
Communications in
Commun. Math. Phys. 78, 429-446 (1981) Mathematical

Physics
© Springer-Verlag 1981

The Local Structure of the Spectrum
of the One-Dimensional Schrόdinger Operator

S. A. Molcanov

Department of Mathematics, Moscow State University, Moscow U-234, USSR

d2

Abstract. Let Hv = — — τ + q(t, ω) be an one-dimensional r a n d o m Schrodinger

operator in i f 2 ( — F, V) with the classical b o u n d a r y conditions. The r a n d o m
potential q(t, ω) has a form q(t, ω) = F(xt), where xt is a Brownian m o t i o n on the
compact Riemannian manifold K and F : K-^R1 is a smooth Morse function,
m i n i ? = 0. Let NV(Δ)= Σ 1, where z)e(0, oo), £^(F) are the eigenvalues of

K . £i(F)ezl

Hv. The main result (Theorem 1) of this paper is the following. If V—• oo, £ 0 >0,
fceZ+ and α > 0 (α is a fixed constant) then

~an(Eo)

0)) \κ\9

where n(£0) is a limit state density of Hv, V-* 00. This theorem mean that there
is no repulsion between energy levels of the operator HV9 F->oo.

The second result (Theorem 2) describes the phenomen of the repulsion of
the corresponding wave functions.

1.

In a series of latest works in physics (see [1]) the p h e n o m e n o n of the repulsion of
the energy levels in the spectrum of complicated (random) q u a n t u m systems was
discussed. The formal definitions are the following.

Let Hv be the family of the Hamil tonians describing the behaviour of the
system in the volume V and let E^P < E^P :§ ... be the corresponding energy levels.
In various interesting cases these levels are thickening in the limit and moreover
for every α > 0 E%v\-*Ea as |F |->oo.

We shall consider two neighbour levels E(P and £ ^ + l 5 where n ~ α | F | . It is
natural to suppose that the normalized "spectral split" An = (En+1—En)/
M(En+1—En) has a limit distribution as |F|—>-oo, i.e. there exists
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If G(x) = o(x) when x->0 in this case we deal with the repulsion of the levels (near
Ea) if G(x) ~ ex we say that an interaction of the levels does not exist near Ea in
the case G(x)/x —-—> oo we may say that there is an attraction between levels (or

that the levels show a tendency to group).
It is natural to study several levels near Ea. Mathematically this problem is

reduced to the analysis of the joint limit distribution of the several neighbour
spectral splits An, An+1, ...,Δn + k_v

As far as it is known to the author no rigorous result in this field has yet been
published. However in the so called Wigner Gaussian symmetrical ensemble
Hπ = (ξίj.)5 i,j =1,2, ...,n (ξipi^j are an independent Gaussian random values) the
limit distribution function averaged in all splits was found, i.e.

G(x)=\im- £ F{Ak<x}
«->oo ft k= 1

and the existence of repulsion was established [2-4].
For the unordered structures the spectrum of which coincides with that of the

Schrδdinger operator with the random potential the repulsion of the levels was
also asserted in [5]. A number of physics works following [5] were based on the
results of [5], but it turned out that [5] was false. It is possible to prove the
absence of the interaction between the levels in unordered one-dimensional
structures for a large class of random stationary potentials, in particular, for
^-potential explored in [5]. Moreover it is possible to analyse the local structure of
the spectrum near the fixed point Ea in full. This spectrum proves to be a Poisson
flow near Ea on the natural scale, i.e. the neighbour spectral splits (asymptotically
as |F|->oo) are independent and have exponential distribution.

Our paper contains the proof of the above formulated results and is close to
[6,7].

For the sake of convenience of the references to [7] we narrow the class of the
studied potentials but our results remain true for the Kronig-Penny potential and
for the potential of the "white noise" type.

2.

Now we pass on to exact formulations. We consider the Schrόdinger operator of
the Markov type which has been introduced in [6,7], namely

d2

H=--y+iφc ί(ω)), teR1, ωeΩ. (1)

Here Ω is the probability space with the measure P (this space may be identified
with the ensemble of all the realizations of the process xv teR1, xt(ω) is the
Brownian motion on the compact Riemannian manifold K and has the generating
operator A). The invariant measure of xt is the natural Riemannian measure.
Taking dx to be the initial distribution we turn xt into stationary Markov process
with "good" mixing properties. The function F.K-+R1 is smooth (C00) and "non-
flat" (see [6,7]). The last is fulfilled when F has a finite number of nondegenerate
(Morse) critical points.
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If miniφc) = 0, | |F | | = 1, then [6,7] the spectrum S of the unique selfadjoint
xeK

extension of H on ^?2(R1) coincides with the half-axis [0, oo). Let us consider the
restriction H to <£\- V, V).

This restriction is defined by classical boundary conditions. We analyze here
the corresponding spectral problem

^ )ψ = Eψ, te(- V, V),

(2)

Let 0<E1(V,ω)<E2(V,ω)< ... be the eigenvalues (the levels) of the problem (2),
ψEi, i = l,2,... are the corresponding eigenfunctions (the wave functions). The
existence of the limit spectral distribution function

N(E)=lim~ Σ 1 (3)

was proved in [8] for more general situation. Moreover under our conditions
dMN)

there exists the continuous state density n(E) = — and besides n(E) > 0 if E > 0
uE

(see Proposition 1).

3.

The analysis of the phase of the equation Htp = Eψ is the clue to the analysis of all
the basic spectral characteristics of the operator H (or H y ). If θE(t) = arcctgt///ψ
then

^ - cos2 ΘE + (E - F(xt)) sin2 ΘE, Θ^S1. (4)

Here S1 is one-dimensional torus, i.e. the interval [0, π] with the identified ends.
The "two-dimensional process" (xt, θE(t)) is the Markov diffusion one on KxS1

and its infinitesimal operator is

AE=\Δ + [cos2θ + (E-F(x})ύn2θl^-. (5)

According to Hormander theory (see [6, 7]), the parabolic equation dp/dt = ΛEp
has the fundamental solution in the cylinder (0, oo) x (K x S1), this solution is
smooth in all arguments and besides for E>0 (i.e. on the spectrum)

pEit9(x9θ)9(xvθi)^ε(t9E)>09 (6)

if t ^ to(E). The last expression (the strong form of the Doeblin condition) guaran-
tees us the existence of the limit

π£(x, θ) = lim pE{t, (-,•),(*, 0)) ̂  ε(E, ί0) (7)
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with the exponential speed, i.e.

|pE(ί,(., l(x,θ))-πE(x,Θ)\Sc(E)e-δ{E)t \ (7)

The constants in (7), (7) are strictly positive in every open interval of the axis
(0, ex)).

4.

Let us fix the point £ 0 e(0, GO) and its certain neighbourhood L/oC(0, GO). All the
following discussions will be conducted in Uo, the dependence of constants on Vo

will be implied.
Let us prove the existence of the state density n(E) in a stronger form. Let

Ei(V)eA

Proposition 1. For F-^co and every ε>0

N (A) Λ n 1 + ε F
M-^/=$dE j πE(x,Θ)sin2θπE(x,π~θ)dxdθ + o — —

l—.—j. (8)

/ Let us use the general method of [6] and [7, Sect. 3]. We introduce "the
quasi-solution" ψE t(s) of the equation Hψ = Eψ satisfying this equation for s Φ t
with the boundary conditions

a n d having the unit ampl i tude rE t=\/ψ2+ I——I for s = t. This "quasi-solut ion"
[/ v els J

will be a wave function if we suppose

The last formula (for any ί) uniquely defines the spectrum EfcV). Clearly, for any

te(-V,V)

Δ v - V Ei(V)eA C ~2 J

-V

— f M$dEδ{θE(t + O)-ΘJt-O)) —(θ(t + O)-θJt-O))
2V _ F Δ os

I V

lβ) ί v>hds-

1 In future we shall suppose that cf, εf> <5 are positive constants independent of K We also suppose V
to be sufficiently large
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Let us choose t = s in the inner integral, then ψ2(s) = sin2 θE(s). By the general
theorem of [7, Sect. 3] (see also Lemma 1, [6]) we find that

N (A) 1 v

M ^ = — j ds\dE I pE(V-s,(K,0),(xM
LV LV _y Δ χ x s i

• sin2 θpE(V + s, (K, 0), (x, π - 0))dxd0.

The notation pE(t,(K,θ0),( , •)) means the transition density of the process
(xfJ θE(t)) with the uniform (in x) initial distribution and the initial phase θ0.

Using (7') we immediately obtain (8), since πE{x, θ)>0, for EeC70, then n{E)>0
on the spectrum ^ = (0, GO).

5.

Now we can rigorously formulate the basic result of our work.

Theorem 1. For fixed a1<b1^a2<b2^ ... ^an<bn and nonnegative integers

(9)

expression (9) holds uniformly in a^b^ \at\9 \bt\^A, k^M (A, M are fixed).

In other words the random point process N*(£) = N F £ 0 , £ 0 + -— is an asymptoti-

cally Poisson one (with the parameter n(E0)) in the sense of the convergence of the

finite-dimensional distributions.

We shall prove it along the following lines. Let us consider another problem
(2') which consists of k problems, where fc = fc(F) = [ln1 + ε F ] . We consider the
points

2V 2V.
t o = - 7 , ί1 = - F + τ , . . . , ί ί = - F + τ V . . Λ = F .

Let us construct the neighbourhoods of radius l n 1 + ε F around every point
ί1 ?ί2, ...,tk_v In other words, we have introduced the intervals

F), i= 1,2, ...,fc- 1, μo-V, λk=V.

k

The set [ — V, F ] \ (J 2t is divided into k intervals
\ί=l

(^0,^) = / ! , (β1,λ2) = I2, ...9(μk_vλk) = Ik

and the problem (2') is: in every interval IVI2, -Jk it is necessary to find the
functions ψ such that

selj9 ψ(μj_x) = xp{λ)-0 j = 1,2,..,fc. (2')
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We shall denote the corresponding eigenvalues (levels) and the wave functions by
E\j) and ψ\j) resp. Let

N K ( J ) = Σ Σ i.
j £O)eJ

First we shall establish, that

using the fact of the exponential decreasing of the eigenfunctions on [— V, V] (one
of the results of [7]). This expression means, that the spectra of the problems (2)

and (2') "almost coincides" in the neighbourhood of the radius 0 ί — |. Since

k k

j=ί E^eA j = l

and the terms in the last sum are equally distributed, "almost independent" and
"infinitely small", we came to the standard scheme. Unfortunately, we cannot
obtain the Poisson limit distribution for NV(A) from this scheme. A priori we can
only achieve the complex Poisson distribution. The final and most complicated
step is connected with the analysis of the second moment MNV(A).

6.

At the first stage the two following propositions will be of major importance.

Proposition 2. (Essentially coincides with Theorem 4, Sect. 6 [7].) For fixed ε > 0
there exists δ>0 such that the probability of~A\}δ tends to zero as F-> oo, where A8}3

= {To every normalized wave function ψE.(s), EteU0, se[— V,V] corresponds the
point τ(ψEι), "the center of the support" of ψE.( ), so that for all s:
\s — τ(ψEι)\ ^ I n 1 +εVwe have the estimate

In fact the stronger result was proved in [7], namely, that ΣP(^« <5)< °°
π

should note that the point τ(ψEι) must be chosen measurably (Ω, P) (which was not
emphasized in [7]). For example, we may put τ(tp£.) = the first rational point in

ί~V,V] (the numeration is standard) such that \ψE.\^

Proposition 3. The number of the levels of the problem (2) getting in Δ=(E — h,E + h)
coincides with the maximum dimension of the linear manifold 5£Δ of the smooth
functions ψ (with the null boundary conditions) such that

((HF — E)ψ, ψ) = J [(y/)2 + ιp2{F(xs) — E)~]ds
-v

V

^h2(ψ,ψ) = h2 J ψ2(s)ds. (10)
-v
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This lemma of the abstract theory of the linear operators belongs to Glasman
(see [9, Chap. 1, Theorem 3bis]). Proposition 3 is also true in case of the problem
(2'), one should accordingly modify the boundary conditions.

Let us return to Theorem 1. For the sake of shortness we limit ourselves to the

one interval A = [Eo — ——, Eo+ —- . Technical details necessary for the general

case will be described below (Propositions 5', 6, Theorem 1).

Let us consider the intervals ^ . = (ί.-21n^+ f i,ί i + 21n^+fi), i = l,2, ...,fc-l
which are twice as large as ^ , i = l , 2 , ...,/c— 1 introduced in Sect. 5.

Proposition 4. // A =(E0-a/2V, E0 + a/2V), then

1 2 + 2εy / /-j \ \

M Σ I ri(s)dsίC(a,ε)—— 1 + 0 - . (11)

E i e Λ ^ V V \VJJ
i = 1

r£. are the amplitudes of the wavefunctions ψE. of the problem (2).

The proof repeats the discussion in Proposition 1 almost literally.
Namely

M Σ ί ds\iE ί pE(V-s,(K,0)(x,θ))

•pE(V+s,(K,O),(x,π-θ))dxdθ

= I ds\dE j \πE{x,θ)πE{x,π
u l , J KxS1

We have used both the smoothness πE in E and the fact, that

V

One should also remember that k = k(V) = [ln1+εlr\.

7.

Let us compare Proposition 2 with Proposition 4.
fc-l

If at least one of the points τ(tp£); EteA belongs to [J 3){ and Aγδ has
i = 1

occurred, then

ί Σr2

Eds^l- J e-Mds2:l-C1e-δl»ί + ' v . (12)
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Since P{A*γδ}-+\ and the mean of the left hand side random value equals to
ί\n2 + 2εV\

0 (according to Proposition 4) then

ί fe=i

PUhe points T ^

i.e.

P<Jτt do not get in (J 3ι\ >1.

Moreover, the same discussions show that no one of the points τ- = τ(tp£), EteA
k- 1

will be at the distance :g In1 + ε V from (J ^ . with the probability qv : gF — - — > 1.

In other words it is asymptotically reliable that all ψE, EteA admit the estimate
fc-l

rEι^e~δlnl + εy on (J ^ f . We shall denote this event by By3.
i= 1 fc-l

Let us consider the smooth cutting function gv(s) equalling to 0 on (J ^ . and
fc-l ί = 1

to 1 outside the 1-neighbourhood of (J ^.. The functions ψE.(s) = gv(s)ψEt(s), EteA
i= 1

satisfy the null conditions at the ends of the intervals £^ , i.e. at the points μ , Λ ,
i = 1,2,..., k — 1. Let us pull the finite-dimensional subspace <£Δ on these functions.
If the above described event Bεjδ occurs then

/V"1 — V"1 — \ V"1

i= 1

and

The remainders R^V) and JR2(F) are estimated by the sums of the integrals from
k-l _

r\. o v e r ( J ^ . , w h e r e ^ f a r e t h e / - n e i g h b o u r h o o d s of Q){, z = l , 2 , . . . , / c — 1 .

Using the Cebysev's inequality and putting Σ cf = 1 without loss of gener-
i = l

ality we achieve that dim^A^Nv(A) with the probability tending to 1 as F->oo.
In other words (see Proposition 3) it is asymptotically reliable that NV(A)^NV(A).
But as it is easy to see the inequality NV(Δ)^NV(A) always holds true, hence
it is asymptotically reliable that NV(A) = NV(A) or which is the same NF(zl)

p

— NV(A)—-—»0. In terms of the characteristic functions the last expression

means that
Me^-Mea^HΔ) >0. (13)

8.

The values N\p(A) are measurable with respect to σ-algebras generated by the
process xt (i.e. by the potential) on the intervals 71=(μ0,A1), 72 = (μ l 5/l 2),...,
Ik = {μk_1,λk). Since the distance between these intervals is not less than 21n1 + ε F
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and xt satisfies the exponential mixing condition then the general facts of the
theory of the sums of the weakly dependent random variables (see [10], 19.17 and
18.4.2) yields that

k

7 = 1

(14)

But the values N(^(J) are equally distributed [except the extreme terms N(

F

υ(zJ) and
and besides

2 ^ f ) '-2 ~ t-'
(Proposition 1).

According to (14) we can forget the interdependence of N^} and consider them
independent and equally distributed [the extreme terms N^(zl) and Ny\Λ) give the
asymptotically negligible contributions since their means vanish as F->oo,
/c(F)->oo].

Let us now use the following simple limit theorem.

Proposition 5. Let us have a sequence of the series of independent integer-valued and
equally distributed in each series random values ξnV ξn2,...,ξnn, rc = l , 2 , . . . with

Mξni=-, Ϊ = 1 , 2 , . . . , π . Then for some subsequence {n^} for all / c ^ l there exists
n

Km nP{ξni = k}=pk and as π->oo the distribution of Sn= ^ ξni converges to the

limit distribution with the characteristic function

= lim Meiλs" = e * l ^ { e l \ (15)
Mi —• o o

where φ'(λ)μ = 0 = iλ = i Σ kpk. The limit distribution is the Poisson one with
fc=l

t/iβ parameter λ if p1=λ, p2=p3= ... =0.

Being standard the proof is omitted.
Let us note that in general case the formula (15) defines a complex Poisson

distribution. The vector version of Proposition 5 is also true.

Proposition 5'. // ξnV ξn2, ...,ξnn, n— 1,2,... are a sequence of the series of the

vectors which are independent in each series and take the values in Zv

+, Mξnί= - ,

aeR\, then (it is possible, for some subsequence) there are lim nP{ξnί = k}=pk,

keZ\ and

Σ (e^k)-l)\. (150
[keZX
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9.

Using the formulae (13), (14) and Proposition 5 (5') we immediately come to the
following "half-finished" variant of Theorem 1.

Theorem Γ. For fixed aι<bι%a2<b2^ ... ^an<bn and

lim Mek=ι = r ε z ? . (16)

The limit in (16) exists a priori only for some subsequence {Fj}, FJ—»oo, and the
constants pm, meZ\ depend both on {V^ and {a^b^ i = l,2, . . . ,n .

Theorem Γ roughly speaking states that the point flow Et(V) is a complex

Poisson near Eo on the scale — .

Since the spectrum Et{V) is simple, we think it likely that the word "complex"
may be removed. But we cannot exclude the possibility of the existence of the

groups of Et(V) the distance between which has the order oi — \ and therefore they

will be "glued" by our normalization as F^oo. We need some additional
information on senior moments of NF(zl). The following proposition is obvious.

Proposition 6. We keep the notations of Proposition 5. Let ξni = (ξi

n\\ ...,ξ$) and

+ l,j,l=ί,2,...,v. Then

i.e. the components of the vector Sn are asymptotically independent Poisson random
values with the parameters λp j = 1,2,..., v.

10.

In order to finish the proof of Theorem 1 we are left to verify (by the previous

assertion) that MN*(A) = MNv(A) + o(-\ and

We shall study MNγ(Δ) at great length, the covariance is analyzed similarly
and even simpler. This problem is technically close to [7, Sect. 5], where the
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variance of the spectral measure of H F was studied. In both cases we may reduce
our problem to that of obtaining "good" estimates of the transition density
PE E'(tΛx^1,θ2)9(x,θί,θ2)) of the Markov process (xt,θE(t)9θE,(t)) for the large t
and \Ef-E\<ξl.

Let us note that this process degenerates as E' = E and it is this fact that creats
the main difficulty.

Let us begin as in Proposition 1

M ff AT AT

= M JJ dTxdT2

fί dTldτ2 Σ <ψMEteΔ

v \ i v

j ψ?Eds\l J ψ?E.dι
-v ' ι )\-v ' J

\[dτ,dτ2 ΣE

{EΪ,EJEΔ)

The remaining term R(A) is not greater than

JJ W M W 1 2 JU I V \ I V
' -V Eι*Ejl c ~2 Λ \ C ~2 J

\-r J\-v '

We may divide the last integral into two ones, then choose t= T l5 i.e. r T i E.(TJ) = 1
in the first one and t=T2, i.e. rTi Ej(T2)=l in the second one. According to the
general theory of [7, Sect. 3] (see also [7, Sect. 5]) we finally obtain, that

JίJ dxdθidθ;

= 2F j dT Jί dEdE \\\
V

-V E'>E

('>'>')Λx,π-θi,π-θ2)) (17)

Let us denote the inner triple integral over KxS1xS1 by %T(E,E'). This
Q

integral has been analyzed in [7]. It was established there that ^τ{E,Ef)^~-f -§,
\E -E\
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Θ< 1, uniformly in T. This yields the following inequality we must remember, that

and it is obvious, that the estimate of 3Γ(E5 E) being quite sufficient in [7] is
insufficient for our aim. As a matter of fact, it was proved there that each small

interval of order o (— of axis E with great probability contains not more than

one "massive" atom of the spectral measure. So the mass of this atom is mush
more than the summary mass of all remaining atoms in our interval. In our paper
we have to prove that this interval with great probability contains not more than
one atom.

11.

Regarding the above said the estimate of 3 T ( £ , F ) should be defined more
precisely.

Proposition7. There are C >0, i = l , 2 , 3 and ε > 0 such that uniformly in T:V+T

F-£|% (18)

if V+ T<C1 In K V- T<C1 In V9 then

3 τ ( £ , F ) ^ C 3 | F - £ Γ ε . (18')

Plainly, from (18) and (18') it follows immediately, that

v
RAS2V j dT f 3T(E,E')dEdE'

-V Ax A

V-CίlnV V

= 2V J . . . + 4 7 J ...
- F + CilnF V-CilnV

= o(V~εl2); F->oo. (19)

The termMNF(zl1)NF(zl2), zJ ̂ 2 = 018 estimated just in the same way. Since F
then the term of the kind MNv(Δi) does not appear when computating a mixed
moment therefore,

v
MNF(J1)Nκ(zl2)^2F j dT J 3 τ dEJF-o(F" ε / 2 ) . (19')

-V ΔίxA2

Both the estimates (19), (19') and Proposition 6 yield Theorem 1.

Proof of Proposition 7. Let us enumerate the results on the process (xt, θE,(t), θE(ή).
These results either were established in [7] or define the results of [7] more
precisely.
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Let us put h = E'-E>0.

^ C ^ / i 1 " * 1 , ί > 0 , (20)

(see [7, Corollary 2, 2']), ε1=ε1(ε)->0 for ε->0;
C(t )

β) pE+hJU(x,θvθ2)Λ^A^2))ύ^ t^to>0 (21)

(see [7, Proposition 8])
β') there exists tί>0 such that

g n v (22)

for £ > 2 , ί ^ ;

if
θ£+fc(θ)=θE(°)(modπ)> ί > 0 ; (2 3)

^C3((5,ε3)/z1~ε2, ί > 0 , θE + h(0) = θE(0). (24)

The estimate β;) is stronger than β). The expression (21) is true for {θ1 — Θ2) = θ(h).
The inequalities γ) and γ') were established in a less strong form in [7]. It was
asserted there, that the left hand side term in (23) has an estimate 0(hκ\ K > 0. In
fact it was proved, that κ = l/4 — ε, ε>0.

Let us prove β;) and γ') We shall rely on the ideas of [7]. We consider the
normalized process

It is easy to see that

^ «£2^ t «n2^ t ) s i n 2

(25)

The solution of the last equation has a form

[ + F-E)ds
o z

i-i-}
(25)

Let us note that ^ ( 0 ) = l , £2(0) = 0 and 1^(^)1, |<j;2(t0)|^C(ί0).
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We suppose that \(θE+h-θE)(O)\^ -δ. Then

whence

The values {ζί(t1),ξ2(t1),θE(t1),xti) have a bounded joint destribution density
q{ξΊ,ζ'2,θ\x') (this assertion should be proved with the help of the Hormander's
technique, see [7, Proposition 7]). Therefore, the joint distribution density of
(x^AίίΛwΛ*!)) equals

1 GO

wh(0) --

This inequality yields the estimate β"):

p(t 1 ,(x ) θ 1 ,0 2 ),(x ' ,θ ' 1 ,e ' 2 ))^ τ - τ -ξ^i

If the difference {θE+h — ΘE)(O) is close to —, then the above given discussions are

not true since cos(θE+h — θE)(s) is close to 0 for the small 5. But if E> \\F\\ + 1 =2
then

71

2

(after some time ί0). Applying the Chapman-Kolmogorov equation

and the estimate β") we achieve β').

Remark. If (0£ + f c-0E)(O)« | and 1 + F ( x e ) - £ « O , 5 ^ ί 0 , then (0 £ + f c -0 £ )( 5 ) may

be close to π/2 for all s :§ ί0 (with the small probability). For this case the following
estimate may be established:

n JV*,E(U*AΛ),(*^Λ))
^ C2(ί0)/max (ft, In 1/n |sin (θx - 02)|). - (22')

This estimate is sufficient for the future discussions. For the sake of shortness we
shall suppose that E > 2.
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Let us pass on to the proof of γ). We fix ε > 0 and consider the following two
cases (see [7, Lemma 2]):

a) If t<,h~ε and θE+h{O) = θE(O) = θ, then for some C o

[ί/C 0 ]+l

* Σ
fc=l

We have used Cebysev's inequality and the estimate α). We also have to remember
that the phases and their differences can not change too quickly.

b) Let t>h~ε. We put t' = ί — h~ε/2 and use the obvious modification of the
formula (25'):

+ Jexpί- j .. j ...du

(25")

According to α)

so that

P(x;θ,θ){sin2(θ£+ft - θ£)(ί) <0} ^Ch1~e' + M(xΛΘ)P(xt,, θE+h(f), θE(t'))(Ah),

Ah = {sin2(θE+k-θE)(t)<0,Ωh},

where

But by Fiirstenberg theorem (see [7, Corollary 1 and Lemma 2]) 3(3,3^^ >0) such
that

Since

on Ωh and M^2~S2(i)^C(fi2) then repeating the discussions of a) we obtain that
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The last expression means that

P ( J C,M ){sin2(0E + Λ-0E)(O>O,ΩΛ}

= p (*, Θ, β) {sgn sin (θE+h- ΘE) (ί) = sgn cos (θE+h- ΘE) (ί), Ω J

From this estimate we obtain γ). The inequality γ') should be established just in the
same way.

Now we should prove the important estimate of the transition density

Propositionδ. a) If (θ'1—θ'2)modπe[Ch9π — δ'] then there exist to = to(C,δ) and
Cλ = C^C, ε, δ) such that

b) If(θ'1—θ'2)modπe[π — δ,π'] then 3(a,δ1>0) such that

PE+h,E(t, fe θ, θ\ (x'9 θ'v 0'2)) ^ C^δjh3* (27)

/or ί > α In 1/h.

The proof of the case a). By Chapman-Kolmogorov equation

for τ < ί.
Let us note that the formula (25) yields that

Iθl-θ^sciφ.-θ.i-c^h
hence

for

δ

2
(θE+h-θE)(t)modπe[Ch,π--

and for sufficiently small τ = t0. Using the estimates β'), γ') [or α)] for θ\ — θ'2 e (0, δ)
and the Cebysev's inequality we obtain (26). The similar discussions are applicable
to the case when θ\ — θ'2e(π — δ,π). But in this situation they give us the estimate

U majXφ[_θ)} -> (28)
which is insufficient for our aim.
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To prove b) we should choose the intermediate point τ depending on
s i n ^ - θ y . If

τ = α In I/max (h, sin (θ\, θ'2))

then according to (25) for the sufficiently small α

ξ2{t-τ)=
t—τ In

if

[since cos(θE+h — θE){u)<Q]. Moreover, by Fϋrstenberg theorem (see above)
3(δ2,δ3>0):

But then 3(κ1,κ2>0):

Applying the Chapman-Kolmogorov equation, the estimates β') and (28) (for the
sufficiently small ε) we have (27). We have proved Proposition 8 and 7 and
Theorem 1.

The more attentive analysis of (27) shows that we may put δ1 = 1 — θ for every
θ>0.

Propositions 7 and 8 gives us the additional information about the structure of
the wave functions. We introduce the following functional of the "conductivity
type"

ί r2

Eir
2

Ej(s)ds. (29)
v

The formulas (26) and (27) yield

Theorem 2 ("on the repulsion of the wave functions"):

E' E

<SV(E', E) ——•» j J ρ(e\ e)de'de, (30)
^°° o o

where

ρ(e\e)= j πe.tβ{x,θl9θ2)πe.te{x,π-θ19π-θ2)dxdθ1dθ2

density" ρ(e\e) characterizes "the mean interaction" between those the wave
functions the levels of which are close to e' and e resp.
Remark ί. From Theorem 2 it is easy to obtain the following well known fact,
namely, for the null temperature and direct current the conductivity σ(E0, Eo) of
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the one-dimensional random Markov structure equals zero (Eo > 0 is the Fermy
energy). Moreover, σ(E0, Eo -f ω) = 0{ω% ε>0. Plainly, the more precise estimates
of σ(E0, Eo + ω) can not be achieved when using QV(E\ £). We hope to analyse a
conductivity in the our future paper.

Remark 2. The generalization of Theorem 1 for the multidimensional case is the
most difficult problem since it is very likely that the wave functions in Rv, v ̂  3 are
not localized. However the analog of Theorem 1 takes place in some degenerated
situations.
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