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Abstract. A theory of graded Banach modules over a Banach-Grassmann
algebra is developed and applied to differential geometry of super-manifolds.
The explicit structure of superspaces carrying Poincare supersymmetry and
extended supersymmetry, including central charges, is described.

1. Introduction

Recently Alice Rogers [1] introduced a concept of supermanifold which seems
to have some advantages over previous approaches. The idea is to fix a Grassmann
algebra BL (the number of odd generators L being possibly infinite), equip it with
a Banach norm, and then work with Banach manifolds exploiting at the same
time the Grassmann algebra structure. The present paper is inspired by this
idea with the aim of improving a few unsatisfactory aspects of [1] and showing
on explicit examples of physical interest how this theory works in practice.

After analysing the mathematical structure involved in [1] we have found that
there are only few properties of BL which really matter. Therefore we have in-
troduced a concept of a Banach-Grassmann algebra Q (Sect. 3) which, in general,
need not have a denumerable set of odd generators. The most important property
of Q (apart of the fact that Q is Z2-graded: Q = Qo® Q^ is its self-duality (see
Definition 3.1a). So, we work with the category of graded Banach modules over
Q, the fundamental principle being that of Q0-linearity of all linear maps. Once
the category is fixed and fundamental principle taken into account, all the theory
becomes simple and quite elegant. In particular the tangent bundle of a super-
manifold has exactly the same meaning as in ordinary differential geometry.
Tangent vectors are tangent to one-parameter curves, and vector fields generate
flows along their integral curves. Appealing to derivations is possible but not
necessary. "Odd" vectors are well-defined geometrical objects, and can be cons-
tructed at any given point from tangent vectors in a canonical way, their only
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role being that of providing a finite Q-module basis if such a basis is, at some
step, convenient to use. Section 7, where geometrical structure of supersymmetric
superspaces is described, may seem unnecessarily complicated but it was written
so as to illustrate this point of view. When we talk there about vertical and hori-
zontal subspaces, they are really two complementary subspaces of the tangent
space, one having a finite gπ-module basis while the second not. When we talk
about principal or affine connections we do mean integral transport along path.
And when we discuss symmetries, we mean diffeomorphisms of the manifold
which transport fibers into fibers, preserve scalar products, preserve Q0-module
structure of tangent spaces etc.

We do not discuss problems of supergravity here, but from our discussion
of supersymmetric superspaces a local geometrical meaning of supergravity
theories should be clear: a curved superspace is a superspace of which each
tangent space has exactly the same structure as a typical tangent space of the
supersymmetric one. Although we do not touch global questions in this paper
(Proposition 5.5 being the only one related to global problems), one should bear
in mind that even unquantized supergravity can produce effects which are far
from being purely classical ones: there can be regions of superspace where, owing
to curvature effects (here by "curvature" we mean a general nonintegrability
of vertical and horizontal distributions), a quotient real four-dimensional mani-
fold of General Relativity fails to exist. Equivalently, one can meet singularities
in space-time which are not at all singularities in superspace.

2. Algebraic Preliminaries

This section consists mostly of definitions and statements which are immediate
consequences of these definitions. We deal here with graded Banach modules
over graded-commutative Banach algebras. All gradings of this paper are Z 2

gradings, and we simply use the term "graded" to mean "Z2-graded". The indices
r, s always run over Z 2 = {0,1}, and sums like r + ... + rk are always understood
mod (2).

A Banach space F over K(K = U or C) is called graded if two complementary
subspaces F0,F1 cz F are distinguished so that F — Fo® Fx as a vector space,
and such that the canonical projections Pr:F -* Fr are continuous.

For each graded Banach space F the canonical involution J : F -+ F is defined
by J = PQ - pί, so that asFr if and only if J(a) = ( - l)rα.

If F 1 , . . . , Fp are graded Banach spaces, then the canonical involutions Jί

9...J
p

determine the involutive linear map J = J 1 (x) ...®JP of the algebraic
tensor product F1 Q ...QFP. If F' is also a graded Banach space, and if
f'.F1 x ... x Fp -> F is a p-linear map, then/can be considered as a linear map
/ .F1 O .. Θ Fp -• F . One defines then two maps 2/r = / r = / + ( - 1 )rJ'fJ{r = 0,1),
where J' is the canonical involution of F , so t h a t / = / 0 + / x . The map/is called
even (resp. odd) if / = / 0 (resp./=/ 1). It follows that a p-linear map / is
even (resp. odd) if and only if
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where 1/ eF* {i = 1,... ,p), and r = O(resp. r = 1).
A p-linear map f'.Fx ... x F -> F' is graded symmetric (resp. graded skew-sym-
metric) if

where ^ . e F | . ( i = 1, ...,p),fc= l , . . . , p - 1, and r = O(resp. r = 1).
A graded-commutative Banach algebra is a Banach algebra β (with, or without

unit) which is at the same time a graded Banach space β = β 0 Θ Qί such that

(i) aras = (-rasareQr+s, areQr,aeQs,

The canonical involution J is then an isometric automorphism of β.
Let β be a graded-commutative Banach algebra, and let F be a graded Banach

space. If F is also a left and right β-module such that

for α^eβ^, ί; seF s, and if the map β x FB(CL, V)\-+ aveF is continuous, then F is
called graded Banach Q-module. Observe that if F is initially endowed only with
right (resp. left) β-module structure, then the above formula can be considered
as a definition of the left (resp. right) action of β on F.

It should be noticed that every Q-module can be always considered as a
β0-module. The most important β0-modules we shall deal with are

eo> δ i ' δ m ? " = ( β o r ® (QiY, Q*rn = (δ i ) m ® (δ o )"

The elements of βm'"(resp. QΛ n) are sequences (aA)A = ί m + n, written also as

(^ f lVi,...,»;«=i,..,n> w i t h a"eQo a n d α α e β 1 ( r e s p . α ' i e β ϊ ; α β 6 β 0 ) . The norm

is given by || a \\ = ΣII QA II The symbol | A | means 0 for A = μ, 1 for A = α. The

most important graded Banach β-modules are the modules β m + n graded by

(6m +")o = 6m'"5 (6m +")i = βΛ>B-

The elements of β m + " are represented by sequences (αi4)^ = l f...> m + w with α^Eβ.
The group of invertible βo-linear maps βm '" -• βm '" is denoted by GL{m, n).

Let F\...,FP,F' be graded Banach β-modules, and let/ F 1 x ... x Fp -•F'
be a continuous ^-linear map. Then/is called left p-Q-lίnear if

where i/.eF^i = 1,... ,p), k = 1,... ,p, and α r e β r . The space of all continuous
left p-β-ίinear maps, denoted by L^F1,... ,FP;F') and graded

according to whether a map is even or odd, is a graded Banach β-module with
its β-module structure given by

(fa)(v1

9...9v
p)=f(v\...9v

p)a9

for α e β , tfeFXi = 1,... ,p). Similarly the space L K (F X , . . . , F P ; F ) of all continuous
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right p-g-linear maps g\Fι x ... x Fp -» E' is a graded Banach Q-module with
its Q-module structure defined by

{ag)(v\...,υp)±ag(v\...,vp).

IϊfeLL{R)(F\ ...,FP ;£'), then/' defined by (fr)' = (JJ°f, where f is the canonical
involution in F\ is an element of the space LR{L ( F 1 , . . . ,FP;F'). In particular
LL(Fί,...,F";Fχ = LR(F1,...,F";F') = LLR(F\...,F";F')0.

Let Eί,...iE
p be Banach Q0-modules (ungraded), and let F be a Banach

graded Q-module. Then L ( £ \ . . . ,EP\F) is the graded Banach Q-module of all
continuous p-Q0-linear maps from E1 x ... x Ep to F. The grading is given by
L(E\ ...,EP \F)r = L(E\ ...,EP ;Fr). If £ is a Banach β0-module, then the graded
Banach g-module L(E Q) is denoted by E\ If E, E' are Banach β0-modules and
if/eL(£;£'), then feLLR(E* \E\ is defined by

(f\ω))(v) = ω{f(v)l ωeF1", υeE.

The map/i-*/ 1 from L(E ;£') to L L Λ (£ ; t ;£?)<, is βo-linear and || f || ^ | | / 1 | . The
graded Banach β-module LR(E^ β) of all continuous right Q-linear maps w: Is1" -> Q
is denoted by £ n . Each element υeE determines the element vneE^ given by

v^(ω) = ω(v\

The map v H> V^ from £ to £ n

0 is Q0-linear and H^̂ H ^ | |t; | |. The above
construction is analogous to that of complexification of a real vector space.
One starts there with a real vector space E and considers the space £ τ of all real
linear maps from E to C. The space E r carries then already complex structure,
so that £ n is naturally defined as the space of complex linear maps from £ f to C.

3. Banach-Grassmann Algebras

Let Q be a graded-commutative Banach algebra, and consider Q as a Banach
graded β-module. The product map (a9 b) H ab can be then interpreted as a
graded symmetric element of L2

LR(Q;Q)0. In other words Q is endowed with a
canonical, even, Q-valued bi-Q-linear form. One may therefore ask whether Q
is selfdual or not. Selfduality is one of the two requirements each Banach-
Grassmann algebra should satisfy (see Definition 3.1a and Proposition 3.1 ii). The
second important property we require is that the odd elements of Q generate
all the algebra except of its scalar part.

Definition 3.1 A graded-commutative Banach algebra Q over K(K = U or C)
is called Banach-Grassmann algebra (BG-algebra, in short) if
(a) For each continuous βo-linear m a p / β^ -> Qs there exists a unique element

ueQr+s such that || u \\ = || / || and f(a) = an (equivalently, f(a) = ua) for all

r

(b) Q0 = K® β'o, with || λ + 51| = || λ || + || s II for λeK, seQ'o, where Q'o denotes the
Banach subalgebra of Qo generated by even powers of elements of Q1.

Remark. It follows already from a) that K c QQ. We do not know to what extent
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a) implies b). One can prove (see [2]) that the graded Banach algebra B^ cons-
tructed in [1] is a BG-algebra.

The following Proposition points out the most important properties of any
BG-algebra.

Proposition 3.1 The following properties hold for any BG-algebra Q.
(i) For each α e β ,

in particular if ay = 0(resp. ya = 0) for all yeQ1, then a = 0.
(ii) For each/eL L (Q;0 r (resp./eL R (β;g) r ) there exists a unique element ueQr

such that

f{a) = au (resp. f(a) = ua\ aeQ.

(iii) For each element aeQ' = Q'0Θ Q x, and for each 0 < 0 < 1, there exists α ̂  0
such that

| |α w | | ^aθn for n = 1 , 2 , . . . .

(iv) The spectrum of every element α e g consists exactly of one point σ(a)eK,
and the map σ: Q -• K is a unique non-zero character of β.
(v) An element aeQ is invertible if and only if σ(α) ̂  0. Then

where s(α) = α — σ(α)eβ/.
(vi) For each go-linear, not necessarily continuous, m a p / : β 1 ^ β one has
σ(f(y)) = 0 and/Mz +f(z)y = 0 for all y, zeQ1.

Proof, (i) is just an explicit expression of the fact that the norm of/ αHαw is

|| u II. To prove (ii) observe that, since/is in particular βo-linear, (a) implies that

there exist two elements u,ueQr such that/(α s) = asιι for aseQs. But/is assumed

to be also left Q-linear. Therefore for every yeQι we have

s rί \ rί \ i \S+1 s + 1

yasu = yf(as) =f(yas) = (yaj u = yas u ,
and (i) implies that u = s u . The property (iii) follows by observing that Q' has a
dense subspace of nilpotents (owing to b), and then the proof of Lemma 2.7b of
[1] can be applied verbatim. The map σ: Q -• K is uniquely defined by a = σ(a) +
s{a\ with σ(a)eK, s(a)eQ\ and σ is evidently a non-zero character of Q. It follows
that if a~x exists, then σ(a) Φ 0. Conversely, if σ(a) Φ 0 then the series in (iv) con-
verges by (iii), and therefore a~γ exists. Thus σ(d) is the only point of the spectrum
of a. If σ' is a continuous multiplicative linear map from Q to K, then σ' annihilates
all nilpotents and consequently it annihilates Q'. Being non-zero it has to coincide
with σ. Finally, if/: Qχ -• Q is a βo-linear map, then for every y, z, xeQ1 we have
f(y)zx =f{yzx) = —/(z)yx, and (i) implies/(j/)z +/(z)j; = 0. In particular/(y)j/ = 0.
If σ(f(y))φθ, then by (v) f(y) is invertible and consequently y = 0 which is a
contradiction. Therefore σ(f(y)) = 0. •
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4. Vector Superspaces

Vector superspace is essentially Qmn (or Qmn,resp. Qm + n) with understanding
that two elements related by a transformation from GL(m, n) represent the same
abstract vector but in two different coordinate systems. Since Qmn is a 2 0 " m °dule
which is not finitely generated, we are forced to use coordinate systems rather
than bases. However, as we shall see, a general method of imbedding a vector
superspace of the type Qmn into a vector superspace of the type Qm+n exists.
Since Qm+n is finitely generated β-module with m + n generators, a difference
between bases and coordinate systems is not an important one. Our reason for
investigating vector superspaces of the type Qmn is of geometrical nature: tangent
spaces to supermanifolds are of this type, and although one can always construct
the graded tangent space of the type Qm + "5 the "odd tangent vectors" are not
tangent any longer (a more adequate intuition should picture them as being
orthogonal to supermanifold). The main objective of this section is to show a
mechanism by which every vector superspace acquires its odd counterpart.

Definition 4.1. An (m, n) (resp. (m, ή\ resp. (m + n))-dimensional vector superspace
is a pair (E, Φ), where £ is a set and Φ is a non-empty family of bijections (called
coordinate maps) Φ3φ:E -> Qmn(resp. Q™", resp. Qm + n\ such that for every pair
φ,φfeΦ we have φ'°φ~1eGL(m, n). If (£, Φ) and (F, Ψ) are vector superspaces of
the same dimension, then an isomorphism between (£, Φ) and (F, Ψ) is defined as a
pair (i,j) of bijections i:E-+ F and j : Φ - > Ψ, such that j(φ)°i = φ for all φeΦ.

The simplest examples of superspaces are Qm'n, Qm'n and Qm+n. They will always
be endowed with just one coordinate map—the identity map. In the following
the term "vector superspace" will denote a vector superspace of some finite
dimension. Observe that a vector superspace of dimension (m, n) can be also
considered as having dimension (n, m), and vector superspace of dimension (m + ή)
can be also thought of as having dimension (m + n,m + ri) and a restricted family
of coordinate maps. A distinction between the three types is, however, convenient
when one deals with different superspaces constructed out of a given one.

If (£, Φ) is a vector superspace, then Φ can be uniquely completed to Φ' -=> Φ
so that for each ΛeGL(m, n) there exist φ,φfeΦ such that φΌφ'1 = Λ. Although
such a completion is always possible, we shall not demand of Φ to be complete.
If E is endowed with an additional geometrical structure (like metric and/or
torsion tensor), then natural restrictions on coordinate systems can be imposed.
Usually, however, the set {φ'°φ~ι :φ, φ'eΦ) is a subgroup of GL{m, n).

Let (£, Φ) be a vector superspace. Each element φeΦ induces on E the Qo-
module structure: av = φ'1(aφ(v)% aeQ0,veE. It also induces the Banach norm
II v II == II Φ{v) II If Φ is replaced with φ'eΦ, then the induced Q0-module structures
coincide, and the induced Banach norms are equivalent. In this sense each vector
superspace will be considered as a Banach β0-module. If (E, Φ) and (i7, Ψ) are
vector superspaces of the same dimension, and if j : Φ -> Ψ is a bijection such
that KΦ'Wφy1 =Φ'Φ~1 for all φ,φ'eΦ, then i=j(φ)~1oφ is independent of
φeΦ, and is a Q0-linear bicontinuous bijection from E to F. The pair (ίj) is then
an isomorphism between (E, Φ) and (F, Ψ).

Let (E, Φ) be a vector superspace of dimension (m, n) and let £ f be the dual of
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the Banach β0-module E. Given φeΦ and ωeE\, the map ω^φ"1 :Qmn -> Qr is

continuous 2 0 ~ n n e a r Therefore there exists a unique element (coA)e(Qm + n)r

such that

r

It is evident that the map φt :COH>(UJA) from (E^\ to (Qm +") r is an isomorphism
of Banach Q0-modules. Moreover, given φ, φ'eΦ, we have

fooφ'iy^φΌφ-i
o i

on (Qm + n\. Let Φf = {φ^@ φ] :φeΦ). Then (£*,<*>*) is a vector superspace of
dimension m + n, and every coordinate map φ* :E^ -• g m + n is an isomorphism
of graded Banach right Q-modules.

We note here the following isomorphisms which follow immediately from
Corollary 3.1 and Proposition 3.3.

Proposition 4.1. Let £, F be vector superspaces of dimension (m, n) and (rri n')
respectively. Then the following Banach Q0-modules are isomorphic (we denote
by the same letter / two maps related by the isomorphism).

(i) L(E;F) ^ LR{F^ ;E^)0 ^ L(F\ Ej), the isomorphism being given by

ω(f(v)) = (f(ω))(ωl ωeF\ veE,

(ii) L2(E;Q0) = L(E;E^0), the isomorphism being given by

(iii) L2(E;F) ^ L(F !

0 ;L(£, E^)), the isomorphism being given by

D

Let (E, Φ) be a vector superspace of dimension (m, n), and consider the second
dual E f t of E. Every coordinate map φeΦ defines the coordinate map (/)n:wK (w/1)
from £ n to (β m ' n ) n ^ Qm + " by

Iϊφ,φ'eΦ, then φ'^oφtΐ- i = φfoφ-\ andif t;e£, then φ^{υn) = φ(v). It follows
that £ n = E n

0 © £ t ΐ

1 is a superspace of dimension (m + n), and £ can be canoni-
cally identified with E n

0 . The vector superspace £ n

x of dimension (m, n) will be
denoted by E and called the odd complement of E. The second dual £ n under-
stood as £ θ £ will be denoted by E.

Proposition 4.2. Let £ be a vector superspace of dimension (m, n\ and let
ωeL(E,Qr). There exists a unique map ώeL(E;Qr+1) such that ώ =

Proof. Choose a coordinate map φ9 and identify £ with Qmn and £ with Qm'".
Then ω is represented by (ω^)e(gm +") r so that
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Define

vΛωΛ9 veE.

It is then easy to see that ώ satisfies the statements in the Proposition. •
The following important Corollary is an easy twofold generalization of the

above result.

Corollary 4.1. Let E 1 , . . . , Ep, F be vector super spaces, and let/el/XE1,... ,EP F).
For each subset K C= {1,... ,p} there exists a unique ωκeL(Ev,... ,EP> F)—where
Ew = Ek if keκ9 Ekf = Ek if kφκ9 and F' = Fr with r = §(1 - ( - I)*"*)—such that

ω = Θ ω κ eL L (E 1 , . . . ,EP;F)O. If E 1 = ... = E p and ω is symmetric (resp. skew-

symmetric), then ώ = ωφ is skew-symmetric (resp. symmetric), and ώ is graded

symmetric (resp. graded skew-symmetric).

It is important to notice that while a vector superspace E of dimension (m, n),
with n ^ 0, do not admit a finite Q0-module basis, its second dual £ is a finitely
generated free β-module. Namely, given a coordinate map φ:E-+ g m n , the
vectors eμeE(μ = 1,..., m) defined by ^ ( e ^ = <5̂ , and the vectors eaeE(a = 1,... ,n)
defined by 0(eα)^ = <5̂ , form up a finite (left) Q-module basis for E. This fact is an
important technical advantage of exploiting the odd complements of vector
superspaces.

We shall define now the underlying vector space of a vector superspace. Let
{E,Φ) be a vector superspace of dimension (m, π)(resp.(m, ή)\ and let ε be the
closed subspace of E consisting of all vectors veE for which σ(φ(v)) = 0 for all
(equivalently: for at least one) φeΦ. The quotient space E = E/ε is then an m-
dimensional (resp. w-dimensional) vector space over K called the body of E. The
canonical projection E-> E will be again denoted by σ. Each coordinate map
φeΦ defines the isomorphism φ of E onto Xm(resp.Xn). If (E, Φ) and {F, Ψ) are
vector superspaces of dimensions (m, n) and (m', rΐ) respectively, and iϊfeL(E;F\
then σof annihilates ε and therefore defines a linear m a p / : E -> F such that σo/=
/°σ. The K-linear map/is called the even body of/ The odd body of/ is defined
as / and is a X-linear map from σ(E) to σ(F). In coordinates / is represented by
the matrix σ(f^') while/is represented by the matrix σ(/α

α').

5. Supersmooth Functions

In this section we introduce the concept of supersmoothness of functions from
Qmn to Q. Our discussion of superdifferentiability is simpler than the one given
in [1]. In particular, knowing already that a function/is a C00 map between
Banach spaces, we need only to look at its first derivative to know whether / is
supersmooth or not, while in [1] an investigation of all derivatives was necessary.
Nevertheless the two concepts, ours of supersmoothness, and G00-differentiability
of [1], are equivalent.

We take it for granted that the reader is acquired with elements of differential
calculus on Banach spaces (a useful reference text-book being [3]). For the
sake of convenience we recall that a function f:E->F from a Banach space E
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to another Banach space F is differentiable at xoeE if there exists a continuous
linear map (Df)(xo):h-> (Df)(xo)-h from £ to F such that

f(x0 + h) ~f(x0) = (Df)(xo)'h + 0(ft),

where 0(h)/|| h || -> 0 with h-+0. If / i s differentiable at every point x in an open
neighbourhood of x0, then one considers the function x H> (Df)(x) from £ to the
Banach space i?(£;£) of all bounded linear operators from E to £, and/is said
to be twice differentiable at x0 if Df is differentiable at x0. The second derivative
of/at x 0 is then defined as the first derivative of D/at x0 and denoted by {D2f)(x0).
It follows that D2f is a function from £ to JSf(£;JSf(£;F)). One then identifies
J^(£;J^(£;£)) with J^ 2 (£;£) by writing {(D2f(a))>h)'h! = (D2/(α)) (/i, /z') much in
the same way as the second derivative of a function/: Un -> IR can be considered as
a bilinear map from Un to U given by

(h,h')^dμj(a)h"h'\

If D2/exists and is continuous in a neighbourhood of x o e £ , then the bilinear
map D2f(x0) is symmetric (partial derivatives commute). If Dnf(x) exists for all
xeU c £ and n = 1, 2,..., then/is said to be C°°(lO Dnf(x) is then a symmetric
p-linear map from £ x ... x £ to F.

Definition 5.1. Let Q be a BG-algebra, and let (7 be an open subset of βmΛ A
super smooth function on U is a smooth (i.e. C00) m a p / : (7 -> Q such that Df(x)e
L(Qm'n;Q) for all xelΓ (i.e. D/(x) is required to be not only linear but also Qo-
linear).

Observe that if/and g are two supersmooth functions on U, t h e n / + g,fg, and
J °f are also supersmooth. These operations make the set of all supersmooth
functions into a graded commutative algebra denoted by Q(U). The algebra
β ( l θ contains Q as the subalgebra of constant functions. Therefore Q(U) is also
a graded β-module.

A function f:U -> Qm>>n' is called supersmooth if all its components/^ :
U -* 6μ' | a r e supersmooth. The set of all such functions is denoted by Q(U ;Qm'n)
and is an 6((7)0-module.

Proposition 5.1. Let f:U -> Q be a supersmooth function defined on an open
subset U cz gm'". Then for each integer p= 1, 2,..., and for each xe(7, we have
D*f(x)eIf(Qm'n;Q).

Proof. We prove it by induction. Suppose we already know that Dp~ίf(x) is in
L p - 1 (e m " I ;6) for all x e l λ Then, given xQeU, we have Dp/(x0) = D(Dp~1/)(x0),
and therefore Dpf(x0) is a continuous linear map from 6m 'n to Lp~ί(Qm'n;Q).
Interpreted as a p-linear map from Qmn to Q it is Q0-linear with respect to p — 1
variables. Since Dpf(x0) is symmetric, it follows that it is automatically Q0-linear
in all of its p variables. •

Definition 5.2. Let feQ(U) and xeU<=:Qm>n. We already know that Dpf{x)e
LF{Qm'n β) and therefore (Proposition 3.2) there exists a unique family uAi A (x)
of elements of β such that
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for all t. - (ί/*)eρm'n(i = 1, 2,... ,p). We define then

dpf(x) . , ,
——^— A — uAi A (x).

Proposition 5.2. If/eQ(U) then the functions

are also in Q{U\ and

8Al...Apf=9Aι(dAl...Arf).

Moreover

3 f=( — l ) | v 4 k l ^ k + l ' 5 f
Ai...AkAk+ \...ApJ ^ ' A\...Ajc+ xA-k-.-ApJ'

Proof. With y41?...,y4p fixed, the map g-+gAί_Ap from Lp{Qmn;Q) to β defined
in Proposition 3.2 is Q0-linear and continuous. Therefore the function dA A f
is also supersmooth. Then the statement follows by a standard application of
the theorem on differentiability of compositions of differentiable mappings of
Banach spaces. The last formula is a direct consequence of commutativity of
partial derivatives. •

We note at this place a lemma which will be useful in the next section.

Lemma 5.1. Let U cz Qmn be an open ball, and let xoeU. For every function
feQ{U) there exist functions gAeQ(U)(A = l,...,m + ή) such that

a) /M=/(xo) + (^-*o)£»

b) 0 > o ) = (^/)(*o)

Proof Define

and apply the Taylor's Theorem [3]. D
Suppose now/is a supersmooth function from Qmn to Qm'>n\ i.e. all the compo-

nents/^4 :Qm'" -> gμ,| are supersmooth. Then

is a matrix with entries/4

β'(x)Gβμ| + ) β / |. If g:Qm''n' -> Qm">n" is also supersmooth
then

In particular, when nϊ — m,n' = n and/" x exists and is supersmooth, then

JA \J >W
 υA-

Proposition 5.3. (Inverse function theorem) Let V c Qmn be an open set, and
let feQ(V, Qmn). Suppose the matrix o{fA

B{x0)) is invertible for some xoeV.
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Then there exists an open neighbourhood U a V of x 0 such that the restriction
of/to U is a homeomorphism of U onto an open neighbourhood of y0 =/(x 0 ).
Furthermore the inverse mapping g oϊf{U) onto U is also supersmooth.

Proof. By Corollary 3.1 the map (Df){x0) is invertible and therefore the standard
inverse function Theorem [3] implies that (Df)(x) is invertible for xeU, that
geC™(f(U);U) exists, and (Df(x))o(Dg(f(x))) = idv(x). Then (Dg)(y\ being
the inverse of a Q0-linear map Df(x\ is also Q0-linear, and therefore g is also
supersmooth. •

The rest of this section deals with the problem of natural domains of definition
of supersmooth functions and the following results, although important for
clarifying the structure of the sheaf U -»Q(U;Qm ") of supersmooth maps, will
not be used in Sects. 6 and 7.

Definition 5.3. For each subset W c Qmn let W~ denotes the set σ~1(σ(W)) i.e.

A=ί

A set WdQmn is called σ-convex (resp. σ-connected) if for each aeW the set
{a}~ nW is convex (resp. connected).

Proposition 5.4. Let U a Qmn be open, σ-connected, and let /eβ(l/;Q m ' " ' ) .
Then

(i) if a,a'eU and σ(a) = σ{a'\ then σ(/(α)) = σ(/(α'))

(ii) /admits a unique extension/" eQ(U~ ;Qm '")

(iii) σ(/-(l/-)) = <7(/(E/)).

To prove that above Proposition we shall first establish two Lemmas.

Lemma 5.2. Let U a Qmn be an open set. Then for each aeU~ there exists cεU
such that hΛ =aA — cA are nίlpotentsfor A = 1,..., m + n.

Proof If ae U~ then there exists be U such that σ(aA) = σ(bΛ)(Λ = 1,..., m + n).
Let δ > 0 be such that the open ball centered at b and with radius δ is contained
in U. Since aA — bAeQf

0 for A = l,...,m, it follows that there exist nilpotents
hAeQ0 such that || aA - bΛ - /r41| < δ/m. Let ĉ 4 = aA - hA for y4 - 1,...,m, and
(T4 = bA for v4 = m + 1,...,m + w. Since || c - b \\ < δ it follows that ceU. •

Lemma 5.3. Let U c βm'" fee open σ-convex, and let fe Q(U Qm >n'). Then f admits
a unique extension f~~eζ)(U~ ;Qm '"'). // F ^ (7 is also open and σ-conί ex, ίήen
(/| vy =f~ I F~. Moreover σ(f~ (U~)) = σ(f(U)).

Proof Take any aeJJ' and let h\A = 1,... ,m + n) be nilpotents such that
c = a — heU. Let

the series being finite since hA are nilpotents. It is easy to see (compare proof
of the Proposition 2.11.C in [1]) that fh~(a) is independent of a choice of nilpotents
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hA as long as a - heU. Therefore, with h fixed, the above formula defines /"(•)
in a neighbourhood of a. It follows that / ~ is supersmooth. Any other super-
smooth extension of / coincides with / ~ owing to the Taylor formula and σ-
convexivity of U. From the uniqueness of the above extension it easy follows
that the extension and restriction maps commute. Finally if aeΌ then/~(α) =
f-(a) and therefore σ(/"(α)) = σ(f-(a)) = σ(f(a - h))eσ(f(U)). D

Proof of the Proposition 5.4. For each ae U let U(a) a U be an open ball centered
at a, and let, for each be [ T , V(b) = {aeU:beU(a)~}. With beU~ fixed we shall
first show that the map a\-+(f\U(a))~{b) is constant on V(b). Indeed, suppose
a,a'eV{b) i.e. there exist ceu{a\c'eU{a') such that σ{c) = σ(c) = σ{b). Then,
since ceU{a)nU(c)9 it follows that be(U{a)nU{c))~. But (Lemma 5.3.)
(f\U(a)y\(U(a)nU(c)Γ =(f\U(a)nU(c)Γ = (f\U{c))-\(U(a)nU{c)Γ, andso
(f\U(a))-(b) = (f\U{c))-(b). Similarly {f\U{a')Y(b) = {f\U{cf))-{b). We have
therefore to show that (/j U(c))~(b) = (f\U(c'))~(b). The set b~ n U is connected

and {b ~ n U(a): a e V(b)} is its open covering. Therefore there exist cί,...9cke V(b)

such that c1=c9 ck = c' and Uicjn U(ci+1) φ φ. But then (f\U(cί))~(b) =
( ( / | l/(C l))- I U(Cl)n U(c2))')(b) = (/| t/(c2))-(ft) = . . . = ( / | l/(ck))-(t).Inthis way
we have defined f~{b) as (/|l/(α))"(b) for some aeV(b). It is evident t h a t / "
so defined is supersmooth since (f\ U{a))~ defines not only/~(b) but also/"(£>')
for all b'ΈU{a)~. Let now g be some other supersmooth extension of/ Then
g{b) = (gI U(a))-{b) = (/1 U(a))~{b) =f~(b\ and therefore / " is unique. We also
have σ(f~(b)) = σ((/ | C/(α))~(f?) c σ(/(ί/(α))) by Lemma 5.3. It remains to show
that for a, del] such that σ(α) = σ(a') we have σ(f{a)) = σ(f(a')). Observe that
the segment {ta + (1 — td :0 ^ ί ^ 1} is contained in l/~. Then by Lemma 5.1.,

f(d) =/"(α ' ) =/-(α) + (α - α ^ ( α ' ) =f(a) + {a! - a)AgA(a),

and therefore σ(f(a')) = σ(/(α)). D
It follows from the above result that a natural domain of definition for a

supersmooth function/: Qmn -> Q is a set of the form σ~ ^t/), where 1/ is open in
Um. If/is defined on such a set, then by the Taylor's Theorem there exist uniquely
defined supersmooth functions /α α (x) such that

f(χμ,(n= Σ V ' ^Λ,....̂ ,̂ ).
P = O ^

with/α i αιCCι+1 α = — / αι + i α ι α Therefore a dependence o f / o n its odd

arguments is rather trivial. It is more difficult to investigate analyticity properties

with respect to the even arguments. Suppose/:Qm '° -• Q is supersmooth, defined

on σ~\U) c Qm'°, ί7 c [Rm, and let/denotes the restriction of/to C7 c Rm c βm'°.

It is easy to see that (d^ f)~= dμι μ f where the derivatives on the right-hand

side are with respect to m real variables. In particular feC^iU). It is also easy

to prove that the map f\-+f from Q{σ~\U)\Q) to C°°(l/;Q) is ίnjective. Namely,

if/ΞΞθ, then ( ί μ i ^ ^ = 3 ^ J Ξ O . Let aμ{μ = 1,... ,m) be nilpotents and

let Ae U. Then A + ίαeσ" \U) and'by the Taylor's Theorem
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Therefore/vanishes on a dense subset of σ-1(/l). It follows thatf= 0 on σ~1(C7).
One can show that the map/-»/is not a surjection onto C°°(Ϊ7;<2). On the other
hand an analytic function can be always extended from an open ball U cz Um

to σ~1([/)cz Qm'°. A precise characterization of the range of the map/H^/is
however not known.

6. Supermanifolds

Our definition of a supermanifold (apart of the fact that we allow Q to be an
arbitrary BG-algebra) is equivalent to that given in [1]. What differs the two
approaches is a treatment of tangent bundles. We define tangent space in quite
a conventional way and then apply the extension procedure developed in Sect. 4.
The reader is assumed here to be familiar with elements of the theory of Banach
manifolds, the recommended reference being [4].

Definition 6.1. A supermanifold is a Banach manifold M modelled on <2m",
and with a supersmooth atlas Φ of local coordinate maps φ. For each open set
ί / c M w e denote by Q{U) the graded algebra of supersmooth functions on U.

Given a point peM let c, c'be two C1 maps from an open neighbourhood of
Oe U to M, such that c(0) = c'(0) = p. We call c and d equivalent if for each (equiva-
lently, for some) coordinate system φ around p, the functions φ ° c and φ ° d have
the same derivative at OelR. The equivalence classes for this relation are called
tangent vectors at p, and the set of all tangent vectors at p is denoted by T(M p).
Each coordinate system φ defined around p defines the bijection φ: T(M p) -> Qmn

which sends every tangent vector v = [/] from T(M p) into the element (vΛ) =
)|f = 0 of 6m'" When 0 = (xΛ) is replaced by φ' = (xΛ) then

It follows that T(M p) is an (m, ̂ -dimensional vector superspace, so that one
can apply the results of Sect. 4 and construct the odd complement T(M p) of
T{M;pl and the graded Banach left Q-module f(M p) - Γ(M;p)θ f(M p).
By the standard methods of differential geometry we construct then the vector
bundles T(M\ T(M) and T(M\ which are supermanifolds with supersmooth
projections onto M. A graded vector superfield X is defined as a supersmooth
section of the bundle T(M). Each graded vector superfield is then the sum X =
Xo + Xχ of its even and odd part which are supersmooth sections of the bundles
T{M) and T(M) respectively. An obviously equivalent definition of a graded
tangent vector is the following one: a graded tangent vector veT(M p) is a geo-
metrical object v defined in each coordinate system φ = (xΛ) around p by its
components (vA)eQm + n which transform according to the formula (6.1). Then
v is even (resp. odd) if (ί/)egm'"(resp. Q™'n). What is not obvious is that a graded
tangent vector can be also defined as a derivation of the graded algebra of germs
of supersmooth functions at p. We shall proceed now to prove this important
fact.

Given peM let Qp{M) be the graded algebra of germs of supersmooth functions
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at p. An even (resp. odd) derivation at p is an even (resp. odd) βo-linear map
v.Qp(M)-+Q such that

v(fg) = v(f)g(p) + J^(f(p))υ(g), (6.2)

where | υ = 0 (resp. υ \ = 1). The set D(M p) of all derivations at p is then a graded
left β-module. If veD(M;p) and if φ = (x^) is a local coordinate system around
p, then the components υA of v with respect to (x'4) are defined by υA = u(xΛ). The
maps {dA)p:f->{dAf)(p) satisfy the relations (6.2) so that (dA)peD(M;p)A.

Proposition 6.1. For each local coordinate system φ = (xA) around peM the
derivatives (dA)p form up a left Q-module basis for D(M p). Namely, for every
υeD(M p) we have v = vA{dA)p.

Proof. We first show that every derivation veD(M p) annihilates germs of cons-
tant functions at p. Since I 2 = 1, it is evident that υ(l) = 0 and βo-linearity of
v implies that v annihilates Qo. Now for a,beQ1 we have abeQ0, and therefore
0 = v(ab) = v(a)b + J{v{(a)υ(b) = υ(a)b - v{b)a for all a, beQγ. On the other hand
<20-linearity of v implies (Proposition 3.1, vi)) υ(a)b = v{b)a so that υ(a)b = 0 and
by Proposition 3.1., i) we get υ(a) = 0. Now we make use of Lemma 5.1 and write
in an open neighbourhood of x 0 = φ(p)

/ = (foφ'^oφ =/(p) + (xA - x'A)gGoφ.

By applying υ to both sides we get

v(f) = v(xA)gA(x0) = Λ ^ / ) ( P ) D

Corollary 6.1. If (xΛ) and (xA) are local coordinate systems around peM, then

for each veD{M;p). In particular the graded left β-modules D{M;p) and T(M p)
are isomorphic.

Apply the above Proposition t o / = x"4'. •
The isomorphism of T(M p) and D(M p) have been shown by referring to

coordinate maps. Tt is of some interest to see how a coordinate free description
can be given. If ve T(M p) then v determines the even derivation v by

dt

where c is a path through p to which v is tangent. Suppose now ve T(M p) is an
odd tangent vector at p. Then, given εeQί, we have εveT(M;p), and for each
feQ(M) there exists a unique element v(f)eQ such that (εv)(f) = εϋ(f) for all
ε e β j . The map/H> ϋ(/) so defined is then an odd derivation at p. Equivalently
one may consider classes of equivalence of supersmooth maps c:εH>c(ε) from
open neighbourhoods of 0 E Q 1 to M, and define an odd tangent vector as such
an equivalence class, so that for ϋ= [c] we have vA = (dcA/dε)ε=0. Such a point
of view is however of little use. The reason is that while an even vector superfield
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generates one-parameter group of local, supersmooth, diffeomorphisms of M,
an odd vector superfield can not be integrated even if one thinks about using an
anticommuting parameter seQχ. The folk saying that one can integrate an odd
vector field with a help of an anticommuting parameter is misleading, and what
one usually does is an integration of an even vector field εF, ε e β 1 being fixed.
One may say that odd vectors point out in directions which are complementary
to M, what is precisely the case if M is interpreted as the zero submanifold of
the vector bundle f (M).

Having defined tangent bundle, the rest of differential geometry of super-
manifolds is straightforward to develop. An even differential form at p is an
element of T(M p)1" 0 and a graded differential form at p is an element of T(M \pf =
LL(T(M;p);Q). Given a coordinate system φ = (xΛ) around p, the differential
forms (dxA)p defined by (dxA)p(υ) = υΛ, υeT(M p), form up a right β-module basis
for T(M p)1". The concepts of exterior derivative and exterior product can be
defined, first for sections of T(M\pfQ evaluated on T(M p), then the extension
procedure described in Sect. 4 can be applied at each point peM. The same
method applies to Lie derivatives, connections etc.

7. Supersymmetric Superspaces

Let (F, Φ)(resp. (F, Ψ)) be a vector superspace of dimension (4,0)(resp. (0, 4))
endowed with a complete family of coordinate maps φ:E-+ (βo)4(resp. ψ'.F-*
(δi)4)> where Q is a fixed BG-algebra over IR. Let g (resp. C) be an even symmetric
βo-bilinear form on E (resp. on F). The form #(resp. C) considered as a map
g m.E-+E\(resp. C:F-+ F^o) is assumed to be a bijection. The body of g (see
Sect. 4) is assumed to have signature (— 1, + 1, + 1, + 1).

The two structures (F, g) and (F, C) are soldered by requiring that there is
also given a map yeL(E;L(F;F)) such that

(i) y(v)y(xv) + y(w)y(v) = 2(υ,w\g)lF,

(ii) Cy(υ) = - y{vfC for all veE.

The map ^ ι-> — Cy(g~\rf)) from E\ to L(F\F\) can be also interpreted as an
element ΩeL2(I<;E) (see Proposition 4.1. (in)), so that

for all y.zeF.v1' EE^'O. The relation (ii) implies then that Ω is skewsymmetric.
Let S be an affine space over F. Each tangent space T(S;ΘO) is canonically

isomorphic to F and Ω can be also interpreted as an F-valued 2-form on S. Let
M be a supersmooth principal bundle over S with (F, + ) as the structure group
and bundle projection Π M^S. For each veElet Tv denotes the translation
Tv :M -> M so that ΠoTv = Π. The form Ω is now lifted to M by Π and denoted
with the same letter Ω. It is horizontal (i.e. Ω(X, Y) = 0 if dΠ(X) = 0) and closed
(i.e. dΩ = 0). Since the structure group is Abelian, Ω can be considered as a curva-
ture 2-form of principal connection ω.

Definition 7.1. Supersymmetric superspace M is a supersmooth trivializable
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principal bundle (M, Π, S, E) equipped with a principal connection ω such that
dω = Ω. A symmetry of M is a vector superfield X which preserves the structure
of M, i.e.

(a) X is invariant vector field, i.e.

(dΠ)(X(Tvp)) = dΠ(X(p))

for all p e M and veE. Equivalently, X preserves the fibering of M, i.e. there exists
vector superfield X' on S such that X ~ X'.

(b) X generates isometries between the fibers of M, i.e.

for all vertical vector superfields Y,Z:M -> T(M), where g is the induced metric
on vertical subspaces.

(c) X transforms horizontal subspaces into horizontal ones, i.e.

< J S ? χ y | ω > = 0 if < 7 | ω > = 0.

(d) X' is an isometry of S endowed with the induced metric C.
To describe explicitly all symmetries (which have been defined without any

reference to coordinate systems) one has to decide which coordinate systems are
the convenient ones. A strategy of adapting a coordinate system can be described
as follows.
1. Chose a preferred set of real y-matrices yμβ satisfying [y , yv] + = 2ημv with
(ημv) = diag( — 1, + 1, + 1, + 1), (or use ίyμ iϊyμ are chosen imaginary), and choose
a real skew-symmetric matrix (Caβ) (charge conjugation matrix) so that the matrix
equation CyJZ"1 = —yμ

τ holds. A straightforward argument shows that there
exist β0-module bases eμeE,eaeF such that (eμ,ev\g) = ημv, <βα, eβ\C} = Caβ

and γ(eμ)ea = eβy/a. The form ΩeL2(F E) can then be written as Ω(ea, eβ)
μ = - γ£β,

where yμ

aβ = Caδη»\δ

β.
2. Choose θoeS so that S can be identified with F, and for every θeS one has
θ = θo + θ*ea with (FeQ^

3. Having already chosen coordinate systems on the structure group E and on
the base manifold 5, there remains to chose a supersmooth section of M. The
explicit form of the connection 1-form ω will depend on this choice. A convenient
choice of such a section is the one in which ω can be written as

and it is easy to see that such a choice is always possible.
Now in an adapted coordinate system the most general symmetry X can be

calculated. The result reads

X = 6"3μ + a\da + ±y^dμ) + ^(xμdv - xvdμ - Σμv'pθ>dJ9

where bμ

9 fcμv = - ί> v μ are from Q0,cfeQ19 and Γμ v = J [y μ ,yJ .
There is a straightforward generalization of the above construction which

leads to an extended supersymmetry. The vector superspace F is to be replaced by
F^ = UN®F, and C is replaced by C(N) = I® C so that CiN) :UN®F -^UN(x)Ff

if UN is identified with its dual. Coordinates in M ( N ) are now (xμ) and
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(θai)(μ = 1,... ,4;i = 1,..., JV), and in an adapted coordinate system curvature
and connection forms read

The most general symmetry X takes the form

with aΛieQ1 and bμ, bμv = - bvμ, bij = - bjί from β 0 .
In both cases (i.e. of simple and extended supersymmetry) a real manifold

M can be defined as the body of M. In both cases M is just an ordinary Minkowski
space. In the last example given below the quotient manifold will have a structure
of a principal bundle Minkowski space with 0(2) as its structure group.

To describe super space with central charge (see [5], and references there)
let U2 be endowed with its canonical metric δ = (δ.), i,j = 1, 2, and let T denote
the canonical representation of 0(2) on U2. We define Fc= M2®F and equip
it with the metric Cc = δ (x) C as in the last example. Sc is an affine space over
Fc. Now the supergroup O'(2) has to be defined. We define O'(2) as 0(2) x β'o with
the group multiplication (q, a)(q', a) = (qq\ a + a') for q, q'eθ{2), a, afeQ'o.

Let for each φeU, T(φ) denotes the matrix

/ oosψ, sin<

\ — sin φ, cos <

Then, given φeU, we have a coordinate map with domain 0(2)\T(φ) and range
(0, In) a U given by T(φ + φ)^> φ. We define the local coordinate map x5 for
0r(2) with domain (0(2)\T(φ)) x β'o and range σ~ ^(0, 2π)) cz β 0 by x5 :{T(φ), a) \->
φ + a.

It is evident that with the above definition 0;(2) is a superanalytic super-group
according to [6], with its Lie algebra isomorphίc to β 0 . The representation T
of 0(2) on U2 extends by analyticity to a representation of O'(2) on Fc.

Let now E5 = O'(2) x E so that E5 is also a supergroup with its Lie algebra
ε5 isomorphic to Q 0 Θ E. On Qo® E we have the invariant metric g5 = 1® #.
M 5 is defined to be a principal fibre bundle over Sc with E5 as its structure group.

On Fc we have now representation Γ = T (x) y of E 5 and the derived repre-
sentation dF = dT ® 1F + l κ 2 ® y of ε5. The form Ω is defined as in the first
example but with C, y, g replaced by Cc, dΓ, ̂ 5 . In an adapted coordinate system
we then have

(ύs=dx5
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Looking for the symmetries of M 5 which preserve all the relevant structure
(including the direct sum structure of vertical subspaces) we can find the following
generators:

d d

ox Ox

Mμv = x

μSv - xvdμ - Σ;vβθ
βi~p B = ε « ^ w ^ ,

3 1 . 5 1 . 5

The interesting commutation relations are

Remark 7.1. If <20-module bases eμeE, eaίeFc are chosen, then the global vielbein
on M5 is defined by the horizontal lift of eai — s, so that M 5 is endowed with a
teleparallelism. The affine connection coefficients can be easily calculated, the
only non-vanishing being Γ\iβj = (ί/2)y\βδ.pΓ^β. = {ί/2)Caβε...

Remark 7.2. Since in all three examples the supersymmetric superspaces are
principal bundles endowed with principal connections, we have covariant deri-
vatives Dai which can act on differential forms on the bundle to produce horizontal
ones (see e.g. [7], Chap. VI., Sect. 4). In particular, when applied to functions on
M, they coincide with the "covariant derivatives" exploited by Salam and Strathdee
[8],
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