic to the solution set of the linearized equations. In
this paper we show that at points with symmetries the nonlinear zero set is
diffeomorphic to the zero set of a homogeneous quadratic form given by the
second order perturbation equations. Moreover, this zero set is the product of a
manifold of solutions with the same degree of symmetry and a cone of solutions for
which one or more of the symmetries has been broken. An important consequence
for perturbation theory is that while second order conditions must be imposed on
the first order perturbations, there are no additional higher order obstructions to
completing the perturbation expansion.

The method of proof involves a function borrowed, via the work of Atiyah et
al. (1978) on gauge theory, from the Kuranishi Theorem on deformation of
complex structures. However, the proof itself makes no reference to that work.
What is directly and extensively used is the machinery of groups of symplectomor-
phisms (canonical transformations) acting on a symplectic manifold (phase space)
which has an additional metric structure. The relevant machinery is reviewed in
Sect. 2 for a more leisurely discussion, see Chaps. 3 and 4 of Abraham and
Marsden (1978). The main results of the paper are contained in Theorems 1-5 in
Sects. 3-6. Section 7 resumes the present discussion and Sect. 8 gives some specific
examples.

The critical or bifurcation points that occur are proved to be non-degenerate in
a suitable sense (see Theorem 2), so it may be possible to develop a corresponding
global Morse theory. [Local Morse theory does in fact appear in the preceding
work by Fischer et al. (1979), but those methods are not pursued here.] The
present paper deals only with the local structure of the singularities.

2. Background and Notation

We recall some concepts and list the notations that will be used throughout the
paper. We let (P, ω) be a given symplectic manifold (possibly infinite dimensional
in which case ω is only required to be a weak symplectic form). Let G be a Lie
group with Lie algebra g. Assume G acts symplectically on P the action is denoted
by (g,x)t-*g x = Φg(x). Let

be an Ad*-equivariant momentum mapping. This means two things. First, J
satisfies the identity

v,ξy=ωx(ξP(X\v), (1)
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where < , > is the natural pairing between g* and g, dJ(x): TxP-»g* is the
derivative of J, υe TXP, the tangent space to P at x, ξe g and ξp is the infinitesimal
generator of the group action corresponding to ξ. Second, the following diagram
commutes:

p Φs > P

9* Ads-i '9*

where Ad*- 1 is the co-adjoint action of G on g*. For further information on
momentum mappings consult, for example, Abraham and Marsden (1978,
Chap. 4).

We shall also make the following hypotheses and notations throughout the
paper :

1. There is a (weak) Riemannian metric <^ , ^> on P and a complex structure
$x: TXP^TXP satisfying $2= -Id, JJ is symplectic and

«vx,wx»x = ωx(vxjwx). (2)

The condition that $ is symplectic is equivalent to requiring that Jί is « , » -skew.
(We do not assume that P is a Kahler manifold possibly this assumption, would
give additional information.)

2. The group action commutes with Jί:

and hence preserves « , » as well. (Conversely, if the action preserves « , » it
must commute with Jί.)

3. For x0eP, assume that the G orbit of x0 is a closed submanifold of P. This,
together with our assumption that « , » is invariant implies that there is a G-slice
at x0 (see Palais, 1957); i.e. there is a submanifold SXQCP containing x0 and
satisfying :

(i) g x0 = x0 implies g SXQ = SXQ,
(ii) if g SXQnSXQ φ 0 then g-x0 = x0, and

(iii) there is a local cross section χ : G/IXQ-^G defined in a neighborhood of the
identity coset such that the map S X Q x G / I X Q - + P ; (x, u)t-*χ(u) x gives a local
diffeomorphism. Here, /Xo = {gfeG|gf x0 = x0} denotes the isotropy group of x0.

The slice SXQ can be chosen as follows. We claim that the « , » -orthogonal
complement of TXQ(G - x0) is

[Γ:co(G-x0)]1 = ker(dJ(x0)oJ|). (3)

Indeed, this follows from (1), (2) and the fact that TXo(G x0) = { ξ P ( x 0 ) \ ξ £ $ } . Now
SXQ can can be chosen in two ways. First of all, assume that P is open in a linear
space and relative to this linear structure let SXQ be {x0} + a ball in [jΓ^G Xo)]1

relative to the inner product <^ , ^>xo (in infinite dimensions, use a strong metric
here). Since the issues are local, the linear structure may be provided by local
coordinates, but in several major examples, P is naturally open in a linear space.
Secondly, one can choose SXo to be the « , » exponential of such a ball. In any
case, we choose TXQSXQ to be given by (3).
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4. The adjoint of dJ(x0) : TXQP-»g* is the operator

defined by

(In infinite dimensions, assume the adjoint exists.)
In terms of adjoints, the defining relation (1) for momentum mappings reads :

ξp(x0)=-$°dj(x0)*.ξ. (4)

5. For each x0eP, assume there is an inner product ( , )XQ on g* such that ( , )XQ

is invariant under Ad*-ι for each g satisfying gx0 = x0. [In infinite dimensions
( , )XQ need not be complete.] We define the ( , )JCo dual of dJ(xQ) to be

where

It follows that

g* = rangedJ(x0)eker dJ(x0)
t (5)

[In infinite dimensions assume dJ(x0)
t or dJ(xQ) is an elliptic operator and apply

the Fredholm alternative.]
6. Let x0eP and assume J(x0) = 0. From Ad*-equivariance, it follows that G

leaves J"1^) invariant. In particular, TXo(G x0)CkerίiJ(x0). In other words,

range( - Sod J(χ0)*) C ker d J(x0) . (6)

Thus the two decompositions

TXoP = kπdJ(xQ)® ranged J(x0)*

and

can be intersected to produce Moncrίefs decomposition (see Moncrief, 1975b;
Arms et al, 1975):

TXQP = [range( - JMJ(χ0

)] . (7)

Remark. If J(x0) φ 0 then analogues of (7) and many results below remain true. If
GJ(Xo) = {geG\ Ad*-ιJ(x0)=J(.x0)} = G, then all the results remain valid. If
GJ(Xo) φ G, we do not know if Theorem 3 below is valid.

We provide a brief glossary of symbols preceeding the bibliography to aid the
reader.
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3. The Relationship between Regular Points and Symmetries

Let £fXQ be the identity component of the isotropy group IXQ and sxo its Lie algebra
i.e.

We will call non-zero elements of sxo infinitesimal symmetries of x0.

Theorem 1. x0 is a regular point of J (i.e. dJ(x0) is surjective) if and only if x0 has no
infinitesimal symmetries.

Proof. The map dJ(x0) is surjective iff ξ JL range dJ(x0) implies ξ — 0 [in the infinite
dimensional case assume dJ(x0) has closed range]. However, ξλ. range dJ(x0)
means <ξ, dJ(x0) ι;> =0 for all v. By (1), this is equivalent to ξp(χ0) = 0. Thus dJ(x0)
is surjective iff sxo = {0}. Π

Theorem 1 implies that J"1^) is a manifold in a neighborhood of x0 if
sxo = {0}. The tangent space at x0 is

From (4) we notice that
)*. (8)

To deal with the structure of J~ 1(0) near a point x0 at which $xo Φ {0}, we shall
follow the Liapunov-Schmidt procedure from bifurcation theory. This proceeds as
follows :

Let IP :g*->rangedJ(x0) be the ( , )XQ orthogonal projection associated to the
decomposition (5). Let (β = J~1(Q) and let

Since PJ : J^ range dJ(x0) is a submersion at x0, ̂  is a smooth manifold in an
neighborhood of x0 with

Define

by

Thus

Note that /(x0) = 0 and d/(x0) = 0.

4. Identification of the Degeneracy Space of d2f(xQ)

In Sects. 5 and 6 we shall prove that ^π5Xo can be identified with the zero set of a
homogeneous quadratic map. That proof, however, proceeds independently of a
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detailed knowledge of the possible degeneracy of d2f(x0). On the other hand, the
structure of this set depends on this degeneracy space.

For x in a neighborhood of x0, let Ix = {geG\g x = x} and 5̂ . be the
component of the identity, and let *x be its Lie algebra thus

*x = {ξeg\ξp(x) = 0}. (10)

From the slice theorem it follows that there is a neighborhood V of x0 such
that if xe V then <?x is conjugate to a subgroup of £fXQ. Denote by NXQ those XE V
such that £fx is conjugate to £fXQ itself, i.e. NXQ consists of elements of the same
symmetry type as x0 (or elements of the same "orbit type"). It is well known that
NXQ is a smooth manifold near XQ (see, for instance, Hermann, 1968). It is clear that
G x0CNXQ, but in many examples NXQ is strictly larger.

Definition. Let Jf^ =JVV nSY where Sv is the G-slice at xn.J XQ XQ Xθ XQ V

Lemma 1. (a) ^eo = {χeSJCO|^e = ̂ 0} = {xεSJ(0|ξP(x)=0 for all ξesxo}.
(b) JfKQ is a smooth manifold if Sxo is chosen sufficiently small and

Txo^x0 = {weker(dJ(x0)oJO| <d2J(x0)(u, t;), O =0

for all υeTXQP and £esxo}.

Proof, (a) follows from property (ii) of slices. Now JVXQ is the set of points of fixed
symmetry type for the action of ^XQ on SXQ, so it is a smooth manifold its tangent
space is obtained by linearizing the condition ξp(χ) = Q or equivalently,
ωx(ξp(x),υ) = Q for all v; i.e.

υ,O=0 fora11 vεTxP,ξe*XQ. Π

Remark. The second derivative in Lemma l(b) is well defined (without using a
connection) since the derivative of <J(x), O vanishes at x0 if

Lemma 2. ^n^ is a manifold (if SXQ is chosen sufficiently small) with

(The third summand in Moncriefs decomposition (1).)

Proof. By (6)

range ( - JT° dJ(x0)*) C ker dJ(x0)

so taking adjoints,

range(^J(x0)*)Cker(^J(x0)oJJ). (11)

Therefore

ker dJ(x0) + ker(JJ(x0)o JJ) 3 ker JJ(x0) + range

Thus ^p and SXo intersect trans versally at x0 so ̂ nS^ is a manifold near x whose
tangent space is the intersection of TXQ

(£]p = kerdJ(x()) and TXQSXQ
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Lemma 3. Let ξe$, ηεg and veTXQP.
(a) We have the identity

(d2J(x0) - (ηp(x0\ v\ ξy + <dJ(xσ) « dηp(x0) - ̂  ξ> = <dJ(xσ)' v> \ζ> Φ -

(b) (Gauge Invariance of d2J.) If ξesxo, then

if either
(i) vekQΐdJ(xQ) or

(ϋ) fo,<3=0.

Proof. By Ad* equivariance

Differentiating (12) in x,

<^Jfex) - TΦ, -ϋ, O = <dJ(x) ϋ, Ad^_ XO . (13)

Differentiating (13) in g at g = Id and evaluating at x0 gives (a). Part (b) follows at
once from (a). Π

Remark. Strictly speaking, (a) does not make sense without a connection.
However, any one may be used, or a coordinate calculation will suffice. Our main
interest is getting (b) which makes sense independent of a connection.

Lemma 4. (S-invariance of d2J(x0).)For ζ£*XQ and u,ve TXQP we have

(d2J(xQ) (u, v), ξy = <d2J(x0) - (Su9 Jfo), O.

Proof. From $*TΦg=TΦg*$ we get T$*TξP=Tξp°$ (see Abraham and
Marsden (1978), Proposition 4.1.28). Let dξp(x0):TXQP-+TXQP be the intrinsic
derivative o f ξ p at the zero x0. Then we get 3! dξp(x0) u = dξp(x0) lίu. From (1) we
get

<d2 J(x0) (u, v\ ξy = ωxo(dξp(x0) - u, v)

[each side of this equation is well defined independent of a connection since
ζp(xo) = ϋ]. Therefore,

<d2 J(x0) - (Ju, Jί4 O - ωXo(dξP(xQ) Su, Sv)

= ωxo($ dξp(x0) u9$v).

Since Jί is symplectic, this becomes

ω*0(^P(x0) -^^) = <d V(x0) («, 4 O Π

Lemma 5. Consider elements in g* with the same symmetry type as x0, i.e. let

Ad*- ιV-v for all
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Then
(a) J:^X0^Q*XO (ί.e. J(Λ"JCQ*J,
(b)dJ(x0):TxoΛ χo-+Q*Xo,and
(c) dJ(xoγ .9*xo-+TXoΛ χo.

Proof, (a) follows from equivariance and (b) follows from (a). We shall prove (c).
By equivariance, for #eG and μeg*,

Differentiating in g :

.e.

for all ξe g. Thus dJ(x0)^μ _L TXQ(G x0), so d J(x0)^e TXQSXQ. It remains to show that

if ξesxo, μegJ0 and ueTXQPι see Lemma l(b). By Lemma 4, this is equivalent so
showing that

for all ξesxo, μeg*o and veTXQP. By Lemma 3(b) (ii), this will be true if
— SodJ(xQYμ = ηP(xQ) where [)/,£] = 0. Let ^eg correspond to μ via ί,)^; i.e.
<σ, ηy = (μ, σ)XQ for all σe g*. Now for ge ίfχo, (μ, σ)Xo = (Ad*- , μ, σ)Λo - (μ, Ad*σ)Xo

[by the assumed invariance of ( , )Xo], so <σ,?/> = <Ad*σ,77>. Thus Aάgη = η., so
[//, ξ] = 0. Also, dJ(x^ - μ = dJ(xQ)* η from the definitions. Π

Note that (c) is equivalent to saying dJ(x0)* maps QXQ to TXQ^XQ where

Lemma 6. ^o^^p is α smooth manifold near XQ with

where TXQJfXQ is given by Lemma ί(b).

Proof. PJ maps jVXQ to Pg*o by Lemma 5(a). Since J^on
<iflp = (PJ)~1(0), the

lemma will be proved if we can show that IP J is a submersion. Now the projection
map is given by

P = dJ(x0) o [dJ(x0)
t °dJ(*0)] '

 ί °dJ(xoγ ,

where dJ(x0)
to<l/(;x;0) is regarded as an isomorphism of range dJ(xQ)^ to itself. By

Lemma 5, if μePg*0 then we can write

where
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for some vegjo. By Lemma 5 (b) and (c), veTXQ^VXQ. Thus μ = JPdJ(xQ)'V for
VE TXQ^XO, so PJ is a submersion at x0. ΠXO

Lemma 7.

Proof. Notice that if ξe$xo and xeΛ^0 then dJ(x)*ξ = 0. Thus the x-derivative of
<J(x), O vanishes identically on «yΓXo. Therefore, 0 = <J(x), £> for xeJVXQ and
ξeker^J(x0)*. Equivalently, 0 = ( J(x), v)XQ for xe^XQ and V6kerrfj(x0)

f. But this
means that (/-P)(J(x)) = 0, so J(x) = 0 on Jf^rfβ^ Π

Thus, solutions of J(x) = 0 with the same symmetry type as x0 form a smooth
manifold. The proof of Lemma 7 also establishes the following :

Lemma 8. Consider the map f :^pnSXo-»ker<i7(;x0)
t defined by

(as in Sect. 3). Then J^n^p is a manifold of critical points of f.

The degeneracy space of / at a critical point x is defined to be

{uεTx(VwπSXo)\d2f(x)(u,v) = Q for all veT^^SJ

Here is our second main result :

Theorem!. Λ^n^ is a manifold of non-degenerate critical points for
f :^wnSXQ^kQΐdJ(x0)^ in the sense that

(a) each xeΛ^n^ satisfies df(x) = Q
and

(b) the degeneracy space for f at xeΛ^n^7 equals Tx(JfXQr\^\

Proof. By Lemmas 7 and 8, (a) holds. Also, we have

<rf2/(*o) - (ii, v\ O = <d2J(x0) - (u, v), ξy (14)

for all ξe*x, and u9veTXQ(<#vnSXo). If weΓJΛ/^n^) then (14) vanishes by
Lemma l(b), so u lies in the degeneracy space for / at x0. Conversely, suppose
ue Txffi^r\SX() and u lies in the degeneracy space for / at x0 thus (14) vanishes for
all ξesxo and all veTXo(<gvnSXQ). If w t e range (-J°dJ(x0)*) then
<d2J(x0)(tί,w1), ξ>=0 by gauge invariance [Lemma 3(b)(i)]. Now the orthogonal
complement of Txo(^?

lpn5:co)©range( — S°dJ(xQ)*) is range(rfj(%0)*) by Moncrief s
decomposition (7). For w2erange(ί?J(x0)*), <rf2J(x0)(w, w2), ξy = 0 by
Lemma 3(b)(i) and JJ-invariance. Thus <^2J(x0)(w,w), ξy=0 for all VETXQP, so
weΓ^Λ^. Since all points of Λ^n^ have the same symmetry, the same
calculation works at any point xeΛ^n^. Π

The following special case is useful to note :

Corollary. // dimker(iJ(x0)* = 1, then Jf^c\^ is a nondegenerate critical manifold
for f and so ^nSXQ is the product of a cone with (Λ^nS^) and hence Ή itself is a
cone x (^Xo(^SXQ) x (G/IXQ), in a neighborhood of x0.

The conclusion that ^nSXQ is a cone x J^XQr\SXQ follows from the parametrized
Morse lemma; cf. Bott (1954).
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Example. Let H:IR2-»IR be a smooth hamiltonian with a critical point at the
origin. Suppose H has all its orbits periodic of the same period. Then H has a non-
degenerate critical point at (0, 0). This follows from the corollary to Theorem 2 by
using G = S^ acting by the flow of XH. In fact, as we will see in Lemma 17 below,
there are symplectic coordinates near (0, 0) in which H is homogeneous quadratic
thus H is a harmonic oscillator.

5. Quadratic Momentum Mappings

Theorem 3 below proves that if / is quadratic then there is a diffeomorphism of a
neighborhood of x0 that maps ^nSXo to the set of zeros of u\-*(I — lP)d2J(x0)(u,u)
for ueTXQSXQ. Moreover, this diffeomorphism respects the information derived in
Theorem 2 (see Theorems 4 and 4').

The case treated in this section applies to some interesting quadratic examples,
such as gauge theories, as we shall see in Sect. 8. The proofs really only require that
(Id — IP)/ restricted to SXQ is quadratic. This observation is applied to the
constraint equations in general relativity near a spacetime having k spacelike
Killing symmetries (the supermomentum constraint is quadratic, but the
Hamiltonian constraint is not).

The following elementary example shows that in general, zero sets of quadratic
maps need not have conical singularities thus, even when J is quadratic, it is not
obvious that /"ΉO) has conical singularities.

Example. Let F:!R3-»IR2; F(x, y, z) = (x2 + y2 - z, x2 - yz) and consider F'^O)
near (0,0,0). This set does not have a conical singularity, but rather a cusp
singularity z = y2 + y3 + . . ., x = y3/2 + . . . near (0, 0, 0).

The components of the momentum mapping are linked together in a nontrivial
way by Ad*-equivariance. These extra properties actually rule out singularities of
higher order than quadratic.

The key to the constructions in this section is the Kuranishi map used by
Atiyah et al. (1978). We are grateful to L. Nirenberg and I. Singer for suggesting its
consideration2. Kuranishi (1965) originally used this map (called F below) in a
study of deformations of complex structures.

Our assumptions are as in Sect. 2, except now let us assume that P is (open in) a
linear space and J is quadratic; i.e., let J(x0) = Q and assume that in a neigh-
borhood of x e P ,

where Q(h) = %B(h9h), and B(u,υ) = d2J(x0)(u,v).
The map A = dJ(x0)°dJ(x0)'* is an isomorphism of rangerfJ(x0) to itself. Let

G = J ~ l o P: g* -> ranged J(x0), the "Green's function" for Δ. The crucial map we
deal with is

F-.P-+P

where h = x — x0.

2 Keep in mind the fact that the singularities found here do not occur in the Euclidean theory
studied by Atiyah et al. (1978)
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Lemma 9. F is a local diffeomorphism of a neighborhood of x0 to a neighborhood of

*o

Proof. DF(x0) = Id. D

Lemma 10. F takes a neighborhood of x0 in Ήw to a neighborhood of x0 in
{x0}+kerdJ(:x0).

Proof. We need to show that

xe^jpoF(x) — x0ekerdJ(x0) .

Now

But from the definition of G we have dJ(x0)°dJ(x0)
toG = P and so

dJ(x0)(F(x) - x0) = dJ(x0) ft + Pβ(h)

. D

We now explicitly choose Sxo to be the affine slice; i.e. SXo is a ball in
{x0}+ker(Λ7(x0)oJF).

Lemma 11. JF maps SXQ to SXQ.

Proof. For £eg and

= <d/(x0)oJΓ(Λ),O

because range (Jorf^XQj^ckerdJixo) implies that

<dJ(x0)oJoίi/(x0)toGoβ(Λχθ = 0. D

From Lemmas 10 and 11 we get

Lemma 12. F restricts to a local diffeomorphism of ^^r\SXQ to

{%0} +kerdJ(x0)nker(dJ(x0)oJί).

Note that this proof also shows that ^nS^ is a manifold; cf. Lemma 2.
Lemmas 9-12 do not use the fact that J is quadratic; indeed, Q(h) can be

replaced by the remainder R(h) in the Taylor expansion. Now we shall use the fact
that J is quadratic. [As we already remarked, it is noteworthy that we only need to
assume that (Id — F)°J is quadratic.] Our main result of this section is as follows.

Theorem 3. The local diffeomorphism F maps ^nSXo locally 1 — 1 onto the cone

<d2J(x0)(w, u\ O=0 for all

Thus, locally Γ ^0) - # w CXQ x G//X0.
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Proof. From Lemma 12, we need to show that for

(Id - F) Q(F(x) - x0) = 0^(Id - P)J(x) = 0. (16)

Keep in mind that (Id-P)J(x) = (Id-P)β(ft). By Lemma 10, F(x)-x0eker dJ(xQ)
so letting P be the orthogonal projection onto ker dJ(x0), we have

F(x)-x0 = P(F(x)-x0)

= P(fc + dJ(x0)
t°G°β(Λ))

= Wh.

Therefore,

(Id-P)β(F(x)-x0) = (Id-P)β(P/0

= (Id-P)β(Λ-(Id-P)Λ).

Since (Id — P)J is quadratic, this becomes

(Id-P)β(F(x)-x0)

= (Id- P){β(Λ)- B(h, (Id- P)Λ) + \ β((Id- P)h, (Id- P)Λ)} . (17)

By J-invariance of d2J(x0),

(Id - P)(£(Λ, (Id - P)Λ)) - (Id - P)(B(JTft, JJ(Id - P) A)) .

Now /ιeker(dJ(x0)°JJ) since xeS^, so Ji/ieker(dJ(x0)). Also,
Jf(Id — P) foe range J°dJ(x0)*, so $(Id — W)h = ηP(xQ) for some ηe§. Therefore, by
gauge invariance [Lemma 3(b) (i)],

A similar argument together with the fact that range ($°dJ(x0)*)C ker dJ(x0) shows
that

Thus from (17),
(Id-P)β(F(x)-x0) = (Id-P)β(h),

which gives (16). Q
Next we show that F maps the degeneracy manifold to the affine space

determined by the degeneracy space of the second derivative.

Theorem 4. F maps Jf^r^ locally 1 — 1 onto the affine space

{x0} + {t/6ker(dJ(x0)oJJ)nker(^J(x0))| (d2J(x0)(u, υ\ ξ> -0

for all £ekerdJ(x0)* and all vεTXQP} = ̂ xon%XQ.

Proof. We already know that for xeSxn^, u=F(x)— x0eker(JJ(x0)°JJ)nker(dJ(x0))
by Lemmas 10 and 11. Now suppose that xe«Λ^.0. Then by definition of F and Jϊ-
invariance,

<d2J(xΰ)(u, v\ O = <d2J(x0)(h, v), ξ> + (d2J(x0)(dJ(xoγ °G°Q(h), v), O
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Now JfXQ is an affine space, so he TXQ^VXQ. Thus by Lemma 5, G°Q(h)eQ*Q. Thus by
Lemma 3(b)(ii), the second term vanishes. The first term vanishes by Lemma l(b).
Thus F maps J^n^ into the stated space. Since these spaces are tangent at x0

and F is a local diffeomorphism, the result follows. Π
Theorem 4 can be generalized as follows : let Jf C ̂ XQ be a Lie subgroup with

Lie algebra ί). Define £/.# = {xeP\dJ(x)*ξ = Q for all ξ e f y , an affine subspace
through x0, let &^ = £/^πSXQ and let CXQ be the cone in Theorem 3.

Theorem 4'. We have F(jtf#) = jtf#, F(^^) = &*> and so F(g&#n<#) = 3S#nCXQ in a
neighborhood of x0.

Thus, F preserves symmetry type for any subgroup of έfXQ. Theorem 4 is the
case 3? = SfXQ. [Note that as above, we need only assume (Id — F)J|SΛo is
quadratic.]

Proof of Theorem 4'. Since s/# is affine, xestf^ if and only if (d2J(x0)(h,v\ O =0
for all veTXQP and £eϊ), where h = x — x0. Then if u = F(x) — x0,

<d2 J(x0)(u, ι>), O = <d2 J(x0)(h, ϋ), O + <d2 J(x0)(^J(x0)
t o Goβ(h), ι>), O .

The first term vanishes by assumption. Since ί) C sxo, the argument in the proof of
Theorem 4 shows that the second term vanishes as well. Thus JF( j^) C si#. Since
DF(x0) = Id, we have local equality. The remaining assertions follow from
Lemma 11 and Theorem 3. Π

6. General Momentum Mappings

We shall now obtain the conical structure of J~ 1(Q) without the assumption that J
is quadratic. The methods of this section do not rely on those in the previous one.
However, the methods here have the disadvantage that they are more difficult to
implement in the infinite dimensional case. The examples given in Sect. 8 use the
results of the previous section rather than this one. In particular, the method used
here relies on the Darboux theorem a version of this theorem that is useful in
infinite dimensional problems is technically quite complicated (see Marsden, 1980,
Sect. 1).

The strategy in this section is to show that j = (ld—!P)J\((£vΓ(SXQ) is the
momentum map for the action of ^XQ. This action has a fixed point at x0 and the
Darboux Theorem can be used to find symplectic coordinates in which the action
is linear and hence in which j is quadratic.

Lemma 13. ^pr\SXQ is a symplectic submanifold of P.

Proof. In Lemma 2 we showed that ^^SXQ is a manifold. It suffices to show that
the symplectic form restricted to T,Co(

(^7

pnSί

JCo) is non-degenerate. Let
uekerdJ(x0)nker(dJ(x0)°J) and suppose that

for all v in the same space. But «w,Jίw1»=0 for w x eRange$°dJ(x 0 )* and
<<χjΓw2»=0 for w2e RangedJ(x0)*. Thus, by Moncriefs decomposition (7),
«M, Jfo» = 0 for all ve TXQW and so u = 0. Π

The preceeding lemma is implicit in Marsden-Weinstein (1974).
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Lemma 14. Let RcP be a symplectίc submanίfold and H C G a subgroup leaving R
invariant. Then the momentum map of the H action on R is j = πl)°J°iR where
iR : R^P is inclusion, and π^ : cj*— »ί)* is the natural projection. If the momentum map
J of the action is Ad*-equivariant, then so is j.

This is a straightforward verification from the definition of momentum
mappings (1).

Lemma 15. &XQ leaves ^wr^SXQ invariant and has a fixed point at XQ.

Proof. First of all, £fXQ leaves SXQ invariant by property (i) of the slice (see Sect. 2).
Next, suppose that xe<#vι i.e. PJ(x) = 0. Then for g e ί f χ o , WJ(gx) = W Ad*-ι J(x).
Thus the proof is complete if we can show that P Ad*- 1 = Ad*- 1 IP. But this
follows from the facts that P is an ( , )XQ orthogonal projection and that ( , )XQ is
Ad*- 1 -in variant for gε^XQ (see assumption 5 in Sect. 2). Π

Combining Lemmas 13-15, we obtain the following:

Lemma 16. The momentum mapping for the action of ^Xo on ^PnSXo is

Lemma 17. There is a symplectic change of coordinates on ^wnSXQ (the coordinate
change has derivative the identity at x0) in which the action of &XQ is linear, and
hence j is homogeneous quadratic, since j(xQ) = 0 and dj(xQ) = 0.

Proof (see Weinstein, 1977, p. 24, last paragraph). Let Ω0 be the symplectic
form on ^pnSXo (Lemma 13) and let Ω1 be the (constant) symplectic form on
TXo(%>wπSXo). Let exp : TXQ(^^SX^^^SXQ be the exponential map associated to
the metric « , ». Since the action Φg preserves « , » then for ge^XQ,

Φg°exp = exp°TΦg(x0). (18)

By the proof of Darboux' theorem (Weinstein, 1977, pp. 22-23) there is a local
diffeomorphism f1 of ^wnSXQ to itself such that

^Ωo (19)

and fsΦβ = Φg°fι. Let /2 = exp - 1 ofί then by (18)

f2°Φβ°fϊ
1 = TΦβ(xo). (20)

Also, by (19), /2 gives a symplectic chart. Thus (20) shows that Φg is a linear action
in the new coordinates. Since the new coordinates are symplectic, (1) shows thatj is
quadratic. Q

Thus, we have proved the following :

Theorem 5. There is a local diffeomorphism F of ^^r\SXQ that takes ^nSXQ locally
1 — 1 onto the cone

<d2J(x0)(w,z4O=0 forall

ThusVκCXQx(G/IXQ).
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7. Discussion

This section discusses several ways of interpreting and using the results obtained.

a) Bifurcations

Following Smale (1970), we define a bifurcation point of a map / : M-+N to be a
point y0e.N such that f~l(y) changes topological type as y varies in some
neighborhood of y0 [see Marsden (1978) for a discussion of this definition]. If
some uniformity condition on the derivative of / is made (e.g. if M is compact)
then no regular point can be a bifurcation point (by the implicit function theorem).
Theorem 1 shows that for momentum maps, the only candidate bifurcation points
are images of points with symmetry group of dimension ^ 1.

In topology and mechanics one is interested in how the level sets of the
momentum map fit together. The reason is simply that any Hamiltonian system
leaves these sets invariant, so a knowledge of the topology of those sets can yield
information about the flow. Complications in the topology occur precisely at
bifurcation points, by definition. In determining this complication, the structure of
J~1(μ0) at the bifurcation point μ0 is the crucial information needed. Our
theorems determine precisely the local structure of J~ 1(0) when 0 is a bifurcation
point.

b) Linearization Stability

Let F:M->N be a smooth map and let x0eM and yQeF(x0}. Let
TXQF : TXΌM-*TyoN denote the tangent (derivative) of F. A vector /zekerTXoF is
called integrable if it is tangent to a C1 curve x(λ) in F~1(yQ). We call F
linearization stable at x0 if every /ιekerTXoF is integrable. This notion arose from
perturbation theory in general relativity and was first introduced in Fisher and
Marsden (1973). The work was motivated by Brill and Deser (1973). The
connection with symmetries was made by Moncrief (1975a). If one seeks solutions
x of F(x) = y0 near to x0, and if F is linearization stable at x0, these solutions can be
obtained in the form x = x0 + λh -f 0(λ2) for any hekQΐTXQF.

If 3/Q is a regular value of F, then F is linearization stable at XQ by the implicit
function theorem. Suppose, however, that y0 is not a regular value of F. Then if
/ιekerTXQF is integrable, it satisfies the necessary second order condition

for any /e TyoN that annihilates the range of TXQF. (The second derivative on / is
well defined since (I, TXQF hy=0.) This is obtained by differentiating F(x(λ)) = yQ

twice.
Theorems 3 and 5 imply that if F = J is an Ad*-equivariant momentum

mapping (associated with a group admitting a slice), and J(χ0) = 0, then the above
second order condition is not only necessary for integrability, of /zekerrfJ(x0), but
is sufficient as well. This is basically another way of saying that the singularities in
the set J"1^) are homogeneous quadratic.



Bifurcations of Momentum Mappings 471

c) Reduction

Singularities can occur when one reduces a Hamiltonian system with symmetries.
Suppose that (P, ώ) is a symplectic manifold and that G acts on P and has an Ad*-
equi variant momentum map J :P— >g*. The first step in reduction (see Marsden
and Weinstein, 1974) is to study the level surfaces of J. The proof of Theorem 1
shows that if J(xQ) = μ0, then x0 is a regular point of J if and only if x0 has no
infinitesimal symmetries. In the regular case, J~ I ( x 0 ) is a manifold near x0 and one
can then proceed with reduction to get the symplectic manifold Pμo = J~~1(μQ)/Gμo.
If, however, sXo = keri/J(x0)*=t={0} then singularities in J~1(μ0) will occur at x0

(unless the cone CXQ described in Theorem 3 happens to be a single point), and so
the usual method of reduction does not apply. However, the set <Λ^Xon%? = J^xor\(&w

= N XQΓ\S XQΓ\^ is a manifold near x0 (see Lemmas 6 and 7) with tangent space

where TXQ^V is given by Lemma l(b). In fact, it is a symplectic submanifold of P.

Lemma 18. Assume J(x0) = 0. Then JfXQr\^ is a symplectic submanifold of P.

Proof. It suffices to show that the symplectic forms restricted to Txo(yi^on^) is
nondegenerate. Let ueTXQ(JΓXQr\^)

(x0)(w,ι;), ξ> -0 for all t e TXQP and ξesxo}. We
want to show that ωxo(w,ϊ;) = <^tt,Jίί;>>=0 for all ι;GTXo(Λ^on#) implies that w = 0.
To see this note that if we Tx (Λ^n^) then Su lies in the same space. This follows
from the Jί-in variance of d J(x0) (see Lemma 4). Thus, putting v = JJw, we get
0 = ωxo(u, Su) = «M, JJ2w» - - «χ M>>. Thus u = 0. Π

If H : P->R is a G-invariant Hamiltonian then the flow Ft of the corresponding
Hamiltonian vector field XH commutes with the action, so it leaves each
submanifold Nxo of points with the same symmetry type as x0 invariant. It also
leaves Nγ n^ invariant, since J is conserved. The dynamics on N n^can be

XQ J XQ

reconstructed from the dynamics on (NXon<<ί)/G««yΓ;Con# as in Abraham and
Marsden (1978, pp. 304-305). But the flow on Λ^on# isjust the Hamiltonian flow
of the Hamiltonian ff|(^on^). Thus, while bifurcations can occur in the full
space #, reduction can still be done to obtain a Hamiltonian system on points with
the same symmetry type as x0. This procedure is useful, for example, when passing
from the general Einstein equations to obtain a Hamiltonian structure for
homogeneous cosmologies (cf. Jantzen, 1979).

d) Constraints in Field Theories

The reduction procedure or the topological program in mechanics naturally leads
one to study the level sets J~l(μ) of a momentum mapping. Here it plays the role
of a conserved quantity in a mechanical system. However, in relativistic field
theories, the zero set of a momentum map can often be identified with the
constraint set in the sense of the Dirac theory of constraints. For relativity, the
relevant group is the group of diffeomorphisms of spacetime and for gauge
theories it is the group of bundle automorphisms (covering the identity if the
theory is not coupled to gravity). In fact, in Gotay et al. (1980) it is shown that this
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is the case for a wide variety of field theories (essentially any theory which is first
class in the sense of Dirac)3. Thus, the results of this paper can be used to analyze
the singularities that occur in spaces of solutions of relativistic field theories. How
to do this for gauge theory and relativity will be outlined in the next section. It may
be useful to attempt to resolve the singularities in the constraint sets by realizing
them as projections of smooth Lagrangian submanifolds. It is not clear how to do
this in detail, but the work of Kijowski and Tulczyjew (1979) may provide the
correct context.

8. Examples

This section gives three applications of the general theory. Very likely there are
several more of considerable interest. For example, bifurcations of the zero set of
total angular momentum seem to play a role in the studies of Brown and Scriven
(1980).

a) Angular Momentum of N particles

Let P= T*IR3]V^1R6]V be the phase space for N non-relativistic particles (allowing
several particles to occupy the same position in R3). Consider the usual action of
SO (3) on P. The associated momentum map is the total angular momentum J of
the system. In terms of standard coordinates (xja), P(α)), α=l, . . . ,ΛΓ, we have

Γ— V PlJkγJ Dk

J — L b X(a)P(a)
a,j,k

or

The level surfaces of the momentum map

will have singularities exactly at the points admitting nontrivial isotropy groups.
The only point invariant under the full SO(3) action is clearly x(α) = 0, p(Λ)=0.
Other points having nontrivial isotropy groups have the form x(α) = αfln, p(fl) = βan,
where n is a unit vector in R3 and αfl and βa are constants (not all zero). Each such
point is invariant under the circle action of rotations about the axis h. The
"degeneracy manifold" of points admitting such 1 -dimensional isotropy groups is
2N + 2 dimensional. Note that each such point has J = 0. We can expect that a
cone of solutions of the equation J = Q branches from each such symmetric point
(for the case N> 1) since one can clearly have two or more particles each with non-
vanishing individual angular momentum, but J = 0 by cancellation.

3 Relativistic fluids are covered if a suitable Hamiltonian formalism is used. Even in the "standard"
formalism (see Hawking and Ellis, 1973), there are still singularities in the reduction process even
though the equations themselves are linearization stable. The failing of the "standard" formalism is that
it does not write the constraints as the zero set of a momentum mapping. This can be done with the
right choice of variables; cf. Arms (1979b)
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The case N = 1 is special, but also is interesting. Here

is a cone over a smooth compact 3-manifold M. In fact, it is not hard to see that
M is (S2 x Sl}/~ where ~ identifies simultaneous antipodal points in S2 x S1.

[There is no bifurcation from non-zero points (x9p)eJ~1(0) since all such
points have the same symmetry here NXQ coincides locally with J~ 1(Q). For N > 1
this accident does not occur.]

b) Gauge Theory

Existence and uniqueness theory for the Cauchy problem shows that the structure
of singularities in the solution space of the four dimensional Yang-Mills field
equations on a fixed background spacetime is the same as that for the constraint
equations. These constraint equations are well-known and may be described as
follows (see, for example, Arms, 1979a): Let M be a fixed compact 3-manifold (a
Cauchy surface in the fixed background spacetime). Let π : B-+M be a principle G-
bundle and let 2ί denote the space of (Ws'p, s > 3/p + 1) connections on this bundle.
Elements ,4e2I represent vector potentials for gauge fields restricted to M. Let
P=T*$I be the basic symplectic space, elements of which are pairs (A,η); η
represents the generalized electric field density. Assume g, the Lie algebra of G
carries an adjoint-action invariant inner product ( , ), so TU>I/)(T*9I) [elements of
which are denoted (b,θ)] carries a preferred L2 inner product « , ». This, the
canonical symplectic structure and the complex structure JJ(b, θ) = ( — θ, b)
[appropriately dualized by ( , )] are in the correct relationship (2).

The constraint equations are J(A,η) = 0 where J(A,η) = dη + [AΛη~] is the
gauge covariant divergence of η using the connection A. In fact, J is the
momentum map for the action of the group ^ of bundle automorphisms of B on P.
This is the group G in the general theory; its Lie algebra is g, the g-valued
functions on M. The dual g* is the g* valued densities thus J : P-+g*. The adjoint
operators dJ(A, η)* and dJ(A, η)+ are elliptic and so one can construct a slice using
keΐ(dJ(A,η)°$). In fact, all of the assumptions of Sect. 2 hold; the spaces here are
infinite dimensional but ellipticity of dJ(A, η)* validates the technical points.

Moreover, J is quadratic. The quadratic term g of Sect. 5 is

where b and θ are perturbations of A and η,soh = (b, θ\ and [b Λ θ~\ is the bracket in
g. (From this simple form gauge and JJ-invariance can be verified directly.)
Theorem 3 therefore directly applies. For gauge fields, infinitesimal symmetries of
(A, η) are ,4-co variant constant g-valued functions on B that commute with η. The
existence of such symmetries implies that the gauge field is reducible to a field with
a smaller gauge group HcG, HΦG. The space Λ^^π^7 of Sect. 4 consists of
solutions of the constraint equations which are reducible to the gauge group H
the rest of the solution set containing the conical singularities consists of solutions
with a gauge group K intermediate between H and G, Theorem 4' then shows how
conical singularities of specified symmetry type K fit together to produce the entire
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conical singularity in the constraint set ($ = {(A, η)\J(A9 η) = Q}. For more details,
see Arms (1980).

For noncompact M, symmetries often are associated with a gauge group
generating a momentum map representing a total energy-momentum tensor or
charge. Such symmetries need not lie in the group generating the constraints, so
need not indicate singularities in the space of solutions. (For example, in general
relativity, Minkowski space is a regular point in the space of solutions of Einstein's
equations.) For Yang-Mills fields however it is interesting to impose the constraint
that the color charge q vanish for non-compact M, say M = R3. This is suggested
by the classical limit of a quantized Yang-Mills theory with the property of
"confinement".

Consider then a classical Yang-Mills theory on M = 1R3 with the constraint
g = 0 added on, where

=- j \_A/\η\.
M M

[This procedure is to be done in the appropriate weighted Sobolev spaces to
properly capture the asymptotic behavior; cf. Cantor (1979).] There is now a
singularity in the space of all solutions at the trivial "vacuum" solution A = Q,
η — 0 the constraint q = 0 leads to the second order condition

M

to be placed on first order perturbations, as in the compact case. Thus it seems that
an appropriate free field approximation to the nonlinear theory is not the usual
linearized Yang-Mills equations, but rather these equations supplemented by the
above second order condition.

c) The Constraint Equations in General Relativity

We shall use the methods of Theorem 3 to study the conical singularities in the
constraint equations of general relativity. Let M be a compact 3-manifold and Jt

the space of Ws'p,s> - +1 Riemannian metrics on M and let P=T*Jί denote
\ P I

the "natural" cotangent bundle of Jί i.e. the fiber of Ύ*Ji over geJt consists of
all symmetric 2-contravariant tensor densities π (of class Ws~1>p). The constraint
set of the vacuum Einstein equations on a 4 dimensional spacetime in which M is
embedded as a compact hypersurface is well known to be the set

where Φ : T*Jl-+ (Densities on M) x (One-form Densities on M) is defined by
)) and tf and / are given by

, π) = {(π' π' - £ (trace π')2) - R(g)} μ(g)

and
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Here π = π' ®μ(g\ μ(g) is the volume form of g, and R(g) is the scalar curvature of g.
In Fischer et al. (1979) it is shown that # has a conical singularity at (g0,π0) if

(00, π0) is the Cauchy data for a spacetime with one Killing field (either timelike or
spacelike). Here we show the same thing if there are k spacelίke Killing fields. We
shall assume that trace π' = constant on M (i.e. M is a hypersurface of constant
mean curvature in the spacetime). Then, the aforementioned reference establishes
the analogue of Eq. (8), namely that ker(DΦ(00, π0)*) is /c-dimensional and is
spanned by elements of the form (0,Xα), a = 1, . . . , k where Xa is a vector field on M
satisfying LXaπ0 = 0 and LXag0 = 0. The adjoint is taken relative to the L2 metric on
T*Jί given by

«(Λ1,ω1),(Λ2,ω2)»= J {h^h2 + ω^ω2}μ(g),
M

where " " denotes contraction using g [(#, π) is the base point] and the natural
pairing between (Densities) x (One-form Densities) and (Functions) x (Vector
Fields). Thus DΦ(g,π)*: (Functions x Vector Fields) ->T(^π)(Γ*^), and one can
compute this explicitly.

At this point we are not claiming that Φ is a momentum map for a group
action. If we were dealing only with the momentum contraint /, the results of
Theorem 3 would apply directly since the momentum map for the action of the
diffeomorphism group of M on T*Jt is just the quadratic map J : T*^-» (vector
fields)*; (J(g,π),Xy= J X - /(g, π) = 2 J (Lxg) - π. However the Hamiltonian con-

M M

straint ffl = 0 complicates this program.
Decomposition (7) is known to hold for Φ (see Moncrief, 1975b Arms et al.,

1975; Fischer et al., 1979)

T(g >π)(T*M) = range( - $DΦ(g, π)*)0 range DΦ(g9 π)*

)] (21)

since range $DΦ(g0, π0)* CkerDΦ(#0, π0) and DΦ(g0, π0)* is elliptic. Here S(g>n)(h, ω)
= (ωb, — /zfl), ίlfand b denote the raising and lowering of indices using the metric g.

Let

s(go,«o) = {(#o> πo)l + a neighborhood of zero in kerDΦ(#0, π0)° $ .

This makes sense since M is open in S2(M), the covariant symmetric two tensors
on M, and so Ί*Jt is open in the linear space S2(M) x S^(M), where S%(M) is the
space of contravariant symmetric two tensor densities (S(go πo) plays the role of a
slice for the four-dimensional diffeomorphism group of spacetime). The analogue
of JVXQ (see Lemma 1) is

flf = LXβπ = 0 , f l = l , . . . , k and fo

Fischer et al. (1979) shows that ^(go^o} is a smooth manifold.
Now define the local diffeomorphism F of T*Jί to T*Jί near (00,π0) as

follows. First, let,
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Since DΦ(gQ, π0)* is an elliptic operator, A is an isomorphism of range DΦ(g0, π0)
to itself. Following what we did in Sect. 5, let P denote the orthogonal projection
to range DΦ(#0,π0) and set G^Δ~l°W. Write h = (g, π) — (g0, π0) and let the
remainder be given by

Next define F by the analogue of (15):

F(g, π) - (0, π) + DΦ(g0, π0)* o G o jR(Λ) .

Computations based on the results of Fischer et al. (1979) together with arguments
like those in Sect. 5 establish the following :

1. DF(g0, π0) — identity, so F is a local diffeomorphism.
2. F maps S(go>πo) to itself.
3. If ̂  = {(#, π) 1 PΦ(#, π) = 0}, which is a smooth manifold in a neighborhood

of (00, π0), then F maps ̂  in a 1 — 1 way onto a neighborhood of (00, π0) in (00, π0)
+ kerDΦ(#0,π0).

4. F maps ^PnS(00>πo) to {fe0,
Now define the cone

This is a cone because of the following crucial fact :

(Id-P)JR = (Id-P)Φ is quadratic in (g,π).

This is because (Id — P) projects to the span of {(Q,Xa)\a= 1, . . ., k} and so only the
supermomentum component / is involved in (Id — P)Φ. Thus one can effect the
last step in Sect. 5 :

5. F maps *nS(gθfπo) locally 1-1 onto C(ί?o>πo).
The proof of Theorem 3 needs not only (Id — P)Φ to be quadratic but also

crucially uses JΓ invariance and gauge invariance of (Id — P)D2Φ(#0,π0). The J-
in variance results from a direct computation using the expression for ^X-/(g,n)
given above. The gauge invariance also can be proven directly see Fischer et al.
(1979) for the general proof of gauge invariance of D2Φ. This reference also
explains how to remove the gauge condition S ô πo).

Theorems 4 and 4' also carry over for this example. One of the crucial facts in
this regard is Lemma 5, which can be interpreted as a covariance property. In
particular, it entails that φ*F(g, π) = F(φ*g, φ*π) for a diffeomorphism φ such that
φ*g0 = g0, φ*π0 = π0. For this example these may be proved by a direct
calculation.

These results describe, for example, the structure of the space solutions near
Bianchi IX models, such as the Taub universe (k = 4), the Kasner solution (fe = 3) or
the Gowdy solutions (fc = 2), cf. Jantzen (1979). In Arms et al. (1980) we shall
generalize these arguments to allow a time-like Killing field as well as several
spacelike Killing fields. The flat space time T3 x IR is an especially interesting
bifurcation point.
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Glossary of Symbols

(JP, ω) symplectic manifold
TXQP tangent space to P at xQeP
G, Q Lie group, Lie algebra
g x = Φg(x] action of G on P
ξp infinitesimal generator of the action on P corresponding to ξe§
J : P— >g* momentum mapping
dJ(x0) : TXQP-+Q* differential of J at XΌ

$ complex structure on P
Sxo slice for the G-action at XQ

Ixo isotr opy group of x0 {g e G | gx0 = x0 }
^0,5XQ identity component of IXQt its Lie algebra [Eq. (10)]

(weak) metric on P
pairing between g* and g
inner product of g* depending on xQ<=P

dJ(x0)* : g-+TXQP adjoint of dj(x0) relative to < , > and « , »
dJ(xoy : g*^TλoP adjoint of dj(x0) relative to ( , ) and « , »
TXoP - Range [Jί»dJ(x0)*'] ® Range μj(*0)*] ® [ker (dJ(x0) ° JJ)nker dJ(x0J]

Moncrief s decomposition
IP : g*-» Range dJ(xϋ) orthogonal projection
(& = J~1(Q) zero set of J (or constraint set)
<&r = OP./Γ HO) zero set of IP° J
Nxo x's with the same orbit type as x0

Λς°0 NX0^SXO (Lemma 1)
gjo elements in g* with same symmetry as x0 (Lemma 5)
/ /=(Id-IP)°J:%pnSXo->kerdJ(x0)

t (Lemma 8)
Δ = dJ(x0)°dJ(xQ)* "elliptic" operator associated with J
G = A ~ l off Greens' function for Δ
F(χ) = χ + dJ(xoγ o G o Q(h), h = x-x0 Kuranishi map (Lemma 9)
Cxo homogeneous cone associated with d2J(x0) (Theorem 3)
IP orthogonal projection onto ker<ij(x0) (Theorem 3)
ί), 3tf a Lie subalgebra of SXQ, its Lie group
s$ ' # points with symmetry (at least) Jf7 (Theorem 4)
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