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Abstract. The asymptotic behaviour of Einstein-Rosen waves, a class of
nonstationary solutions of Einstein's vacuum equations, is investigated. It is
established that solutions of this type exist which admit part of / + and a
regular / + in the sense of Penrose.

1. Introduction

In classical field theories it is important to know how the field decays. Does the
free field at a fixed space point always ultimately tend to zero if time goes to
infinity? Are there soliton-like solutions? Answeres to questions of this nature
contain extremely valuable information about the field.

For Einstein's field equations it is very hard to give a precise meaning to such
questions, and even more to find an answer. The equations are nonlinear, but in
contrast to nonlinear field theories on Minkowski-space, the field itself determines
the spacetime geometry! Even to find "where infinity is" is a nontrivial matter!

The decay behaviour of linear equations is much simpler. Therefore it is
natural, in the case of nonlinear field theories on Minkowski space, to ask the
question whether solutions exist for which the field becomes small for ί->oo and
tends to a solution of the linearised equations, the nonlinear effects becoming
irrelevant. This leads to a scattering theory in the sense of Lax and Phillips [1].

To follow a similar procedure for Einstein's equations, one has first to
formulate in which sense a spacetime becomes asymptotically Minkowskian, and
then to establish that there exist solutions having this property. The first problem
was posed by Bondi et al. [2] and Penrose [3], leading to the concept of
spacetimes admitting null infinity J. A spacetime with this property becomes
Minkowskian along null geodesies, and the curvature tensor approaches a
solution of the linear spin-two field equations.

The compatibility of these conditions with the field equations remained
however rather unclear.

In this paper I examine the asymptotic behaviour of a well-known class of local
solutions of Einstein's vacuum field equations, the Einstein-Rosen waves [4, 5]. It
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turns out, that many such solutions exist, which behave asymptotically as the
interior of a null cone in Minkowski-space. Technically this means that their
future infinity consists of a "piece of ,/ + ", which is topologically S2 xIR with
future complete generators, which have a regular endpoint I+.

Einstein-Rosen waves are solutions of the vacuum field equations admitting
two spacelike, hypersurface orthogonal Killing vectors. The usual interpretation
considers those solutions as cylindrical gravitational waves [5]. Thus one cannot
expect the field to become asymptotically Minkowskian. There is, however,
another possibility: Consider the subgroup of the Lorentz group, consisting of
boosts in the t — z plane and of rotations in the x — y plane of Minkowski space. In
the interior of the null cone of the origin this group defines two spacelike,
hypersurface orthogonal killing fields. Clearly, the global action is rather different
from cylindrical symmetry.

Einstein-Rosen waves with this asymptotic behaviour of the Killing fields
admit a / + and regular 7 + , as described above.

Particular solutions of this type were found and used about 15 years ago to
describe "exact solutions for uniformly accelerated particles" by Bonnor and
Swaminarayan [6, 7]. In 1963, a paper by Bicak [8] "analizes the radiative
properties of Bonnor's and Swaminarayan's solutions by Bondi's method",
concluding that it satisfies Bondi's conditions or - in present notation - admits a
,/ + with topology S2 xlR. Hence the issue of the existence of radiative solutions
admitting such a / + was already solved in 1967, but unfortunately seems to have
been overlooked by the workers in the field.

Einstein-Rosen waves in a neighbourhood of 7+ are, in complete analogy to
sourcefree Maxwell fields, determined by Cauchy data on a mass-shell. The
regularity of I+ means that the gravitational field decays completely through J +

and that the limit of the Bondi-mass (u-» + oo) vanishes. Most likely, the solutions
can also be characterised by an asymptotic, characteristic initial value problem,
demanding regular I+ and prescribing the radiation field with certain symmetries
on J+.

The paper is organised as follows. In Sect. 2 conditions on the metric
coefficients of a general Einstein-Rosen wave are derived, which imply the
existence of a regular J + , hence J+. In Sect. 3 it is shown that solutions of the field
equations exist, which satisfy these properties.

2. The Geometry

Locally Einstein-Rosen waves are described by the metric [5]

e2y-2ψ(dr2-dt2) + r2e-2xpdφ2 + e2ψdz2 (2.1)

with γ(r, t), ψ(r, t). The metric (2.1) is invariantly characterised by the existence of

two spacelike hypersurface orthogonal Killing fields — , — and a condition on
\oφ ozj

the Ricci tensor (#§ +R\ = ϋ). If we put γ = ψ = 0, (2.1) describes Minkowski space
in coordinates adapted to a rotational and translational Killing field.
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Motivated by the considerations of Sect. 1, the action of a boost and rotational
Killing field on Minkowski space we consider the following metric

g = eλ{da2-db2) + a2e-fldφ2 + b2eμdχ2 (2.2)

with λ(a,b\ μ(a,b). If λ = μ = 0, (2.2) describes a part of Minkowski space in
coordinates adapted to a rotation and a boost. The metrics (2.1), (2.2) are locally
isometric in the sense, that the coordinate transformation

(r + t) = %a + b)2, (r-t)=-±(a-b)2 (2.3)

transform (2.1) into the form (2.2).
In the case of Minkowski space we know, "how to extend (2.2) through

a = b = 0". The following Lemma shows under which conditions an analogous
extension can be made in the general case.

Lemma 1.
Assumption. 1. λ(a,b), μ(a,b) are realvalued, C0 0 functions defined for

2. λ(0,0) = μ(0,0) = 0, λ(0, b) = - μ(0, b).
3. The functions λ, μ defined by λ(a2,b2) = λ(a,b\ μ(a2,b2) = μ(a,b) are C°° at

(0,0), and(0,b2).

Assertion. The metric (2.2) defined by λ, μ on the manifold

M = {(a, b,φ,χ);0<a<ao,a<b<bo,φ mod2π, χe IR}

has a C00-extension, such that M is bounded by a null cone N with vertex p, and a two
dimensional timelike, 2-surface F, the ''axis" of the d/dφ-isometry.

Proof. Define coordinates x, y, z, t by

x = acosφ t = bcoshχ

y — aύnφ z = bsinhχ.

Substituting in (2.2), where defined, one gets:

g = - 1 e\xdx + ydy)2 - - ί eA(zrfz - tdt2)
a b

1 1
+ β μ^(xdy — ydx)+TΎeμ(zdt — tdz). (2.5)

<2 Z £r

The coefficient of dx2 is (x2+ y2)~1{eλx2+ e~μy2}, the one of Jx^y is
(x2 + y2)~1{eλ2xy-e~μ2xy}.

Because of the assumptions 2), 3), these functions have a C00 extension into a
neighbourhood ofx = y = z = ί = 0. The same is true for all other metric coefficients
in (2.5). Hence by comparing the range of the x, y, z, t coordinates defined by M
one gets the assertion.
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Remark. Obviously one can in the same way give Ck-versions of this lemma.

Points with (a, b)->(0,0) tend to the vertex of the null cone of the extension. The
null cone N is approached by points (α, b)-+(a, a), the axis of the rotation by points

Note that to get the null cone as a boundary one needs φmodlπ and χelR!
From general arguments (regular b-boundary) one knows that the axis and the

null cone are determined uniquely by the original spacetime.
We turn to the behaviour of (2.2) for large α, b. Suppose λ, μ are defined for

0 < α , <b,b0<b<oo. Guided by the inversion in Minkowski space we transform
coordinates:

— a ~ — b
a ~ o , o ^ 0 .

Using ά + b= — (a — b) ι,a — b=—(a + b) \ one gets immediately

g = (a2-b2Γ2 \e\da2 - db2) + ά2e~βdφ2 + S Vdχ 2 ] , (2.7)

(2.8)

and μ correspondingly. Hence the rescaled metric g = (ά2 — b2)2g is again of the
Einstein-Rosen form (2.2)!

Now we can establish the following:

Lemma 2.
Assumption. μ(α,b), λ(a,b) are defined for 0<a<b, bo<b<oo and μ, λ by (2.8).
Suppose μ, λ satisfy the assumption of Lemma ί.

Assertion. The spacetime (2.2) defined by λ, μ admits J+ according to Penrose and
J+ and I+ are C00.

Proof. The rescaled spacetime g = Ω2g with Ω = (ά2 — b2) admits an extension
through a null cone with vertex because μ, λ satisfy the assumption of Lemma 1.
dΩ = 2άdά — 2bdbή^0 for a = b>0, hence N satisfies the defining conditions of J+.
Furthermore the generators have also a regular endpoint / + .

Remark. We have chosen a conformal factor such that the rescaled metric g still
d d

has —-, -— as Killing fields. This is the reason, why it is so simple to do the
dφ dχ

extension.

3. The Field Equations

The structure of the vacuum field equations for Einstein-Rosen waves is very
simple. Because of the symmetry one has only two independent variables.
Furthermore - as in the case of Weyl solutions - one of the metric coefficients is
determined by a linear equation, the other by integration.
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For the purpose of the following analysis null coordinates are introduced for
the metric (2.2)

u = b — a, v = b + a. (3.1)

The metric is then

β=-eλdudv + ftv-u)2e-μdφ2+%υ + u)2e!ιdχ2. (3.2)

The vacuum field equations are satisfied provided it holds:

= 0, (3.3)

dvμ, (3.4)

The linear equation (3.3) for μ is the wave equation for the metric (3.2) with λ = μ
= 0. Hence any solution of [Jμ = 0 on Minkowski space which depends only on
(a, b) solves (3.3). If μ is given, λ can be determined from (3.4) or (3.5) by integration.
(3.3) is the integrability condition for (3.4). (3.5).

Consider an example: μ = (uv)~x solves (3.3). For λ one gets the equation

To satisfy the regularity condition at the axis (λ(υ, v) = — μ(v, v)) one chooses f(u) =
1 1 u

+ ~ ^ΓT' h e n c e

1 _ _1 1_ _ 1 1_
8wV + 16t;4 2v2+16u4 2u2'

We can now show:

Theorem. There exist C00 Einstein-Rosen waves admitting ,/ + , which is topologi-
cally S2 xlR with future complete generators and a C00 — 7+.

Proof. Suppose f(x, y, z, t) is a C°° solution of the wave equation

J J = 0 (3.6)

which is invariant under rotations in the x, y-plane and boosts in the z — t plane.
Such solutions can be determined by a characteristic initial value problem [9] with
data on the null cone of (3c, y, z, t) = 0. Passing to (α,b) we have a function f(a,b).
The function

vlb(u,v)) (3.7)
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satisfies Eq. (3.3) due to the behaviour of the wave equation under conformal
rescaling. Put

(3.8)

(3.9)

(3.10)

(3.11)

Note that the right-hand side of (3.10), (3.11) is Ccomύ,v2Ltϋ = v = 0. Using (3.10)
we define λ by

~ r ~ ~ r ~ ~ 1 ~ 1
u = b — a, v = b + aou = - , v = - .

i; v
Rewriting (3.4), (3.5) with the variables ύ, v using

μ(w, ϋ) = (w;)~1 f(u{v\ v(u)),

one gets

(w, υ) = J dβX(w, ϋ)dδ - μ(v, v). (3.12)

This implies that λ(ϋ,v) is C00 at w = ?;:=0 and at w = 0. To apply Lemma 2 it
remains to show that λ(ά, b), μ(ά, b) are C00 functions of α2, b 2 at the axis of the
rotation. For μ this is true because μ is (a2 — b2) •/, where / is a C00 solution of the
wave equation (3.6). For 1, this can be shown as follows: (3.4), (3.5) imply:

(b2 - a2)daλ = \ab2\(daμ)2 ) 2] - bdaμ + abδbμ

a2bdaμdhμ - a2daμ + abdbμ.

Suppose μ(ά,b) is analytic at ά = b = O, then we have an expansion

- \a2

ί = Y <xmma2nb2m.
l^u rnrn

n, m — 0

(3.13)

(3.14)

Hence

) 2 - α 2

of

>2-α2

2m

a"

¥

(3.15)

This implies that the right-hand side of (3.13) is an odd function of a and an even
function of b. Hence λ is an even function of a and b. Going back to α, b, this gives
that λ(ά9 b) has an analytic expansion in α2, b2. Hence μ, λ satisfy the assumption of
Lemma 2, which completes the proof in the analytic case. If μ is only C°°, we argue
as follows. The condition "1 is smooth as a function of α2, 6 2" means that certain
derivatives of λ at (α, ft) = 0 vanish. The relations between the partial derivatives of
λ, μ given by (3.13) are the same as in the analytic case, hence the critical
derivatives vanish.
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4. Conclusions

The last two sections showed, how one can construct Einstein-Rosen waves with a
regular / + and J + . Choosing simple functions μ(a, b) one can even give the metric
explicitely. To use these spacetimes as nontrivial examples of Bondi et al. and
Penrose's radiation theory one has to show that these solutions are radiating. A
systematic investigation of the radiation properties will be done in a separate
paper. In the following, I give just some plausibility considerations, using standard
radiation descriptions in the Penrose notation.

</+ is radiative, if the news function σ° - Penrose notation - does not vanish.
Because the news is rather complicated to calculate, one can proceed as follows.
The C00 regularity of I+ implies that ip°, ψ°, ψ°2, φ°, \p% vanish at I+. The
propagation equation for those quantities [10, (4.4)-(4.10)] show that if any of
those quantities is not zero at a point p near / + , the σ° cannot be identically zero
on the generator through p between p and J + . Hence to conclude that a solution is
radiative, one has just to establish δeC

a

bcd + 0 on J>+. This can be done in
particular examples. The vanishing of the φ? at I+ implies further that the limit of
the Bondi-mass vanishes if one approaches I +.

There is strong evidence that the only Einstein-Rosen wave with a regular / +

and no radiation near 7+ is Minkowski space! To prove a uniqueness theorem of
this nature one would have to extend Friedrich's [11] treatment of the asymptotic,
characteristic initial value problem, to include the case of giving data at I+ and on
J+ near I+. More directly, this can probably be derived using the Eqs. (3.10) and
(3.11).

So far the solutions were only considered near I + . Choosing a solution of
•μ = 0 invariant under a boost and a rotation one can try to solve for λ as long as
μ is defined. This way one will get a more systematic description and more general
solutions of the Bonnor-Swaminarayan type. In particular, the C-metric, for which
Ashtekar and Dray showed recently the existence of J [12] should also be in this
class.

Finally a remark about the regularity of J + . Asymptotics was invented for
isolated systems which have no regular I + , if material sources are present. There
should, however, also exist asymptotically flat, source-free spacetimes, i.e. gravi-
tational waves coming in at J>~ and going out at </ + . In such a situation one
expects I~, I+ to be regular, because the whole field is decaying through J>+. The
solutions described, have the essential properties of such a spacetime near / + .

There are, however, no Einstein-Rosen waves with regular J>+, J~ because
any non-constant solution of Πμ = 0 with the boost-rotation symmetry is singular
somewhere.
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