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Introduction

The geometry of twistors was first introduced in Penrose [28]. Since that time
it has played a significant role in solutions of various problems in mathemetical
physics of both a linear and nonlinear nature (cf. Penrose [29], Penrose [35],
Ward [48], and Atiyah-Hitchin-Drinfeld-Manin [2], see Wells [52] for a recent
survey of the topic with a more extensive bibliography). The major role it has
played has been in setting up a general correspondence which translates certain
important physical field equations in space-time into holomorphic structures
on a related complex manifold known as twίstor space. The purpose of this paper
is to give a rigorous discussion of this correspondence for the case of the linear
massless free-field equations, including Maxwell's source-free equations, the
wave equation, the Dirac-Weyl neutrino equations, and the linearized (weak-
field limit of) Einstein's vacuum equations. These equations may also be analyzed
from this point of view on a background provided by the nonlinear Yang-Mills
or Einstein equations in the (anti-) self-dual case. The correspondence is effected
by an integral-geometric transform, which transforms complex-analytic data
on twistor space to solutions of the linear massless field equations, and is, in fact,
a generalization of the classical Radon transform, which is discussed further below.

The motivation for finding such a correspondence in general is that it forms
an essential part of the "twistor programme" according to which one attempts
to eliminate the equations of physics by deriving them from the rigidity of complex
geometry and holomorphic functions (see, e.g. Penrose [38]). It is, in fact, rather
remarkable the extent to which it is possible to achieve this. Success apparently
comes about because in twistor-space descriptions the information is "stored"
nonlocally. The (local) value of a field at a point in space-time depends upon
the way that the holomorphic structure in the twistor-space is fitted together
in the large. So sheaf cohomology and function theory of several complex variables
turn out to be the appropriate tools in the twistor framework. It is hoped that,
as part of the general twistor programme, some deeper insights may eventually
be gained as to the interrelation between quantum mechanics or quantum field
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theory (which depend crucially upon complex function theory) and classical
space-time structure.

Our discussion for the most part will be restricted to the case of analytic linear
massless fields on flat space-time and will be carried out in terms of the compacti-
fied complexification M (often denoted CM elsewhere) of Minkowski-space.
For this purpose, M will simply be defined as the Grassmannian of linear 2-spaces
in twistor space, which is a complex vector space T of dimension 4. We obtain
a number of theorems relating analytic cohomology of portions of T, or rather
of the corresponding projective 3-space (P, to the solutions of the relevant field
equations in the corresponding regions of ML

In the case of such massless fields the above-mentioned correspondence was
first given in terms of a contour integral expression which yields general analytic
solutions of the field equations when a holomorphic function, defined on a suitable
domain, is inserted into the integrand (for right-handed fields see Penrose [29],
[30], [33], and Penrose-MacCallum [32]; for left-handed fields see Penrose
[34] or Hughston [23]). (For the wave-equation a very closely related integral
expression had been found much earlier by Bateman [4].) Only comparatively
recently (Penrose [36]) was it realized that these holomorphic functions should
be interpreted as Cech cocycles representing elements of cohomology groups.1

A definition of the transform (for right-handed fields) using the Dolbeault repre-
sentation of analytic cohomology is described in Woodhouse [55] and Wells
[52]. In Hughston [21] and Ward [49] it was shown how elements of cohomology
in the left-handed case give rise to potentials for fields and a method of producing
the field itself more directly related to the integral formulae is described in Penrose
[37] and more invariantly in Wells [53]. The question of whether the transform
is bijective was considered in Penrose [37], Lerner [24], Eastwood [8], and Wells
[52]. It was shown recently that the transform, in a special case, is also a special
case of a generalization of the Radon transform due to Gindikhin and Henkin
(see [15]). Integral formulae for background coupled fields have been given in
Ward [47]. In this paper we make no explicit reference to the earlier contour
integral descriptions but give our discussion entirely in terms of the mathemati-
cally more satisfactory cohomological language.

One example of massless field equations is the linearized Einstein equations
(the case of helicity ±2). By the theory developed in this paper the cohomology
group H1(P + ,Θ(2)) represents holomorphic solutions of helicity —2 of these
equations on the forward tube M + in complexified Minkowski space. This
cohomology group is precisely the infinitesimal parameter space for the defor-
mations of structure of the fibration P + -> P 1 which appear in the nonlinear
graviton construction (Penrose [35]), and which give the general (local) holo-
morphic anti-self-dual solution of Einstein's equations. These solutions to the
massless field equations in terms of cohomology groups relate in a similar manner
to solutions of other nonlinear problems and, it is hoped, will give insight into
as yet unsolved nonlinear problems (e.g., the self-dual or general solution of

1 The second author would like to express his gratitude to M. F. Atiyah for suggestions ultimately

leading to this interpretation
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Einstein's equations). In addition, there are algorithms for generating solutions
of nonlinear field equations with specific cohomologίcal solutions of associated
linear equations as a principal part of the algorithm (cf. Atiyah-Ward [3], Ward
[50]).

In the recent solution of the self-dual Yang-Mills equations on S4 a key
ingredient was the representation of specific cohomology groups on P3 in terms
of solutions of conformally invariant elliptic differential equations on S4 (see
Atiyah-Hitchin-Drinfeld-Manin [2], Drinfeld-Manin [7], Hitchin [19], and
Rawnsley [42]). This is a special case of our general method of representing
solutions of linear field equations in terms of cohomology as discussed in Sect. 9.

We will now give a brief outline of the paper. In Sect. 1 we set up the basic
twistor correspondence between projective twistor space (denoted by P) and
the natural complexification of compactified Minkowski space (denoted by M).
In particular we set up an important relative de Rham sequence on the flag mani-
fold F which gives the correspondence between P and M via a double fibration
of the following type

The basic integral transform of data on P to data on M is achieved by pulling
back cohomology classes from (open subsets of) P to F by the mapping μ, and
then "integrating this pullback class over the fibers" appropriately, obtaining
(vector-valued) functions on (open subsets of) M which will satisfy certain field
equations. We do this in several steps. First, we study the pullbacks of local
data (inverse image sheaves and the relative deRham sequence in Sect. 1). Then
we study the problem of "integration over the fibre" for the mapping v. This
involves direct image sheaves and a fundamental spectral sequence for a fibration
due to Leray, but is a direct translation of the more classical notion of fibre-wise
integration of a differential form into an algebraic and coordinate-free language
which makes the group-invariance properties of this process manifest. The direct
images of the pullbacks of the various powers of the hyperplane-section bundle
on P are identified with spinor sheaves on M, sheaves whose sections, locally,
are classical spinor fields of various kinds. We also identify in some detail the
invariant differential operators coming from the relative deRham complex with
specific classical differential operators acting on spinor fields on M. It is this
identification which allows us to make the transition between complex geometry
and mathematical physics. One consequence is that the massless field equations
become transparently conformally invariant. In Sect. 3 we study the global
problem of preserving information when pulling back cohomology classes from
P to F by the mapping μ. This turns out to be a purely topological problem involv-
ing the fibres of the mapping μ\W ->• W, where W c P and W c F are open sets to
which the mapping μ is restricted. It turns out that the pullback sheaves and the
sheaves to which the direct image theory applies don't coincide, but they are related
by the relative deRham exact sequences, and the corresponding cohomology
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groups are related by a standard spectral sequence. This is discussed in Sect. 4. This
completes the set of tools necessary to derive the massless field equations and
their solutions. In Sect. 5 we obtain the isomorphism, for s > 0 , ^>:H1(P + ,
Θp( — 2s — 2)) >̂ {holomorphic right-handed massless fields of helicity s on M + }.
This isomorphism is equivariant with respect to the action of [7(2,2) on T. We
obtain this also for more general geometric settings. In Sect. 6 we derive a similar
result for massless fields of helicity zero, where the second-order wave equation
comes in. The spectral sequence theory shows why first-order equations arise
for non-zero helicity, while second-order equations arise for helicity zero. In fact,
all of the differential equations which are solved are first derived in an invariant
form from the twistor geometry (and the spectral sequence on F), then they are
compared with the classical (noninvariant) forms, and then the solutions are
produced by the integral transform. In Sect. 7 the left-handed solutions are des-
cribed in terms of potentials which are transforms of certain analytic data. This is
compared in Sect. 8 with a direct approach (power series expansions of cohomology
classes about a given complex line in projective twistor space) given in Wells
[53]. In Sect. 9 we generalize our results to background coupled fields, where the
background potential is described in twistor space by means of a holomorphic
line bundle (or more generally a holomorphic vector bundle) as was originated
by Ward ([46], [47], [48]). Finally, in Sect. 10 we discuss various ramifications
and possible extensions of the methods and ideas developed in this paper.

1. The Twistor Correspondence and a Relative de Rham Complex

Let T be the space of twistor s. T is, by definition, a complex vector-space of dimen-
sion 4 with an Hermitian form Φ of signature -f H . We define

F d l,..., d r:= {(L 1,...,L κ):L 1 ci... ciL r is a sequence of

linear subspaces of T with d i m c L . = d..}

and set

These three compact complex manifolds (called flag manifolds, cf. Wells [51])
are naturally linked by the double fibration

(1.1)

where μ(L19 L2) = Lί and v(Lι,L2) = L2. The twistor correspondence2 is the

2 If M is embedded in P 5 by the Pliicker coordinates then this is often referred to as the

Klein correspondence
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set-theoretic assignment (cf. Wells [52])

Z e P i >Z : = v(μ

We note that P — P3(C), three-dimensional projective space, M ^ G1 4(C), the
Grassmannian manifold of 2-planes in 4-space, Lχ — P\(C), a complex projective
line embedded in P, and Z — P2(C), and is referred to as the a-plane in M deter-
mined by Z (the β-planes in ίVO are determined by the projective hyperplanes
in P, but won't play a role in this paper). With a slight change in notation (1.1)
is the basic double fibration used in [52] and we refer the reader to this article
for more details and background references concerning this correspondence.
Those already familiar with the basics of twistor theory will recognize P as projec-
tive twistor-space, M as complexified compactified Minkowski-space, and the
correspondence space F as the (dual) projective primed spin-bundle over fVQ (cf.
Penrose-MacCallum [32]).

Our object in this section is to describe certain natural sheaves on P and F
and how they are linked. These sheaves will in some sense provide the basic
local data for the integral-geometric transform developed in the later sections.

The quadratic form Φ determines distinguished open subsets of P, F, and
M, to be denoted by P + , M~, etc. just as in [52]. In particular the analysis in
[52] concentrated on

We shall refer to these subsets explicitly when we need them but we want to
consider more general open sets related in the same manner but not necessarily
SU(2,2)-invariant. So let U be an arbitrary open subset of M and define

V : = v-\U)

U": = μ(U') (also occasionally denoted by Lυ).

The analytical and topological properties of these sets will determine the precise
nature of the transform to be developed later. We have the open inclusion of the
two diagrams

U'
/ \

(1.2)

with μ and v surjective mappings of maximal rank.
We now want to introduce on F a complex of differential forms along the

fibres of μ. First we introduce some standard notation.3 If X is a complex manifold

3 See, e.g. Wells [51]. We refer to this reference for standard concepts concerning complex manifolds

used in this paper
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we let Θχ be the sheaf of holomorphic functions on X and let Ωp

χ be the sheaf of
holomorphic p-forms o n l , p ^ 0 , noting that Ωχ = Θχ. Then we have

the exact deRham sequence of sheaves where d is the usual exterior differentiation
operator. Define the sheaf Ωμ of relative 1-forms with respect to the fibration μ
by the exact sequence

u*Ql > O 1 π " > O 1

 > Π
μ h£p > iίίjp > hdμ > u

i.e., Ωμ is the quotient sheaf and πμ is the usual quotient mapping. Then we set
dμ = πμ°d. We shall write out explicit representations for the sheaf Ωμ and the
differential operator dμ shortly, but first we extend this concept to higher order
forms and to vector-bundle-valued differential forms. Let Ω2

μ be the sheaf of
relative 2-forms defined by the exact sequence

and let

be the induced exterior derivative. Let μ~ιΘp denote the topological inverse
image of the sheaf ΘΨ i.e. the sections of μΓ 1Θ¥ are locally simply pullbacks by μ
of sections of &P or, in other words, μ~ rΘp is the subsheaf of Θψ consisting of those
functions locally constant on the fibres of μ.

Lemma 1.1. The sequence

0 • μ - 'ΘP > Θ, - ^ Ω'μ — ^ Ω2

μ > 0 (1.3)

is exact.
Before we prove this lemma we shall give an easy generalization. Suppose that V

is a holomorphic vector-bundle over (7, an open subset of P, and let μ*F be the
pullback bundle over μ~1(ί/). The bundle μ*F may be described by transition
functions which are constant along the fibres of μ. We can tensor (1.3) with
μ~ιΘP(V\ the sheaf of germs of sections of μ*F which are constant along the
fibres of μ, to obtain (since $ F ® μ _ l β ) μ~~ίΘp(V) is canonically isomorphic to
Of(μ*V))

0 >μ-1(9P(V) > β,{μ*V)

— ^ Θtiμ*V)®eΩ
2

μ •O. (1.4)

Note that the differential operators dμ in (1.4) make sense since they annihilate
the transition functions of μ*F. For convenience of notation we shall write

and we can rewrite (1.4) as

0 > μ~ 1ΘP(V) > Ω°μ(V) ^ ^ Ω\{V) -±-* Ω2

μ(V) > 0 (1.5)
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For the special case of V = Hn, the rc-th power of the hyperplane section bundle
(cf. Wells [52]) we will write Ωp

μ(n) instead of Ωp

μ(Hn). This is consistent with the
usual notation for "twisting" bundles on projective space. Thus we obtain in
this case, for neZ,

0 > μ~ ιΘP(n) > Ω°μ(n) - ^ - > Ωι

μ(n) — ^ _ > Ω2

μ(n) > 0 (1.6)

This exact sequence of sheaves contains the basic local data for representing
solutions of the massless field equations on M. We note that (1.6) remains invariant
under the action of GL(T) on T and its induced action on P, F, and M as well as
on Hn. We shall need to "globalize" this data using cohomology and then "push
it down to M" using direct images (cf. Sect. 2).

Now we shall proceed towards the proof of Lemma 1.1 and give explicit
representations for these sheaves and differential operators. Actually the statement
of Lemma 1.1 is local at a point of F and the proof will depend only on the fact
that μ has maximal rank so that, by the implicit function theorem, one can always
choose local coordinates in which μ is simply a coordinate projection (i.e. part
of C 5 = C 3 x C 2 - ^ C3). However, it is useful at this stage to introduce specific
coordinates tied to the spinor structure of the twistor-space T. The coordinates
have important physical interpretations (cf. Penrose-MacCallum [32]) and
moreover the maximal rank condition will be obvious. Choose coordinates
(Z°, Z \ Z 2 , Z 3 ) for T and set

so that (ωA, πA,) are the components of a pair of spinors representing the twistor
Z α (cf. [32] and [52]). Indeed, we shall often write Tα instead of T and Tα for
the dual of Tα. These coordinates are chosen so that

Φ(Za) = ωxfcA + ώA 'πA, (summation convention)

or, equivalently, in matrix form

Φ =

We choose affine coordinates za for M1, the affine part of M, where M1 is defined
by the open inclusion

(1.7)

under the biholomorphism G2 4 ( C ) ^ fVO. We see that M1 is defined by the set
of 2-dimensίonal subspaces of Tα which are linear graphs over the {πA,}-coordinate
plane, i.e. planes in Tα of the form ω A = ίzAA'πA,. M is covered by a finite number
of such affine coordinate systems (in fact, five are needed). We note that M + is
the subset of M1 where, writing za = x a — iya, yΆ is timelike and future-pointing,
and that real (affine) Mίnkowskί-space is given when ya = 0 (or equivalently,
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when z*A' = xAΛ' is Hermitian) (cf. [52]). We let F': = v'^M1) and P1: = μ(F7)
be the associated "affine' portions of F and P respectively (although they are
not affine in the sense of algebraic geometry). It is easy to describe the naturally
associated coordinates on P1 and F7. By varying our choice of affine coordinates
for M we could obtain in this way a complete system of linked coordinate charts
on the three manifolds. First we observe that

^ MΛ X
]>

ί with coordinates ( z A A , [ π A , ] )

where / is the projective line in P given by4

/ = { K , π A . ] e P : π A . = 0 }

and, as usual, [ ] denotes homogeneous coordinates on a projective space.

Moreover,

FJ = F'o u ί[

where

and

F'o : = μ~ HP'o) = M' x (P, - {π0, = 0})

Fί : = μ~ HP\) = M1 x (P>1 - {π r = 0}).

On P7 we introduce affine coordinates (q°, q1, r) by

qA: = ωA/π0,, r: = πv/πQt

and on F7 the coordinates

f̂A : = (ιzAA'πA/)/π0,, r : = π r /π 0 /

With these coordinates μ|F is reduced to a projection

I I I
P ^ C3 9 (qA,r)

so that sA may be regarded as coordinates along the fibres of μ and dμ may be
realized explicitly as

4 By an abuse of notation we sometimes identify points in P\ F, etc., with their coordinate representation
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which can be thought of as exterior differentiation in the sA variables with qA, r
as parameters. Similarly, relative 2-forms may be thought of as 2-forms with
respect to sA depending parametrically on qA, r. We may perform a similar analysis
on F* using coordinates

S A : = - Z

A , = - z A 0 ' .

Thus, on Ψ\, dμ is given by

On F£ n F{ we have

SA = - zA = - zA0> = - (qA/i) + (zAvπί,/π0,) = - q*/i + rsA

and thus our frames dμs
A and dμS

A for Ωμ over F̂  n F{ are related by

dμS
A = rdβs*. (1.8)

Now recall that r = πv/π0, is the transition function for H -> P χ , the hyperplane
section bundle, so (1.8) implies that

Similarly one obtains

from which it follows that

Remark. The isomorphisms (1.9) and (1.10) are not valid on all of F. In the case
of (1.9) note that a fibre Y of the fibration F -» P is isomorphic to P2(C) so that Y
has non-trivial holomorphic cotangent bundle. But this is exactly what we obtain
by restricting Ωμ as a bundle to Y whereas &ψ{ί) Θ 0F(1) is trivial over Y. A similar
argument holds for (1.10). The reason why these isomorphisms do not extend
is really that relation (1.8) involves a spinor index A which has been ignored in
(1.9) and (1.10). This problem will be rectified after first completing the proof
of Lemma 1.1.

Proof of Lemma LI. In the coordinates introduced above we see that the exactness
of (1.3) follows immediately from the exact (deRham) sequence

0 > C > Θ 2 —^-+ Ω\ —^-+ Ωl2 > 0
c c <L

by considering the relative forms in C 5 as forms in C 2 depending on three addi-
tional parameters. Π

From (1.8) it follows immediately that
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Using the chain rule on the formulae for qA, r, and sA we find

=-± = ±-ir±
A * dzA δsA dqA

A ' dzA dqA

Thus, we may rewrite the left-hand side of (1.11):

Iπ = f V + rV 1 ')π =π V 0 ' 4 - π V1 ' = π VA'
β A ) J L 0 ' V V A ^ r v A ^ / 6 0 ' / C 0 ' V A ^ JLV V A / 6 A ' V A

Rewriting the right-hand side of (1.11), of course, produces the same answer.
This representation shows directly how the twist appears in (1.9). It comes from
the π A which may be regarded as sections of 0 P (1). It also shows how the spinor
index A appears and, indeed, globally Ωx

μ may be canonically identified with the
spinor sheaf ΘA(l)\_ — 1]'. This will be fully explained in the next section. Over
F7, however, this spinor sheaf can be trivialized appropriately and this identification
reduces to (1.9). From the above discussion the following lemma is immediate
over ί1 and the global statement will follow from the arguments of Sect. 2 ([^4J5]
means, as usual, skew-symmetrization of the indices).

Lemma 1.2. The relative deRham sequence (1.3) on F may be canonically identified
with the sequence of spinor sheaves

2. Spinor Sheaves and Direct Image Sheaves

In order to define correctly the massless fields which are the subject of this paper
it is necessary to introduce certain natural holomorphic vector-bundles on M.
These bundles are the various conformally weighted spin-bundles and the fields
of interest on M are best described as sections thereof satisfying differential
equations described in terms of the natural differential operators between these
spin-bundles. We shall make use of the identification of a holomorphic vector-
bundle with the sheaf of its holomorphic sections, often without explicitly saying
so. Thus, our first task is to describe the spinor sheaves on Ml.

In the previous section we referred to F as the projective primed spin-bundle.
The fibre of F over a point z in Ml is the space of rays in z (regarded as a complex
2-plane in T). Hence, F is the projective version of the vector bundle over M
which associates with each point z in M the 2-dimensional vector-subspace of
T which z represents. In topology this bundle is called the universal bundle on
Ml (cf. [26], [51]). As warned above we make no distinction between vector-
bundles and locally free sheaves and introduce the notation

ΘA,: = the universal bundle on M,
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calling this the dual primed spin-bundle so that F is the projective version of G A,.
Its dual, the primed spin-bundle, will be denoted GA>. It should be emphasized
that G A, is not a direct sum of two line bundles and that A' is thus not a numerical
spinor index but an abstract index (cf. [31], [40] )5. This index is meant to serve
as a marker which indicates what sections of this holomorphic vector bundle
look like in coordinate patches. For example, in terms of such coordinates,
fA'sΘA> is represented by fA' = {f°'Jv)eΘ® G, the map from/'4 ' to fA' being
achieved by use of the basis elements (local frame) β*', = (sA,, εA')eΘA,® GA,,
with fB' =fA'εn

i,, the repeated index Af denoting the abstract scalar product
between a vector and an element of its dual space. The map back from/Λ ' to fA>

is achieved by the dual basis βj4,' = (εA',,εf,)eΘΛ'® &A' according to fA'=fB'εA',,
the repeated index B' now indicating numerical summation convention. Corres-
pondingly, the relation between gA,^G A, and gA,eΘ®Θ is given by gE, ^gA,εζ,
and gA, = gB,εA' and the scalar product between gA, zndfA' is gA,f

A' =gxj
x> =

go,f
0' + gvf

1' One can choose bases ε*A, and εA>, which effect a trivialization of
GA, and ΘA> over the subspace M1 of M (by using the coordinates given in (1.7),
for instance).

T o define the unprimed spin-bundle over M we observe that ΘA, is, by definition,
canonically embedded in # α , the trivial bundle over M whose fibre at each point
is twistor-space T α . The unprimed spin-bundle ΘA is defined to be the quotient
(or complement). In other words, we have the short exact sequence 6

M 0 • ΘA, • Θa > ΘA • 0 (2.1)

(cf. the definition of "local twistors" e.g. Penrose and MacCallum [32]). The
dual unprimed spin-bundle is denoted &A, and each of ΘA and ΘA may be triviali-
zed over M1 by means of bases, e.g.

Taking the dual of (2.1) gives the exact sequence

M 0 > ΘA • Θa • GA> • 0 (2.2)

The similarity between (2.1) and (2.2) bears further investigation. Let M * denote
the Grassmannian of 2-planes in Tα, the dual twistor space. Then there is a canoni-
cal isomorphism

• z 1 : = {WaeJa :Z"Wa = 0, VZαez}.

5 We adopt the "abstract index" notation (Penrose [31]). Abstract indices are non-numerical and

serve only as organizational markers enabling the basically coordinate-free operations of contraction,

symmetrization, index permutation, etc. to be expressed in a transparent yet frame-independent

way. The abstract indices are simply labels for bundles or sections of a given bundle. Italic and Greek

letters will be used in this abstract way while Sans serif letters (A, B,...) will be used for the corresponding

''normal" indices (i.e. to represent the components in some particular frame). Italic lower case indices

will be used for tensor indices, italic upper case for spinor indices, and Greek will be used for abstract

twistor indices. Sans serif lower case indices a, b, c, ... will take values in the range {0,1, 2, 3} whilst

Sans serif upper case indices A, B, C,. . will take values in the range {0, 1}.

6 From now on, a space X at the left of a diagram (such as M in equation (2.1)) indicates that X is

the base-space of the various sheaves involved
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We can now go through exactly the same process to describe various bundles
o n l l * . Since Tα has coordinates (ηA, ξA'\ it is natural to denote the universal
bundle on M* by ΘA and define &Λ' by means of a sequence which formally looks
just the same as (2.2). This abuse of notation is justified by the observation that
there are canonical isomorphisms

z ^ (TΓ./z1)*, Tα/z £ (z1)*, etc.,

giving rise to canonical isomorphisms

{GA. on M) ^ i*(ΦA, on M*)5 (ΘΛ o n i ) ^ i*{ΘA on M*), etc.

But now observe that any isomorphism p : ΊΓα —=—» Tα gives rise to an isomor-
phism

under which universal bundles naturally correspond i.e. ®A,=P*@A> Hence
we conclude that any isomorphism of Tα with Tα naturally extends to an iso-
morphism of (2.1) with (2.2). Thus ΘA, and (9A are on an equal footing when M
is regarded as an abstract complex manifold rather than a specific Grassmannian.
Choosing one of these bundles to be called the primed spin-bundle is, in this
sense, arbitrary but it corresponds to making a choice of complex orientation
for y .

Remark. We want to distinguish in this paper between "isomorphism" and
"canonical isomorphism," both used in the above discussion. An intuitive notion
of what is canonical ("God-given"), and what is not is common among mathe-
maticians, but it is worthwhile to clarify the point. In general, the meaning of the
word depends on the context. The idea is that something is canonical if it trans-
forms correctly when the whole system is subjected to a morphism of the category
in which one is working (often not explicitly mentioned). In this paper, our basic
given data is the 4-dimensional vector space T, and a canonical isomorphism
for us will mean an isomorphism of two quantities dependent upon T but which
is preserved under the action of GL(T) on T. In the discussion above, we see that

i :M — -̂> y * is a canonical isomorphism whereas p:M ~ > y * is not. We
use " = " to denote canonical isomorphism, and " — " to refer to an isomorphism,
not necessarily canonical (usually where some choice has been made, e.g. M ^
G2 4(C) corresponds to a choice of basis in T).

From these two basic bundles we can generate lots more by applying standard
tensor operations. The following notation is natural and essentially self-explana-
tory7 :

7 Here we mean tensor products as C-vector bundles, i.e. the fibre-wise tensor product of the vector

bundle fibres as complex vector spaces. It may be remarked, also, that the abstract index notation

entails that GA, and GB. are canonically isomorphic copies of one another, but not, strictly speaking,

the same space. The same applies to Gc,, etc. The identification of GA,B, with GA, (g) ΘB, rather than with

GB,®GA, involves the notion of an alphabetical ordering for the abstract indices. In fact, GB A> =

(9A,B, = ΘA,<g> ΘB. ^ (9B, 0 ΘA, * ΘA,C = ΘA, ® 0 C , , etc. (cf. [31], [40])
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'BΊ '• = ®A' O ®B w n e r e O means symmetric product

Θ[Λ'BΊ

 : = Θ A ' A ΘB' =

Of particular interest are the two natural line bundles &[AB] and &\A,B.γ We intro-
duce an alternative notation:

< W = 0 [ - i ] a n d ^ ' B i - β ' C - i ] ' -

This is in line with the notation of Θ( — 1) for the universal bundle on a projective
space. The number — 1 in the square brackets may be regarded, with suitable
normalization, as the first Chern class of these bundles. Just as for projective
space, 0[1] (resp. 0[1]') will denote the dual of Θ\_ — 1] (resp. C9\_ — 1]') and, more
generally,

0[k] : = {^[l]}fc and Θ[k]': = {0[l]'}k.

We can now rewrite, for example,

M ®A[A>BΊ = ®A® < W i = ΘA ® <P[ " 1] ' : = OΛI - 1]'.

and write C ;

μB)[ - 1] [2]' to mean Θ{AB) ® ύ?[ - 1] (g) Φ[2]', etc. Our notation has
some redundancies. For example, there is the canonical isomorphism

Under this isomorphism we shall denote by εA,B, the section of ^ ^ ^ l ] ' corres-
ponding to leΘ. Similarly, we have

εABe(9[AB][llεA'B'e(9[Λ'B\- l]\εABeΘ[AB][- 1].

These are to be regarded as the usual conformally weighted ε's used for raising
and lowering spinor indices. Thus, we see that the numbers in the square brackets
may be regarded as conformal weights, with sA,B,, for example, having conformal
weight 1. This entails, roughly speaking, that a metric gab is replaced by λλ'gab

when εA,B, is replaced by λ'εA,B, and εAB byλεAB (whereas εAB> must be replaced
by {)'yγεAB' and εAB by λ~γεAB). Moreover, we observe that these ε's really can
be used for raising and lowering spinor indices on sheaves. For example:

All these bundles may be pulled back to F and we will often use the same
notation to denote the pullbacks. Thus, we write ΘA instead of v*(9A if it is clear
that we are discussing bundles on F rather than fVϋ. Also, we can pull the bundles
Θ(k) on P back to F. Again we make no notational distinction and naturally
write

ΘA(1)1~ ! ] ' instead of v*&A[ - l]'<g)μ*0(l) etc.

This makes sense of all the sheaves in Lemma 1.2 and our next job is to make
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sense of the differential operators. We claim that, on M,

V AA' U UAA'

is a well-defined intrinsic differential operator. Indeed, we claim that it may be
canonically identified with the exterior derivative

d\Θ >Ω\

To make full use of the abstract index notation [31], we should also write this as

Va:Θ >Ga.

In local coordinates d and VAA, certainly look identical. The problem is to see
that Ω1 is canonically isomorphic to @AA,. Equivalently, the problem is to show
that the holomorphic tangent bundle can be identified naturally with ΘAA'. By
definition,

M ΘAA> = &A ® ΘA> = ΘA ® ψA)* ^ Horn (ΘA,, 0A).

It is well known, however, that the tangent bundle of a Grassmannian manifold
is isomorphic to the bundle of homomorphisms from the universal bundle to
its complement (cf. [26]). Other differential operators are defined by using ε's
to raise indices. For example, VA is defined as the composition

The exterior derivative d\Ωι -> Ω2 may also be written out in terms of spinor

sheaves. Ω2 splits into its self-dual and anti-self-dual parts: Ω2 = Ω2

+ ® Ω2_ . Decom-

posing a 2-form Fab as F*b + F~b is easily written in spinor notation (cf. [52],

[40]):
Fab ~ FAA'BB' = ΦA'B'£AB + ΨABGA'B' '

where φA,B, and φAB are symmetric. Alternatively, in terms of bundles,

M Ω2^ Θ[ab] * Ω\\

and the exterior derivative may be written

More generally, the whole deRham sequence may be written:

Ω° >Ωι >Ω2 >Ω3 >Ω4

" ̂  ^ -ψ J ! 0." ~ "» t - >] c - •]• ± "t - q c - v (2 3)

These operators also act between other pairs of spinor sheaves as we will see

when we discuss direct images.
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To make sense of the differential operator

¥;πΛ.V*:Θ > ^ ( D [ - 1 ] '

which appears in Lemma 1.2 we first observe that we can invariantly define a
bundle homomorphism

F; πA.:G
A' • 0(1).

Indeed, it is equivalent to define the dual

F; *πΛ,:Θ(-l) >ΘΛ.

and geometrically this can be seen as follows. By definition, the fibres of &( — 1)
and ΘA, over (L{, L 2 )eF are precisely Lί and L 2 respectively so that t%A, may be
defined over (L1, L2) as the inclusion Lχ

 c—> L2. One could hope, perhaps, that
πA,VA might be defined as the composition

but this is not the case as VΛA, does not make sense on F. If, however, we choose
a specific trivializatίon of F over a neighbourhood of a point in M, then, of course,
VAA, does make sense as differentiation in the base direction. We claim that then
πA'^A *s independent of this choice of trivialization. Certainly this should be the
case since πA,VA is supposed to be dμ which is, by definition, differentiation along
the fibres of μ and these fibres are mapped isomorphically by v to the α-planes
in M [52]. Thus we can think of dμ as first restricting to a fibre of μ, then identifying
this fibre with an α-plane in M, and finally effecting the exterior derivative on this
α-plane. This last step can certainly be expressed using just V'AA,, the exterior
derivative on M. We can therefore justify our claim by showing that the map
from the cotangent bundle of M restricted to some α-plane to the cotangent
bundle of the α-plane itself is given by πA'. This is easy to see geometrically from
the definitions of the spaces involved.

It is, perhaps, worth while to give an alternative way of describing dμ as π^,V^
more directly. If we choose local coordinates (xAA , πA,) on F then πA'VAA, makes
perfectly good sense and, by our calculations of Sect. 1, does indeed represent
d . Actually, it is easy to see that if/ is a function which is constant on the fibres
of μ i.e./depends on ω A (: = DCAA'πA,) and πA, alone, then/is annihilated by π A ' VAA,:

The invariance of πA'V'AA, may then be checked directly, by changing from one
local coordinate system to another.

It may be helpful, at this stage, to point out precisely the lack of invariance
that can arise in expressions involving the operator WAA,. Each of the trivializations
of F that we have been considering is associated with a particular flat connection
V'AA, on a portion of fVO (e.g. on the M1 of Sect. 1). The non-invariance that may
arise in the use of VAA, can be seen in explicit transformation formulae relating
one such connection to another. It is helpful, moreover, to examine such trans-

, πB.) = «*'( iπA. ̂ - (ωB, πBή = 0.
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formation formulae in the broader context of general torsion-free connections
on M that are compatible with the (complex) conformal structure of M. We
require VAA, to act on spinor fields on some open ^ c y and, correspondingly,
to provide a bundle connection on W a F. We suppose gab and gab are two (not
necessarily flat) complex metrics on W compatible with the given conformal
structure, with spinor representations given as

ΘAA'BB' ~ CAB£A'B'' UAA'BB' ~ 8ABEA'B'

where

9ab =

the Ω and Ω being arbitrary non-vanishing holomorphic scalar functions on W.
For spinor fields on M, the relevant formulae are essentially given in [31], [32],
[40]:

(V - V ) γ p ' " s ' " ' = ε P Y Ύ X ' " S ' " ' + + ε S ' Y γp'"x'"' +
\ y AA' V A A ' ^ B F' CA rXA'^B—F' ^ ' " ^ b A ' 'AX'^B ••¥'•• ^ ' "

_y γP-S' - _ _ γ P S' _ +kΠ yP S' (1 Λ\
1 BA'^A F' '" AF'&B—A'— ''' ^ K l 1 AA'^B-F' \Z~^)

where

k = (no. of upper unprimed and lower primed indices)

— (no. of upper primed and lower unprimed indices)

and where

ΔYAA'~h* y A A ' ^ l ^ h ί y AA>i>£> ^ l i A A ' ~ h £ V AA'h* ^ VAA'h* '

these formulae being uniquely characterized by the additivity, Leibniz and torsion-
free properties, and the conditions

yAA'£BC ~ ^ = * AA'8BC

* AA'CB'C — ̂  — * AA'εB'C"

The formula (2.4) is useful for checking the invariance of many of the operations
of this paper, for example, the massless field equations (of appropriate weights)
considered in Sect. 5-Sect. 9, where a quantity χ- of weights [p] \_q\, when acted
upon by VAA,, is replaced by

£;; = ΩpύqγZ.

In fact, the difference between the primed and unprimed weights does not seem
to play much of a role here, as it turns out that a GL(ΊΓ) transformation always
produces an Ω and Ω which are constant multiples of one another, so here ΠAA, = 0.

For a scalar field/on F we find, with ΠAA, = 0,

where the fibre-wise derivative df/dπc, has an obvious invariant meaning. The

general form of the right-hand side of (2.5), i.e. with nA, YAC, replaced by some

QAA,C independent of/, follows from the fact that each of VAA, and V'AA, gives

simply d on M. The particular expression given in (2.5) follows from (2.4), for
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example, by taking

f=f"-*'πp,...πR,,

where fp'"'R/ is a spinor field on M. We can treat expressions with both spinor
indices and π-dependence by adding the appropriate term (2.5) to the expression
(2.4).

The invariance of πΛ'V' AA, when acting on unweighted scalar quantities on
F is now immediately obvious.

Note that we may use cAB to rewrite the relative deRham sequence in Lemma
1.2 as

or alternatively (with a change of sign which we suppress)

Θ\\) [ - 1] [ - 1]' -^L 0(2) [ - 1] [ - 2]'.

We now want to consider sheaves on M derived from these sheaves Ωp

μ and
more generally from Ωp

μ(V) for a holomorphic vector bundle V over a portion
of P. We shall use the notion of direct image sheaves (cf. Bredon [5], Godement
[14]) which are defined as follows. If/: X -+ Y is a continuous mapping of topolo-
gical spaces, and ZF is a sheaf of Abelian groups on X then we define the direct
images f^3F on Y by means of the presheaf

U i > Hq(f~ \Ul &\ for UopQn <= Y

with the obvious restriction mapping. Thus, we see that the stalk oϊf*^ at ye Y
is given by

i.e. the "cohomology along the fibre" of the sheaf <F. In the most natural case
when V = Hn the direct images vqJΩ^(n)) turn out to be various spin-bundles on
M as already defined in this section. This identification will be deduced from
Lemma 1.2 and the following (letting v : = v°).

Proposition 2.1. The direct images vq^Θ(k) of the sheaves Θ{k) on F may be canoni-
cally identified as:

a) if n ^ 0 : v^Θ(n) ^ β?(^'-^') („ indices)

M; b) v « 0 ( - l ) = O V^

c) if n ^ 0 : v ^ ( - n - 2) ^ ^M,β,../),)[ - 1]' (n indices)

v £ 0 ( - n - 2 ) = O V g ^ l .

Proo/ By definition, our task is to compute Hί(v~1([/), ̂ (fe)) for open sets (7 in



322 M. G. Eastwood el al.

M but since there are arbitrarily small Stein open sets8 it suffices to restrict our
attention to the case U Stein and where v~ i(U) may be trivialized: U': = v~ 1(U) —
U x P1. Choose coordinates [ π o , , π r ] for Pλ. We first look at cohomology on
Pχ and then consider the additional parameters in U. If we cover Pί with

then Vo ^ Vγ = C which is Stein. We may therefore use the Mayer- Vietoris

sequence (cf. Bredon [5])

0 >Γ(P19Θ(k)) >Γ(V0,Θ(k))@Γ(V^Θ(k) >Γ(VonV^Θ(k))

>H\P19Θ(k)) >H1(V0,Θ(k))®H1(Vι,Θ(k))

II II

0 0 : (since F o , Vγ are Stein),

to compute H g (P 1 ? Θ(k)). The computation consists of expanding elements of
Γ{V0,Θ(k)),Γ(V19&(k)), and Γ(VonVί9Θ(k)) in Laurent series and comparing
coefficients (cf. Griffiths and Adams [16]). Now since U' — U x Pί we may cover
U' by two Stein subsets

υ\* ux v0

and proceed to compute Hq(U\Θ(k)) in terms of this Leray covering by exactly
the same technique of Laurent series expansion. The only difference is that the
coefficients of the expansions will be holomorphic functions on U. This follows
since the coefficients may be defined by means of integral formulae o n P Γ Thus
we obtain easily

Hq(U, G{k)) = {holomorphic functions: U • Hq{Pχ, 0 (fc))}. (2.6)

The vanishing statements in the proposition now follow from (2.6) and the well-
known vanishing theorem for Pχ (cf. Wells [51])

Hq(Pί9Θ(n)) =0 f o r n ^ O , q^\

Hψ^Θi-l)) = 0 for all q

Hq(Pί,Θ(-n-2)) = 0 forn^O, q£l. (2.7)

Alternatively, these statements follow from the Laurent series expansion argument.
It is also clear from (2.6) that the direct images vqj9{k) in general represent vector
bundles whose fibre at ze fVO may be canonically identified with Hq(v " 1(z\ Θv _ 1{z)(k)).
The problem is to see how these fibres fit together. The simplest case is a), to
identify vJ9(ή). Clearly vjΘ = Θ because the fibres of v are compact so admit
only constant holomorphic functions. Thus, let us consider v 0(1). For any point

8 See Gunning and Rossi [18] and Hormander [20] for the theory of holomorphic functions on open

complex manifolds, in particular Stein manifolds
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zeM the fibre v~1(z) is by definition the projective space P(C 4 , ) , where C 4 , is the
fibre over z of the pr imed spin-bundle ΘA,. N o w , Gψ\^A) (1) may be defined invari-
antly as the line-bundle which associates to every line in CA, (i.e. to every point in
P(CA,)) its dual (as a complex vector space). Every element of CA\ the dual of
C^,, may be restricted to the lines in C^, thus giving a section of ΘP{C } (1). Thus,
we have a canonical h o m o m o r p h i s m

and the Laurent series argument shows easily that this is an isomorphism. Hence,
we can identify H°{y~\z\ Θv- i(z)(l)) with CA\ the fibre oΐΘΛ' over z, in a completely
coordinate free manner. It follows that v^Θ(l) =ΘA' as required. The general
result that vJ9(ή) = @(A'B'"'D>) follows in the same sort of way. Now we come to
case c), to identify v*0( — n — 2). This is not quite so simple as the case v^Θ( — 2)
already shows. The problem is that, although H1(Pί, Θ( — 2)) is isomorphic to C,
this isomorphism is not canonical but depends on a choice of coordinates for P 2 ,
for example. What is true is that there is a canonical isomorphism H1(Pί, Ω1) ^ C
(given by integration: Serre duality [43]) and a noncanonical isomorphism:
(9( — 2) ~ Ωι. The isomorphism of Serre duality may be given as follows. Identifying
P1 with PfC^,) as before we have the exact sequence

P1 0 > Ω1 => 0A\ - 1) — A - ^ Θ > 0 (2.8)

where πA, :ΘA> -• Θ(\) is defined as the dua l of xπA, :Θ(—1)-+&A, whose definition
is coordinate free (as &(— 1) is the universal bundle which, by definition, is a
sub-bundle of ΘA,, the trivial bundle with fibre C^,). Indeed (2.8) may be taken
as defining Ω1. T h e long exact sequence o n cohomology which arises from (2.8)
gives

Γ(P1, ΘA\ - 1)) • Γ ( P 1 , 0) • H1(P1, Ω 1 ) • H\Pί, ΘA\ - 1))

II II
0 (by (2.7)) 0 (by (2.7))

which shows Hί(P1, Ω1) is isomorphic to Γ(P1, Θ). But nowΓ(P 1 , 0) is canonically
isomorphic to C by evaluation at any point. To mimic this proof for Θ( — 2) we
use instead of (2.8) the exact sequence (isomorphic to (2.8), but not canonically):

P, 0 > Θ( - 2) - ^ (9A{ - 1) ^ - + Θ[A,B>] , 0. (2.9)

This shows that H1{v~ι{z\ # v _ 1 ( z ) ( - 2)) is canonically isomorphic to @[A,BΊ and

thus v]Θ( — 2) = &[A,BΊ = &[_— 1]', as required. Actually, we could deduce directly

from (2.9), considered as a sequence on F, that ^\P( — 7) = vJ(9.A,B,,^Θ{A,B

just by using the long exact sequence of direct images [45]. This would avoid

explicit use of (2.6). To identify v^Θ( — n — 2) we replace (2.9) with

P i o • Θ( — n — 2) "A"-71* > & A,B,...D,E, ( - 1) —π-L^> Θ A,B,...D, E,F, > 0

(2.10)

to conclude v ^ ( - n - 2) = G(A,B,...DΎE.F,λ = ^ , β , . . D , [ - 1] ' . D
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In the proof of the above proposition we showed that if U is an open Stein subset
of M then Hq(U\ G(k)) is isomorphic to Γ(U9 v* 0(fc)). More generally we have:

Proposition 2.2. Let U c M be any open set. Then, for all p9

a) if n^O:Hp(U',Θ(n))^Hp(U,Θ{A'B'-DΊ)
b) HP{U'9Θ{- l)) = 0
c) if n Ϊ>O:HP(U',@( — n — 2)) = HP~1{U,Θ , , [ — 1]')

Proof. These statements follow immediately from the Leray spectral sequence
[14] and Proposition 2.1 which shows that E^q = Eζf. Alternatively one can argue
directly using Cech cohomology and a Stein cover of U. •

From Proposition 2.1 and Lemma 1.2 it follows immediately that

v^Ω^n) ς* vj)(n) £ Θ(AB""Ώ>) (n indices) if n ^ 0

v^Ω^n) = vJ9A{n + 1 ) [ - 1]' £ (9{AB'"E\ - 1]' (n + 1 indices) if n ^ — 1

v^Ω2

μ(n) ^ v^^n + 2) [ - 1] [ - 2]' ^ β ^ ' * ' - ^ _ i] [ _ 2]' (n + 2 indices)

y if n ^ - 2

v ^ ( - n - 2) ̂  v£0( - n - 2) ^ ^ ^ , . . D Ί [ - 1]' (n indices) if n ^ 0

v ^ ( - w - 2) £ v^^( - n - 1) [ - 1]' ^ &AiB....DΊ[ - 2J (n - 1 indices)

i f n ^ l

i f n ^ 2 (2.11)

and all other possibilities vanish. The obvious analogue of Proposition 2.2 holds.
Our next task is to interpret the effect of the differential operators dμ on direct
images. For v^ we can argue as follows. LetfAB''D> be a local section of &(A'B>'D'\
The differential operator

F πE,ΨA : Θ(n) > ΘΛ(n + 1) [ - 1]'

gives

π π π fA>B''D' 1 • π π π π Ψ' fA'B'-D'
JLA' LB' ''' ' Ώ'J JiA'JiB' ''' JLD' E'y A J

which induces on v^Θ(n)= Θ(A'B'"D>)

y £ ' .fA' D' 1 \7(E'fA'B' ' D')
V A 'J ' y A J

Hence, Lemma 1.2 and (2.11) give

Sll SI! ^
y . Θ(A'B'-D') > Θ(A'B'-E>)[ _ {J > &(A'B'-F')[ _ 1] [ _ 2]'

fA'B'-D' i y(£y>4'B'-D') ^l'β' £' , yyl(F' ^'J5' £') (2.12)

Notice that this shows automatically that the operator WA from @(A'B'"'D') to

β)(^'β'" £')[ — l ] ' is well-defined. To compute the effect of dμ on the first direct

images we can use (2.10) and write locally, after choosing coordinates πA,:
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Hence

„.,„.,..,
j

vl&J - n - 1)[ - 1]' s v,^ ( B , .^ Ί [ r Γ J [ - 1]' = ί),1(B.. , r ) [ f , P ] [ - 1]' - ©„„... „,,[ - 2]

and so the analogue of (2.12) for v1 is

*-n-2)
7

Sll Sll S\\
M φ Γ - 1 T >Θ Γ-2T >Θ Γ - Π Γ - 3T ί2\V\

'^(A'B' Ό')l 1J UA(B'-Ό')l ΔΛ ^(C'-D')l X J L J J [ΔΛJ)
UJ UJ ^ IV

ΦA'B'-D' ' > VΛ ΦA'B'-D' ' ΨAB'C- D' ' > V ΨAB'C'D'

We emphasize that the formulae of (2.12) and (2.13) arise quite naturally just
from the basic twistor geometry of (1.1). These formulae give rise to massless
fields as we shall see. In other words, the massless field equations are implicitly
generated by the twistor geometry. This would seem to be a significant simplifi-
cation.

3. The Topology of the Mapping μ

We want to be able to interpret analytic information on subsets of P (for instance,
certain cohomology groups) in terms of similar objects defined on subsets of
F. To do this we need to investigate some further properties of μ: F -• P.

Let W be an open subset of F and W = μ(W). W will also be open. We want
to study the behaviour of sheaves and cohomology on W and W, determining
conditions on W so that we can transform, without loss of information, data
on W to data on W. If ίf is a sheaf on W then we may form the topological inverse
image sheaf μ'1^ on W. It may be defined by the presheaf F H Γ(μ(V),£f) for
V open in W with the obvious restriction mappings, and it is characterized by
the requirement that (μ~16^)q = ^μ{q) for all qeW. This isomorphism gives rise
to a map

defined by μ*/=/°μ (where, by abuse of notation, we have identified (μ~1^?)q

with £f μ{q\ The sheaf μ~ιΘ(V) introduced in Sect. 1 is an example of this cons-
truction. The pull-back μ* may be extended to cohomology in the following
manner (cf. Godement [14]). We may calculate HP(W, £f) by choosing a suitable
resolution of y , i.e. an exact sequence

which well abbreviate to

w- o > </> > gι\ (3.1)
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where ''suitable" can be taken to mean injective, flabby, fine or soft (often, in

practice, a resolution by sheaves of smooth differential forms). Then the abstract

deRham theorem (cf. Wells [51]) says that there is a canonical isomorphism

: ~ im δ:Γ(W, @p~γ) > Γ{W,

The resolution of Sf in (3.1) gives rise to a resolution

W; 0 >μ~ι<f >μ~ι&

of μ~ iy9. By writing this as a collection of short exact sequences and looking at
the corresponding long exact sequences on cohomology (or by using some universal
property of resolutions) it may easily be seen that there is a canonical homo-
morphism

HP(Γ(W, μ~ ιm')) > Hp{W9 μ-ι^). (3.3)

The mapping μ* on sections gives rise to a map of complexes

μ*:Γ(W,M') >Γ(W,μ-1@')

and hence a map on cohomology which we can combine with (3.2) and (3.3) to
define μ* on HP(W, £f) by means of the commutative diagram

HP(W, 9}) —^-+ Hp(W,μ-ιy)

II t
HP(Γ(W,@')) • Hp(Γ{W, μ~ ιm).

It is easy to check that this construction is independent of the choice of resolution,
βfc\ It is also not difficult to see how to define μ* naturally in terms of Cech theory.

If μ: W-* W has connected fibres, it is clear that

Γ{W^) = Γ{W,μ~1^).

The situation is not so simple for the higher cohomology,

μ*:Hp(W,6f) >Hp(W9μ~1^l p ^ l . (3.4)

As it turns out, the higher order topology of the fibres of μ must enter into the

discussion. The basic condition we shall use is that the mapping

μ:W > W

have fibres which are connected and have vanishing first Betti number. In other
words, for all ZeW,μ'\Z) is connected and H 1(μ" 1(Z),C) = 0. We shall refer
to such a mapping by saying it is elementary.

Remark. If U c M and Uf, U" are as m Sect. 1 the fibre μ~ \Z) of μ: V -+ V"
is biholomorphic to Z n U in M. Here Z is the α-plane determined by the (projec-
tive) twistor ZeP (see Sect. 1). Our principal interest later will be where W — U"
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and W = Ur so this observation may be used to check whether μ\W -> W is
elementary.

Returning to the question of the nature of the mapping (3.4), we consider the
special case of ^ = Θ(V) for some holomorphic vector-bundle V on W. We may
define μ* by using the Dolbeault resolution

W 0 > Θ{V) • S°*°{V) —d—+ S0Λ{V) — d - + £°'2{V) —d—> ...

where S)p'q(V) denotes the sheaf of forms of type (p, q) with coefficients in V (cf.

[51] or [43]). If V is a smooth (i.e. C00) vector-bundle we let 6\V) be the sheaf

of smooth sections of V (i.e. £{V) = g°>°(V)\

Lemma 3.1. Suppose that μ: W -> W is elementary, and that V is a smooth vector
bundle over W. Then

Proof. By analogy with the holomorphic case of Sect. 1 we may define a sheaf
of smooth relative p-forms Sΰp

μ on W and differential operators dμ so that we
obtain a fine resolution

W 0 — μ~ ιδ{V) — $1{V) - ^ S\{V) ^ S\iy) - ^ S%V) - ^ £4

μ(V) - ^ 0 (3.5)

(cf. (1.5)). Suppose that ZeW. We want to show that there is a neighbourhood
Uz of Z so that HHμ~ HUz)nW, μ~ ιS{V)) = 0. First, we may choose Uz so that

z

μ~ι(Uz) is trivialized:

Next, we choose any S O G P 2 such that (Z, so)eW (where, by abuse of notation
we have identified μ - 1 ( ^ z ) and Uz x P 2) and shrink Uz, if necessary, to ensure
that XeUz implies (X,so)eW. We may also suppose that V is trivial on Uz,
where Uz denotes μ~ι{Uz)r\ W. We have

H1(Uz, μ~ ^(V)) ^ Hί(02, μ~ ιS)\

where r is the rank of V and $ is the sheaf of smooth functions on P. As a special
case of (3.5) we see that H\Ux, μ~ V) = 0 if and only if

is exact. So suppose ωGΓ(Uz,S'μ
v) with dμω = 0. Then ω may be considered as

a family of smooth closed 1-forms ω(X) in the s-variables (56 P 2) smoothly para-
metrized by XeUz. Thus, we may define feΓ(Uz,6

ΰO

μ) by means of the integral
formula

f(X,s)= f
(A", so)
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where the integral is taken over any path in μ - 1 ( X ) n W joining (X, s0) to (X, s).
This is possible and independent of the choice of path since μ : W-* W is elementary.
By construction dμf= ω so Hιφz,μ'ιS) = 0. Hence H\Uz, μ-1£(V)) = 0
i.e.

ΓφzJ«l{V))-^Γ{ϋzJ«l(V))-^Γφz,£
2

μ{V)) (3.6)

is exact. Choose a covering of W by sets U„ of the above form and a partition
of unity subordinate to this covering. When pulled back to W this partition
of unity is constant along the fibres of μ, i.e. is annihilated by dμ. It may therefore
be used to patch solutions to the equation "(3.6) is exact" to obtain the exactness of

Γ{W, S%V)) — ^ Γ(W, Sι

μ{V)) — ^ Γ(W, £2

μ{V))

or, in other words, (by (3.5)) Hί(W,μ~1£(V)) = 09 as desired. •

Remark. If W = U", W= U\ where U cz M is Stein, then the above argument
can be used directly on the sequence (1.6) to prove the following theorem in the
special case V = Hn,n ;> — 1. For n = 0 (i.e. V is the trivial bundle) the proof
is essentially given in Ward [47].

Theorem 3.2. Suppose W^ F is an open set and let W denote μ{W). Ifμ:W-> W
is elementary then, for any holomorphic vector-bundle V on W,

μ* : H\W, G{V)) • H\W, μ' ι(9(V))

is a canonical isomorphism.

Proof. The sheaves S^q(V) are of the form £{V) for V - Λp>qT*(W)® V, where
Λp>qT*(W) is the smooth bundle whose sections are forms of type (p,q). Thus
by Lemma 3.1 H\W,μ'1^Pιq{V)) = 0 for all p,q. Actually we only need
H1(W,μ~1S'(V)) = 0 to conclude by simple diagram chasing that the canonical
map (3.3)

is an isomorphism (it's always injective). Now, μ: W -> W has connected fibres so

Γ(W,μ-ι£°>q(V)) = Γ(W, £°>q(V)).

Hence, μ* is the composition of three isomorphisms

HHW, Θ(V))

and the result follows. Π
The above theorem indicates how the topology of the fibres of μ affects the

properties of μ*. So far we have:

A. μ* :Γ(W9 Θ(V)) • Γ(W, μ~ ^(V)) is always injective.

B. If μ: W • W has connected fibres then

μ* :Γ(W9 Θ(V)) • Γ{W,μ'ιO(V)) is an isomorphism and

μ* :HHW, Θ(V)) • Hι(W, μ~ ιΘ{V)) is injective.
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C. If, in addition, the first Betti number of each fibre of
μ: W > W vanishes (in other words, μ: W • W is elementary), then

μ* : H\W, Θ(V)) > H\W9 μ~ ιΘ(V)) is an isomorphism and

μ* :H2(W, O(V)) > H2(W, μ~1O{V)) is injective (this last assertion follow-
ing easily from Lemma 3.1 by a similar argument to the proof of Theorem 3.2).
We expect this to be part of a general pattern but a proof of the general case is
lacking*. It is, however, fairly straightforward to show that if all of the fibres of
μ\W —• W are convex, then W is homeomorphic to a product W x fibre, and one
can deduce via a higher degree version of Lemma 3.1 that

μ* :HP(W, Θ(V)) —^—-> HP(W, μ~ 1(9{V))

for all p. An alternative proof of this in the case W = P + , W = F + is given in
Eastwood [9]. For the applications in this paper, however, we shall be concerned
primarily with the action of μ* on H1 so Theorem 3.2 will suffice.

4. The General & -Transform

The aim of this section is to finish constructing a general analytical machine
which transforms elements of analytic cohomology groups HP(U",&(V)) into
solutions of certain differential equations on U, an open subset of M. The complete
process will be called the ̂ -transform9. The pieces of this transform already
constructed include the isomorphism.

μ* \H\U\ Θ{V)) —^ H^U^μ-^iV)) (4.1)

when μ: U' -• U" is elementary (Sect. 3), and the canonical direct image isomor-
phisms (for instance):

a) H\U\ Ω°μ( -n- 2)) — i - > H\U\ Ωι

μ(-n- 2))

b) Γ(U9 <Va<."D')[ - 1]') - ^ Γ{U9 ®AiB,..DΊl - 2]') (4.2)

discussed in Sect. 2. What is missing in this case is a relation between
H\U\ μ~ιΘ{ -n-2)) and H\U\ Ωp

μ(-n- 2)). This will be a special case of
what we will establish in this section (Theorem 4.1). If n ^ 1, it's not difficult to show
that

H\Uf

9μ-ιΘ(-n-2)^ ker dμ in(4.2a) (4.3)

* Note added in proof. The general case has recently been proved by N. P. Buchdahl

9 The transform we wish to describe has been referred to elsewhere (e.g. in Wells [53]) as the Penrose

transform. It has also been referred to (e.g. in Rawnsley [42]) as the ίwistor transform. We prefer to avoid

the term twistor transform in this context since it is already in common use as a name for the
isomorphism

(cf. Penrose-MacCallum [32], where this is expressed in pre-cohomological language)
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and thus we have the integral transform (assuming μ: U' -* U" is elementary)

0>:Hl(U\ Θ(-n-2)) —^-> ker VA

A in (4.2b) (4.4)

The details are in Sect. 5 but this is the basic idea. The general form of (4.3) will be
a spectral sequence (cf. Eastwood [9], in case U = M + ) linking Hr(U\μ~1Θ(V))
and Hq(U\ ΩP(V)). Depending on the geometry and the bundles involved the
spectral sequence will give the right relationships between these cohomology
groups (e.g. (4.3) above). In the remaining sections of this paper we shall work
out various special cases of the ^-transform. In this section we will only formulate
the general method.

In general terms the transform works as follows. An element ω in HP(U'\ Θ(V))
is first pulled-back to μ*ω in HP(U\ μ~ιΘ(V)). We then restrict the cohomology
class μ*ω to a fibre v~1(z) for zeU, giving a "value" in the stalk of an appropriate
direct-image sheaf. As z varies this is interpreted as a spinor-field. Thus,

(&ω)(z) = ω "evaluated" on Lz.

Indeed, the original integral formulae are of this type without explicit reference
to the intermediate space V c F. However, it turns out that to break the transform
into two steps via F is a good way of being able the analyze the analytical behaviour

We now have the principal result of this section:

Theorem 4.1. Let X be an open subset o/F. Then there is a spectral sequence

, μ~ ιΘ(V))

where the differentials dι :Ep^q ->Ep + 1>q are induced by dμ :ΩP(V) ^Ωp + i(V),

Proof The exact sequence (1.5):

W 0 > μ~ ιΘ{V) > Ω°μ(V) > Ωl(V) > Ω2

μ(V) > 0

provides a resolution of μ' 1Θ(V). The spectral sequence called for in the theorem
therefore follows a standard construction (for a "differential sheaf in a special
case cf. Bredon [5]). •

Remark. One way of constructing the spectral sequence in Theorem 4.1 is to
write (1.5) as a pair of short exact sequences, consider the resulting long exact
sequences on cohomology, and do some elementary diagram chasing. The same
diagram chasing can, of course, be used to prove directly anything which can be
deduced from the spectral sequence. The spectral sequence terminology does
produce, however, a more illuminating and unifying way of viewing the results
of the next few sections, as well as a means of keeping track of sometimes compli-
cated information.

5. The Twistor Description of Right-handed Fields

Let 0M<B'...D')[ - 1]' be the spinor sheaf on M with n( ^ 1) indices as defined in
Sect. 2. Let

syi. όψ> . — \rexXlA' (() Γ — I T > (9 Γ — 2 T C5 1Y



Cohomology and Massless Fields 331

We shall call 3£'n the sheaf of holomorphίc right-handed massless free fields ofhelicίty
n/2. The sections of 3fn over an open subset U contained in M,

Γ(U, Tn) = {φA.B....D.eΓ{U, ΘiA,B,...DΊ[ - ΪXY KΦΛ B-.D = °)

are the holomorphic massless fields on U of helicity n/2 (Dirac [6], Fierz [12]).
Note that we do not (as is sometimes done) reserve the term "right-handed"
(or equivalently "positive helicity") for the case U = M +. For helicity = \ these
equations are the Dirac-Weyl equations of the anti-neutrino, for helicity = 1
we have Maxwell's equations for a self-dual field (a right-handed photon), and
for helicity = 2 the self-dual linearized Einstein equations. More precisely the
sections of 2£'n are the holomorphίc right-handed massless free fields of helicity
n/2 with primed conformal weight. On M1 these fields coincide with the classical
massless fields first introduced by Dirac. We could also envisage fields with
unprimed conformal weight, i.e. we could replace (5.1)' by

M &n: = ker VA

A : 0M.B....D,[ - 1] > &A(B,..D,}[ - 1] [ - 1] ' (5.1)

which also agrees with Dime's definition for M1. The only distinction here arises
when we consider non-unimodular GL(TΓ) transformations, under which 3£ n

and 2£'n are not canonically isomorphic. The physical significance of this is yet
unclear, but it turns out that the ^-transform acting on P produce naturally
sections of 3?'n. The distinction between ££'n and Z£\ would disappear (as would
that between primed and unprimed weights generally) if we had been concerned
with the action of SL(J) rather than GL(T).

We now have the following theorem which represents right-handed holo-
morphic massless fields on fVD in terms of holomorphic data on P.

Theorem 5.1. For U open in M and n ^ 1, there is a canonical linear transformation

&\H\υ\ (9( -n- 2)) > Γ(U, Ty

Ifμ: U' —• V" has connected fibres, then 0* is injective and ifμ: Uf —• U" is elementary,
then ¥P is an isomorphism.

Before we proceed with the proof of this theorem we recall that μ: U' -> U"
has connected fibres if and only if every α-plane in M intersects U in a connected
set and that μ:U' —> V" is elementary if and only if all these intersections are
connected and have vanishing first Betti number.

Proof of Theorem 5.1. We already know from Sect. 3 that

μ* :H\V\ Θ( - n - 2)) > H\υ\μ~ιΘ{-n- 2))

is injective or bijective according to the hypotheses given in the theorem. Thus
it suffices to show that

HHU', μ- 'Θi- n - 2))^ Γ(U, rn)

in a natural way. We do this by using the spectral sequence of Theorem 4.1. By
the formulae (2.11) (and the analogue of Proposition 2.2) we compute:

E{>° = H°(U\ Ωp

μ(-n-2)) = 0 for all p
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£?•' = H\U\ Ω°μ{ -n- 2)) s Γ(ί/, £{A,B,...DΊ{ - 1]') (« '"dices)

£}•' = ί/>(C/', Ωiί - π - 2)) s Γ(U, &MB,..DΊ[ - 2]')

etc.

Thus the £j-level of the spectral sequence of Theorem 4.1 is isomorphic to

H\U,(9{A,JDΊ[-W >... (5.2)

W ^ β - U - 1]') ̂  TO ^ V ^)[- 2]') ̂  TO V D ^ - 1 ] [ "^D "^

0 0 0 >p

Thus Z ^ 1 ^ ker Vj' :Γ([/, ^ B , . . D , } [ - 1]') > TO ΘA{B,...DΊ{ - 2]')

In a general spectral sequence argument we would now have to consider
d2: E°2

Λ -> E2

2° but £]'° = E j ' 0 = 0 so this is just the zero map. Hence E°2

Λ = E^K
Also E\'° = 0 so £^° = 0. In general the spectral sequence of Theorem 4.1 gives
an exact sequence

0 > EιJ > H\U\ μ- ιΘ{V)) • E^1 > 0.

In our case, however, Eu0 = 0 so we can conclude that
Oθ

HHU\ μ- ιΘ{ - n - 2)) ^ E^1 ^ E°2

Λ ^ Γ(U, Tn)

as required.
The group GL(ΊΓ) of linear automorphisms of T (isomorphic to GL(4, C))

clearly acts on P and M in such a way that the twistor correspondence (1.1) is
preserved. Thus, if φeGL(J) and U is an open subset of M then φ(U)" = φ{U").
φ also preserves Θ( - n - 2) and Tn. Hence it makes sense to ask that the diagram

0>\Hx(υ\ O(-n- 2))

[
0>'H\φ(l)"\ Θ( - n - 2)) > Γ(φ(U), &'„) (5.3)

be commutative. This is what it means for gp to be canonical. It is, moreover,
clear that (5.3) is commutative since the proof of Theorem 5.1 is free from any
choice of basis for T. •

We carried out the argument in the above proof in rather too much detail.
For anyone familiar with the language of spectral sequences a glance at (5.2)
would suffice. For other examples and applications of spectral sequences see
Bredon [5] or Godement [14]. As remarked earlier, the same result easily follows
directly from (1.6) and (2.11) without the use of this seemingly cumbersome
machinery.

Massless fields are often described by means of a Fourier integral formula
(Fierz [12]). It is then possible, in terms of this formula, to define what is meant
by a positive-frequency (or equivalently, positive-energy) field. Wave-functions
occurring in nature are positive-frequency. A real-analytic positive-frequency
field on real Minkowski space automatically extends to a holomorphic field on
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an open neighbourhood of M + (often taken as the definition of positive-frequency).
If 0 were an isomorphism for a suitable collection of such neighbourhoods then
we'd be able to take a direct limit over all such neighbourhoods to obtain an
isomorphism

0> :H 1(P + , Θ( — n — 2)) — ^ ^ {real-analytic positive-frequency helicity
n/2 massless fields on real Minkowski-space}

In fact, 0* is an isomorphism for suitable arbitrarily small open neighbourhoods
of M + . The proof is essentially the same as for M + itself (see Corollary 5.2, below),
the usual choice for U (in Penrose [37] and Wells [52] for example). There is
another reason why M + and M ~ are of particular interest, namely, these are
just the type of set required to define hyperfunctions on real Minkowski-space.
Therefore it is reasonable to expect that the ^-transform can be extended to
include hyperfunction fields and this is indeed possible (see Wells [53] and [54]).
The result for M + is worth stating separately.

C o r o l l a r y 5 . 2 . F o r n^ί9

0>:H1(P + , Θ(-n- 2)) • Γ(M + , g"n)

is a canonical isomorphism.

Proof. M+ is a convex subset of M1 — C4. Thus, every α-plane intersects M +

in a convex and, hence, simply-connected piece. •
It is also clear that Theorem 5.1 describes every right-handed field locally

since each point of M has convex neighbourhoods to which the theorem applies.

6. The Wave Equation

The classical scalar wave equation in affine Minkowski space M1 is

ΠΦ = O, (6.1)

where φ is a scalar field (a function) and • : = VαVα = WAΛ'V'AA,. Every component
of a massless field satisfies the wave equation and indeed, (6.1) is also called the
helicity zero massless field equation. Globally a massless field has to have conformal
weight — 1. In other words φ is to be regarded as a section of ^ 0 or ^'Q where

3T'O : = ker • : 0[ - 1]' • Θ[ - 1] [ - 2]'. (6.2)

We shall see that • arises naturally from the twistor geometry. It is interesting
to see how a second order operator appears whereas VA in Sect. 5 was first order.
The spectral sequence shows how this transition occurs.

Theorem 6.1. For U open in M there is a canonical linear transformation

&\H\υ\ 0( - 2)) > r(u, ar0).

Ifμ: V -> U" has connected fibres, then & is injective and ifμ: U' ->- U" is elementary,
then & is an isomorphism.
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Proof. As in the proof of Theorem 5.1 it suffices to compute Hι{Ό\ μ 1Θ( — 2))
by means of Theorem 4.1. Using (2.11) it follows that

E\q = Hq{U\ Ωι

μ{ - 2)) - 0 for all q.

Thus Ep

2'
q = E\Λ and (2.11) shows that the £2-level is given by

0

Thus H\U\ μ~ ιΘ{ - 2)) ̂  ker D:Γ(U, Θ[ - 1]') -> Γ(C/, Θ[ - 1] [ - 2]'). Since the
differentials of the first level of this spectral sequence all vanish and this is the
second level, it follows that D is a second order differential operator. To identify
D we proceed as follows. Recall that to identify H\Uf, Θ( - 2)) with Γ(U, 0 [ - 1]')
we use the sequence (cf. (2.9))

F; 0 > Θ{ - 2) — ^ - > ΘA{ - 1) - ^ - > &[ - l j 0

and the fact that Γ(U\ 0\_ - 1]') ̂  Γ{U9 &[_ - 1]'). The map of complexes

Θ( - 2)

F;

ΘA{ -

gives rise to a map of spectral sequences which on the £2-level is

H\U',Θ{-2))

iϊHί/', C?( - 2)) — ^ D

0 0 Γ(U\Θ[- l ] [ - 2 ] ' )

Hence, D = | Π and the result follows. D

7. Left-handed Fields via Potentials

A classical holomorphic left-handed massless free field on an open subset U of
M is a holomorphic spinor field

ΨAB . DEΓ(U> Θ(AB D)ί ~ !]') satisfying

f = 0

(7.1)
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and the field is said to be of helicity — n/2 if there are n indices. For helicity — 1
these are the spinor form of Maxwell's equations for an anti-self-dual field. We
shall denote the sheaf of such by if'_n There is also the isomorphic sheaf 2£'_
defined as the kernel of V™' :0 M Λ . . D ) [ - 1] - &{AB...C){ - 2] [ - 1]'.

One way of representing these fields is via analytic cohomology on portions
of dual projective twistor-space P*. This would follow exactly the construction
of Sect. 5 and would yield sections of 2£ _n. Left-handed fields (sections of <2Γ_n)
may, however, be represented on portions of IP itself. This representation may
be accomplished via the contour integral approach (cf. Penrose [34]) or by "power
series expansion" of cohomology classes about the lines L z, for zeM (cf. Wells
[53] and the discussion in the next section). The method which comes out of
Theorem 4.1, however, is to use potentials.

By a potential for a field φAB D eΓ(U,^'_n) we mean a spinor field

bB

A-
DΈΓ(U,Θ^ D)[-lJ) such that

ΦA)

D = ΨAB . D' (7.2)

(The symmetrization on the left-hand side refers only to the unprimed indices)
It is straightforward but tedious to check (cf. (7.6) and (7.7)) that if ΨAB...D is given
by (7.2) then the field equations (7.1) are automatically satisfied. There is clearly
some "gauge freedom" in choice of potential for it is easy to see that if φA'"

D' is a
potential for a field ΨAB...D, then so is

φB^.-D' +ψB>yC>-DΊ ( ? 3 )

for any spinor field yc'"'D'eΓ(U, ΘC'D). There are other related notions of poten-
tials. A useful concept, for example, is that of a Hertz potential (cf. Penrose [27]).

Locally it is always possible to find a potential for a given massless field and
(7.3) is the only freedom allowed in such a choice. This follows from constructions
in Penrose [37] and Ward [49], which involve explicit formulae for representations
of the fields and the potentials, respectively, as transforms of the cohomology
classes.

According to our definition, a potential for a neutrino field (helicity — 1/2)
is the field itself, so the simplest case is the Maxwell field:

VBB'φAB = Q. (7.4)

If we regard ψAB as an anti-self-dual 2-form Fab = φAB£A,B,, then (7.4) becomes
dF = 0, the desired potential is a 1-form ω such that dω = F, and the gauge freedom
is simply that ω may be replaced by ω + dy for any holomorphic function y.
Hence, the local equivalence of the field potential modulo gauge follows from the
exactness of the deRham sequence

M Ω° > Ω1 • Ω2 > Ω\

In terms of spinors this portion of the deRham sequence, up to constant factors,
is (cf. (2.3))

φ(A'B')^__ 1] Γ _ 2]'

Θ l!ϊ02'[-i][-2]\ (7.5)



336 M. G. Eastwood et al.

Thus, one way of seeing that a left-handed Maxwell field is locally equivalent
to a potential modulo gauge, is by studying the following commutative diagram
(cf. Eastwood [9]).

- 2 ] ' . (7.6)

ί ΐ
0 0

The point is that all the columns are exact and the middle row is (7.5) and hence
exact. Therefore, simple diagram chasing shows that the cohomology of the first
row (potential modulo gauge) is isomorphic to the cohomology of the last row
(fields). The reason for rewriting the argument this way is that it generalizes
locally to apply to all helicities. The precise details are rather messy and will be
omitted. The diagram for helicity — n/2 contains n—ί intermediate rows between
the potential and the field descriptions, the jth intermediate row being the deRham
sequence shunted j — 1 steps to the right and tensored by ^ J . ' . ^ Γ ^ 0 -

We now consider what happens globally in the helicity — 1 case. To investigate
the global question of whether fields are equivalent to potentials modulo gauge
on a given open subset U of Ml we take sections of (7.6) over U. For example,
if we were dealing with smooth forms, then sections of (7.5) over U would yield
an exact sequence if and only if Hι(U, C) = H2(U, C) = 0. Indeed, (7.6) would
give rise to an exact sequence

H\U, C) > { P ° t e n t i a ! s } > {Left-handed Maxwell) >

{Gauge} I fields on U J
(7.7)

and so we would conclude that if Hι(U, C) = H2(U, C) = 0, then we'd have an

isomorphism on U:

{Potentials} ^ J Left-handed )

{Gauge} { Maxwell fields j '

In the case of holomorphic forms, however, it is easy to check that in addition

we need

V*' \H\U, 0) > H\U, ΘB

A[- 1]') (7.8)

to be injective. If U c M1 is convex then if1 (17, C) = H2(U, C) - 0 and U is Stein
so that Hί(U,Θ) = 0. Hence, a potential description is always valid for such a
U and, in particular, for L/ = fVQ+. The investigation of the general helicity case
is similar and will be omitted from this paper. The main result of this section is
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T h e o r e m 7 . 1 . Suppose that n^l,U is open in M, and
n-2

V* :HX(U, Θ^7^) > H\U9 Gfc'"'D\ - 1J) (7.9)

is injective, where this condition is taken to be vacuous ifn = 1. Then there is a canoni-
cal linear transformation

3? : HHU", Gin - 2)) > ί P ° t e n t i a I f°Γ h e U d t y " " / 2 j / ί j
[ holomorphic massless fields on U J / (Freedom J

(7.10)

Ifμ: U' -• JJ" has connected fibres, then 5P is injective and ifμ: V -> V" is elementary,
then 0* is an isomorphism

Proof As in the proofs of Theorems 5.1 and 6.1, & is constructed by first mapping
μ* \H\U\ (9{n - 2)) -> Hι{U\ μ~ 1Θ{n - 2)\ and then using the spectral sequence
of Theorem 4.1 to compute Hί(U',μ~1Θ{n — 2)). Thus it suffices to show that
there is a natural isomorphism

H\U\ μ~ 1(9{n - 2)) ^ {Potentials}/{Gauge}.

Using the isomorphisms (2.11) we compute the £χ-level of the spectral sequence:

- 1]') - ^ - > Γ(U, Θ<ΛtB'" D>)[ - 1] [ - 2]')

The injectivity of (7.9) is therefore precisely that E®Λ = 0. Moreover, by definition

£i ° = {Potentials}/{Gauge}.

E*1 = E°il = ° a n d E™° = Rl2° s o t h e e x a c t sequence

0 > Elf > H\O\ μ~ ιΘ(n - 2)) > E0^1 > 0

gives the desired result. Π
The hypothesis in Theorem 7.1 that (7.9) be injective may seem a little strange.

It is a very weak condition and, in particular, Theorem 7.1 applies to M + and
applies locally in the sense that any point has arbitrarily small neighbourhoods
for which the result holds. Nevertheless, we observe that in case n = 2 (i.e. left-
handed photons) (7.8) and (7.9) coincide. In other words, the extra hypothesis
required in the theorem is precisely the additional analytic condition needed,
in addition to topological conditions, to ensure the existence of potentials. This
seems to indicate that if we drop this condition then it still may be possible to
produce the field, but not necessarily a potential (compare also Penrose [37]).
In the remainder of this section we shall discuss only the case n = 2.

We recall that & of Theorem 7.1 is constructed by first applying μ*: H1(C///, Θ) -•
H1(U\μ~1Θ\ and then using the spectral sequence of Theorem 4.1 to interpret
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H1^', μ~ XΘ) in terms of data on U. If we define a complex of sheaves 6^' on M by

M ; ]| /'B )\ \ .'^
... >0 ^^^'[-lJ-^^^-1^-2]' >0 > . . .

then the spectral sequence of Theorem 4.1 is exactly the second hypercohomology
spectral sequence of 9^ (cf. Swan [54], or the spectral sequence of a differential
sheaf in Bredon [5] or Godement [14]). Thus, the interpretation of Hr(U\ μ~ ιΘ)
as data on U is, in general, given by the isomorphism

Hr{U\ μ-^Θ) ̂  W{U, ίf'). (7.11)

Now define a second complex 0t by

M; ίί If Ψ ϊ v >

Identifying the various spinor sheaves in terms of holomorphic forms, we can
complete (7.6) to the exact sequence of complexes

M; 0 >3t >Ω >&' >0

and hence obtain a long exact sequence on hypercohomology

... • M^U.Ω') • W{U,^') • U2{U^') • U2{U,Ω') >...
(7.12)

Since Ω is a resolution of C,

Hr(U,Ω°) = Hr{U,C). (7.13)

The hypercohomology group H2(U\&') is easily calculated by the first hyper-
cohomology spectral sequence, or from the definition of hypercohomology,
and we find that

, &) = Γ(U, &'_2), M\U9 3t) = 0 (7.14)

Substituting (7.11), (7.13) and (7.14) into (7.12) we obtain the exact sequence of
(cf. Eastwood [9])

0 >H\UX) >H1(U\μ-1Θ) >Γ{U9&'_2) > H2(U,C) >...

and & may be defined as the composition (7.15)

H\υ\O)—^H\U\μ-ιΘ) >Γ(U,T_2).

It is now easy to see when

&\H\U\ Θ) > Γ(U9 &'_2)

is an isomorphism. Firstly, there are the usual topological conditions on μ :[/'-> V"
ensuring that μ* be an isomorphism (Theorem 3.2). Secondly, (7.15) shows that
H\U\ μ~ XΘ) -+ Γ([/, T_2) is an isomorphism if JRΓ1(C7, C) and H2(U, C) vanish.
Thus, the topological obstructions to existence and uniqueness of potentials
remain whereas the analytic condition has disappeared. This suggests that perhaps
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H^U, <?') should be taken as a definition of potential modulo gauge freedom
in the case of holomorphic forms.

8. A Direct Approach to Left-handed Fields

In Wells [53] a cohomological method was described for producing a left-handed
field of helicity — n/2 directly from an element of Hι(U'\ Θ(n — 2)). For this range
of homogeneities the integral formulae (cf. Penrose [34]) involve differentiation
in the integrand and this shows up in the cohomological method by using powers
of the conormal bundle of a line in U" to try to expand an element of
Hι{U\Θ(n — 2)) as a power series about the line. It is therefore quite straight-
forward to see that when an integral representation is possible, it agrees with
this more abstract approach. What is not so clear is that this approach agrees
with that described in the previous section of the present paper. In this section
we shall first review the construction of Wells [53], describing it invariantly10

with the aid of the spinor sheaves of Sect. 2. Then we shall use the process of
raising and lowering helicity (cf. Eastwood [10] and Penrose [33], [39]) to show
that it does indeed agree with the twistor description via potentials given in Sect. 7.
This also follows by comparison of the constructions given in Penrose [37]
and Ward [49].

Consider the bundle ΘA(\)(: = Θ{\)®ΘA) o n P x i . The fibre of this bundle
over (L^LJePx M is L*(g)(T/L2). Choose ίeL^ Let /* denote the dual
element of L* (i.e. /*(/) = 1), and let [/] denote the image of/ under the quotient
T-+T/L2. Then Λ ® [<]eL* ®(T/L2) is independent of the choice of ί and
hence defines a section of ΘΛ(1) which we will call ωA. Observe that ωΛ(Lί, L2) = 0
if and only if L1 a L2 and indeed ωΛ defines F without multiplicity as a sub-
variety of P x M. In other words, if β denotes the ideal sheaf of F as a subvariety
of P x M,then

i A J/I

is surjective. This also gives the following exact sequence

p x y ; o • / 2 > / • ψΘA( - 1) — • — • 0

/yι—>/jF (8.i)
which identifies the conormal bundle f//2 as ΘA( — 1) on F. Here, we have allowed
ourselves to write χΘ instead of Θχ to avoid confusion with spinor indices. Now
suppose U is an open Stein subset of M and consider the above construction

10 The construction itself is manifestly invariant but we repeat it here to show how it fits in with the

spinor sheaves of Sect. 2. The use of the ideal sheaves in what follows is a device to make sense of d/dωA

in an invariant manner. Knowing d/dωA is the same as knowing the location of I, the line in P corres-

ponding to the vertex of the null-cone at infinity of M. If this is fixed then it is easy to check that the

method in Wells [53] agrees with that described by Penrose [37].
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applied to V as a subvariety of U" x U. We claim that

H\U" x [/, fn(n - 2)) > H\U" x ί/5 0(w - 2)) (8.2)

is an isomorphism. The general case is no more difficult than the helicity — 1 (n — 2)
case so, for notational simplicity, we will restrict our proofs to this case. From the
exact sequence of sheaves

U" x U 0 > / > Θ • v,(9 • 0

we obtain an exact sequence on cohomology

Γ(U" x U,Θ)—+Γ(U',&)—+H1{U"x (7,/)—>Hι{U" x U,G)—+H\U\&).

The holomorphic functions on [/" x U and V are the holomorphic functions
on U so Γ(U" xU,Θ)-> Γ(U'9 Θ) is surjective. Also, by Proposition 2.2, H\U\ Θ) ^
H\U, (9) = 0, since U is Stein. Hence

H\U" x (7,/) > H\U" x U,Θ)

is an isomorphism. Now consider the exact sequence (8.1) on V" x U. The corres-
ponding long exact sequence on cohomology includes the portion

Γ(U\ (9A{ - 1)) > H\U" x [/, / 2 ) > H\U" x (7, / ) > H\U\ ΘΛ( - 1))

and Proposition 2.2 shows that the first and last terms vanish. Hence we may
conclude

H\U" x C/, / 2 ) —^-> H^t/" x (7, / ) — ^ > HHC/" x *7> ^)

as required. Intuitively, (8.2) being an isomorphism says that the information
contained within an element of H1^" x U, Θ(n — 2)) depends only on normal
derivatives to V of order at least n. To evaluate the field we in effect just take
the nth normal derivative by factoring out yn+1(n — 2). This also has the required
effect of restricting to V since fn(n — 2)//n+ι(n — 2) is supported on V. It
follows from the exact sequence (cf. 8.1)

fAB...DωAωB...ωD\ >fA U'

that fn(n-2)/f"+ί(n-2) may be canonically identified with &{AB...D)(-2) on
V. The ^-transform in Wells [53] is defined as the composition

H\U\ G{n - 2)) > H\U" x U, Θ(n - 2 ) ) * — ^ - H\U" x U, fn(n - 2))

(8.3)

where the last isomorphism follows from Proposition 2.2. To show that (8.2)
was an isomorphism we assumed that U was Stein (though we only used H1(U,Θ) =
0 in case n = 2). This indicates strongly that the construction is really via potentials
especially as, in case n = 1, the assumption is unnecessary. To get around this
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problem we simply perform the transform (8.3) locally. It is clear that these local
transforms will agree on overlaps and hence patch together to give a well-defined
transform for any U. An alternative approach is to apply the argument to a fixed
line Lz, for ze U, as a subvarίety of U" instead of V as a subvariety of U" x U.
This is the approach that we shall adopt to show that & defined by (8.3) agrees
(apart from a combinatorial constant factor) with & defined by Theorem 7.1.

Again we will restrict our discussion to the helicity — 1 case. Choose a point
of U. We shall call this point the origin and introduce coordinates zA A ' as in
Sect. 1 so that this origin really is the origin of M1. Also introduce coordinates
(ωA, πA,) on T as in Sect. 1. Then the line L in P corresponding to the origin is
defined by the vanishing of αA If / denotes the ideal sheaf of L as a subvariety
of U" then the value of 0> at the origin according to (8.3) is given by the composition

U\\J\ Θ)+-^- H\U\ /2) > H\U / 7 / 3 ) = H\U L0 ( A B )( -2)) (8.4)

where the last space is regarded as the fibre of ®(ABJ — 1]' over the origin. To
compare this with Sect. 7 we proceed as follows. Since f2 is generated by ωAωB

we have the exact sequence

0 >jr > 0 ( A B ) ( _ 2 ) J ^ / 2 >0 (8.5)

where X is some coherent analytic sheaf. Consider the following commutative
diagram

() ^ ^ ^ ", G) (8.6)
I

H\L,LΘ(AB){-2)) s

Tracing this diagram from Hι(U'\Θ) to Hι(L, LΘ{AR)( — 2)) is the proposed

construction (8.4) whereas the restriction H\U\G{AΆ){ - 2)) -• H\U L®(AB)( ~ 2))

is the construction of the value of a field at the origin according to Sect. 6. The

interpretation of

ωAωB \H\U\ 0(AB)( - 2)) • H\U\ G)

on the corresponding massless fields (via Sect. 6 and Sect. 7) can be explicitly
computed (Eastwood [10] and Penrose [39]) and turns out to be

ΦΛB I • - IV* zDB'VAA,VBB,^CD + 4zC A 'VA, ( A^B ) C + 2</>AB].

Hence, the value of the field at the origin is simply multiplied by — 2. If ωAωB :
HX(U\ 0 ( A B )( - 2)) -• Hι{U\ f 1 ) were surjective, then we would be able to con-
clude from (8.6) that, apart from the factor of —2, the method of Sect. 7 agreed
with (8.4). Then, all the conclusions of Sect. 7 would carry over. If H2(U", J f) = 0
then (8.5) would imply the required surjectivity. For suitable U this is true (cf.
Andreotti and Grauert [1]) but we can circumvent this more complicated argu-
ment as follows. The value of the field at the origin is unchanged if we shrink U
(and hence U"). We claim it is always possible to shrink U to V, say, so that the
corresponding map H2(U", J f ) -• H2(V\ J f) is the zero map. This would certainly
suffice to complete the comparison and is a consequence of the following lemma.
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Lemma 8.1. Any line L in P has arbitrarily small open neighbourhoods W with
H2(W,<¥?) = 0 for all coherent analytic sheaves £f.

Proof. Choose two standard coordinate patches on P whose union contains
L. In each of these patches there are arbitrarily small Stein sets containing the
part of L lying in the patch. Thus a neighbourhood W may be chosen which is
a union of two Stein sets. The Mayer-Vietoris theorem and Cartan's theorem B
(cf. Hormander [20] or Gunning and Rossi [18]) show that H2(W,6f) = 0 for
all coherent analytic sheaves ίf. •

9. Background Coupled Fields

In [46], [47] Ward gave a method involving the "twisted photon" for describing
certain background coupled fields by means of twistor integral formulae. In this
section we shall show how the general machine of Sect. 4 may be combined with
the results of Sect. 7 to interpret this result cohomologίcally.

Suppose ΦA

A is a potential for a left-handed photon (Maxwell field) on U
in the sense of Sect. 7. Define a differential operator DA on U by

r)Af. _ V7A' , 2mΦA' Θ Γ — 11 > Θ Γ — 11Γ — 11'

Then (cf. Gasiorowicz [13]), a holomorphic right-handed massless field on U

minimally coupled into the electromagnetic background defined by ΦA is a section
oΐΘ(A'B'-D') [ - 1 ! satisfying

If there are n indices, then the field is said to be of helicity n/2. We will denote
the sheaf of such by Jfn(Φ). If ΦA = 0 then, of course, we just have 2t\ as before
in (5.1). Also, there is the background coupled version of (5.1); which will be
denoted by Tn[Φ).

If we replace ΦA by an equivalent potential (cf. (7.3))

then the background coupled fields are essentially undisturbed since

V^' + 2πiΦΛ

A = e2πiyφΛ

A + 2πi{ΦΛ

A + VΛ

Ay))e-2πiy

Hence, the potential is only important up to the usual gauge freedom.
In Sect. 7 we described how left-handed photons may be represented under

suitable conditions by elements of i/1(L///, Θ). Since this representation was via
potentials modulo gauge freedom we may expect it to be useful in describing
electromagnetically coupled fields. This is indeed the case. The representation
of a left-handed photon as an element of H1(ί7", Θ) is called the passive description.
The active description is in terms of a line-bundle over I/", namely the twisted
photon (Ward [46], [47]).1 1 To obtain this bundle from the passive description

11 The "active" and "passive" terminology used here differs from that used in Penrose and Mac-

Callum[32].
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consider the short exact sequence of sheaves

p ; o >Z >Θ^

where Z denotes the constant sheaf of integers and (9* the sheaf of nowhere-
vanishing holomorphic functions. The long exact sequence on cohomology
contains the portion

H\U", Z) > H\U\ Θ) > H\U\ 0*) — ^ H2(U", Z) (9.1)

and the twisted photon L is defined as the image of the passive description under

the exponential map

#1(1/", 0) >H\U\G*).

The possible line-bundles obtainable by this process are, by (9.1), precisely those
which are topologically trivial (i.e. c(L) = 0). Moreover, recall (Sect. 7) that there
are conditions on U which must be satisfied for the description of a left-handed
Maxwell field as an element of if 1(C///, Θ) to be valid including

a) H1(U,C) = 0, (9.2)

b) μ:U'•-» U" is elementary.

It is straightforward to show that conditions (9.2) imply H1(U",Z) = 0 so that
left-handed photons are precisely in 1 — 1 correspondence with topologically
trivial line-bundles on U". This is connected with "charge integrality" (see Penrose

We need not impose such restrictions, however, just to obtain a cohomological
description of background coupled fields. We need only suppose that we are
given a twisted photon (i.e. a topologically trivial line-bundle on U") which
happens to correspond to a potential on U in a sense which may be made precise
as follows. Recall the exact sequence (1.3)

F ; 0 • μ- ι(9 • 0 —^-» Ωx

μ — ^ - > Ω2

μ • 0

Define a sheaf Jf on F by

Then we obtain an exact sequence

Ω2

μ

H* μ \\ϊ
Γ(U, ΘΛ

A[ - 1 ]') - ^ — • Γ(I7, Θ{A'B\ - 1] [ - 2]')

so Γ{U\ Jf) is isomorphic to the space of potentials on U. The exact sequence

gives rise to an exact sequence on cohomology

... • Γ(U\ Θ) —^ Γ(U\ Jί

Γ(U9 (9) V" > {potentials on U}. (9.3)
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Thus, an element in Hι(U!,μ'ιΘ) gives rise to a potential on U if and only if
its image in H1^', Θ) is zero. Furthermore, the potential is unique up to the usual
gauge freedom. We shall say that a potential ΦA corresponds to a twisted photon L
if and only if we can find ωeH\Ό'\Θ) so that L = exp2πzω and μ*ω = δΦ,
where I(Φ) = ΦA

A under the direct image isomorphism / in (9.3). If the hypotheses
of Theorem 7.1 are satisfied then this agrees with taking the passive description
of that theorem and then exponentiating.

The cohomological description of coupled fields is obtained by replacing
Hn by L® Hn in the usual description of uncoupled fields (cf. Theorem 5.1).

Theorem 9.1. Suppose that L is a twisted photon corresponding to a potential
ΦA

A on U for a left-handed Maxwell field. Then, for n^ί, there is a canonical
linear transformation

& : H\V\ Θ(L)( -n-2)) > Γ{U9 Tn(Φ)).

Ifμ: Uf -* U" has connected fibres, then & is injective and ifμ: U' -+ U" is elementary,
then & is an isomorphism.

Proof The proof follows that of Theorem 5.1 and 0> is constructed by first applying

μ* :H\U\ 0(L)( - n - 2)) > H\U\ μ~ ^(L)( - n ~ 2)).

It now suffices to show that

H\U', μ~ ^(L)( -n-2))^ Γ(U, Tn(Φ)).

We do this by using Theorem 4.1, as usual. Hence, we must compute
Hq(U', Ωp

μ(L)( - n - 2)) and the differentials

dμ :Hq{U\ ΩJ(L)( ~ n - 2)) > #«([/', £ ^ + X(L)( - n - 2)). (9.4)

Since L corresponds to a potential <2̂ ' we have the following commutative diagram
(cf. (9.3)).

Γ{U\ X) > Hl{O\ μ" ιΘ) > H\U\ Θ) ~> Hι(U\ Θ*)
ID (X) U) ID

Φ\ >μ*ω\ • O i > 0

ί ί

ω i > L

(T\ rn

H^t/", Θ) > Hι(U'\ Θ*) (9.5)

Thus, μ*L is trivial as a holomorphic line bundle on U\ whence

Hence, the terms in the E1 -level of the spectral sequence of Theorem 4.1 are
exactly as in the case of Theorem 5.1 where L is trivial. The only difference is in
the differentials where we expect VA to be replaced by DA throughout. The
differentials are given by (9.4) and so it suffices to show that if we trivialize μ*L
in a natural manner (using ΦA\ then we have the following commutative diagram
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(9-6)

for this is the appropriate generalization of Lemma 1.2. The trivialization of
μ*L is given implicitly by (9.5). To make this explicit we use the Cech definition
of cohomology. Let {U } .eJ be an open cover of U" such that ω has a representation
as a Cech cocycle:

μ*ω is then defined by the cocycle

with respect to the cover {μ~ 1(Uj)}. From (9.5), δΦ = μ*ω, i.e. there is:
1) An open cover {^} jW of Ur (after perhaps redefining the indexing of {[/.})

h F 1 ^ ) )so that F . c

2) hjeΓ(VpΘ)sothat(dμhj=Φ

\
Vj

= h.- hk onV.nVk.
Hence, from this last equation

(exp 2πίωjkoμ)exp 2πihk = exp 2πih. on TΛn Ffc

But {exp 2π/ωjfc ° μ} are transition functions for the bundle μ*L so {exp2πι7z.}
is a no where-vanishing section of μ*L which therefore trivializes it:

F ; ω O)

/ I—>{fexp2πihj}.

Now we apply dμ : β^(L) ^ β^(L) to this section:

2πih. +fQ™άh^ exp 2πih.

Identifying β^(L) with ^ ( 1 ) [ — 1]' using the same trivialization, we obtain (9.6)
as required. •

The above theorem interprets H\U\ Θ(L)(k)) for k < - 2. For k = - 2, an
analogue of Theorem 6.1 holds, and for k> — 2, an analogue of Theorem 7.1.
All that is necessary is to replace V* by DA

A in the statements and proofs of the
theorems. Note that VA{A^B

A

] = 0 is equivalent to saying that DA

BDA)A = 0.
Hence, replacing the operator VA by the deformed operator ΌA

A is equivalent
to deforming the trivial bundle to obtain L. This point of view, of regarding L
as obtained by deforming the trivial bundle, is how the twisted photon was origi-
nally constructed by Ward [46], [47] (though the definition given there has a
twist of — 1 also). Actually, it is best to regard DA as a connection for the trivial
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line bundle on U. The twisted photon construction then generalizes as a 1 — 1
correspondence (provided μ: U' -» U" is elementary) between holomorphic
line-bundles on U with anίi-self-dual connection and holomorphic line-bundles
on U" which are trivial when restricted to lines Lz for zeU. Theorem 9.1 is easily
generalized to cover this. Indeed, the general case is immediate by patching the
statement for trivial bundles.

For suitable U (e.g. convex in M1) we have H2(U'\ Z) = Z so all line-bundles
are of the form L(fe) for a suitable twisted photon L, and c(L(fc)) = fc where c
is the Chern class mapping: Hι(U'\ Θ*) -> H2(U", Z). Thus, the Chern class of a
line-bundle F is simply related to the helicity of the field represented by
H\U\ Θ(V)). Specifically,

helicity - ( - c(V) - 2)/2.

In [43] and [44] Ward also described how the twisted photon construction
may be generalized to non-Abelian gauge groups. Left-handed Yang-Mills
fields are then described by holomorphic vector-bundles on U". If we take V
to be one of these bundles in H1^', 0(V)\ then we generate fields coupled to
Yang-Mills potentials (see Rawnsley [42] and Hitchin [19]).

10. Further Remarks

The results of Sect. 5 through Sect. 9 are concerned with the interpretation of
the first cohomology of U" with coefficients in various analytic sheaves in terms
of corresponding differential equations on U. The general ^-transform (Theorem
4.1), however, is not limited to first cohomology and we should ask what it says
about HP(U", (9{n)) for p other than 1. We consider first H°(U\ Θ(n)) = Γ{U\ Θ(n)\
and we find, for any open set U a M:

& :Γ(U", Θ(n)) — = U ker Vj :Γ(l/, G^'B""Dn>) > Γ{U, ^ f B ' " £ ) ) ,
if n ^ 0.

Γ(U\Θ{n)) = 0, i f n ^ - 1 .

For U sufficiently nice, (e.g. convex U a M1) one finds that U" satisfies the
hypotheses of Andreotti-Grauert's vanishing theorem: Hq(Uf\ Sf) = 0, q ^ 2,
for any coherent sheaf &* on U", so the ^-transform of these higher degree
cohomology groups would not yield too much information (cf. Lemma 8.1).
One could readily compute what the image was, and it would in general be of
the form [potentials]/[gauge freedom], and the ^-transform being zero would
simply say that each potential was gauge equivalent to zero in this case. We
remark that H3(U\ Sf) = 0 for any U" and a coherent sheaf &> on U" (Siu [44];
Malgrange [25], in the case of a locally free sheaf as we have), so there are no
nontrivial fields generated by these cohomology groups for any geometry.

It is easy to show that every section of Θ(n) over U" extends uniquely to a
section of Θ(n) over all of P. Thus, we have canonical isomorphisms

"T* ifn>0.
=

O if n ;§ — 1.
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In particular (n = 1), this shows that a dual twistor (ηA,ξ
A) may be regarded as

a solution of the equation

) = 0 (10.1)

Indeed, it is easy to show that the general solution of (10.1) is

izΛΛ'ηA

for constant spinors ξA' and ηA. Thus, (10.1) may be regarded as defining T*.
This equation is called the dual twistor equation. Similarly, twistors may be regard-
ed as solutions of the twistor equation (cf. Penrose [28])

^ 0. (10.2)

We conclude with some general remarks concerning the methods of this paper.
It is clear that our approach is not limited only to the usual twistor correspondence
(1.1). All we need is some general correspondence

(10.3)

with v having nice fibres. In case of (1.1) the fibres of v are Riemann spheres so that
any vector-bundle splits as a direct sum of line-bundles which are characterized
by their Chern classes (cf. Grothendieck [17]). Thus it is possible to identify the
appropriate direct images and produce a transform starting with any vector bundle
V over a portion of P. In general, things may be more complicated but we can
still handle many interesting special cases of (10.3) where the fibres of v are higher-
dimensional projective spaces (or flag manifolds). For example, it is possible to
give a cohomological interpretation of the integral formulae described by
Hughston [22], in connection with generalized twistors. Another possibility is
to replace U", U\ U used extensively in this paper by X cz P, Y c M, and C c F
so that (10.3) is a surjective double fibration. It need not be the case that X = Y",
for instance, and more general phenomena can occur.12 A particularly interesting
generalization is to the case when (1.1), or rather (1.2), is deformed. The resulting
deformation of twistor space is called the non-linear graυiton construction (Penrose
[35]) and the corresponding space-time is automatically right-flat. The methods
of this paper give a cohomological interpretation of the integral formulae of
Penrose and Ward [41]. In this right-flat space-time the twistor description of
left-handed fields via potentials is no longer equivalent to the field equations.
This suggests that the correct description of left-handed fields in a right-flat back-
ground is as potentials modulo gauge freedom (see Hitchin [19] and Penrose
and Ward [41] for details). There are a least two more examples where the methods
of this paper apply. One is to obtain a cohomological understanding of the twistor
integral formulae for massive fields (cf. Penrose [33] and Hughston [23]). In

12 cf. Hodges A.P.: Cohomological wave functions. Twistor Newsletter 7, 18, Oxford University,

June 1978
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the case of two twistors see Eastwood [11]. The other example is in the application
of twistor theory to the classification of instantons given by Atiyah, Hitchin,
Drinfeld and Manin [2]. If we identify T with H 2, the 2-dimensional quaternionic
vector-space then we obtain an inclusion

In [2] the ^-transform is used to identify H\U\ Θ(E) ( - 2)) with solutions of a
certain differential equation (the Yang-Mills coupled wave-equation) on an
open subset U of S4, where E is an "instanton bundle" on P. To establish this
result using the methods of this paper we thicken S4 a little inside M, using the
ellipticity of the wave-equation to extend the solution to this thickening. Theorem
3.2 then applies to show μ* is an isomorphism and the argument continues as
in Sect. 6.

Finally, we should remark that the seemingly abstract arguments of this paper
can be made quite explicit to give integral formulae for P and its inverse. The
original integral formulae for constructing massless fields (cf. Penrose [29] etc.)
really use a Cech representation for the cohomology. This is very useful as it
allows the residue theorem of one-variable complex analysis to be applied to
produce specific examples of massless fields (especially the "elementary states"
(cf. Penrose [33])). For more general arguments this method is not so good, since
the choice of contour depends on the choice of covering and can therefore become
quite involved (using "branched-contours"). To avoid this one can use the
Dolbeault representation of cohomology and integrate over the whole lines Lz

in P rather than contours upon these "lines" (really Riemann spheres). This
method is described by Woodhouse [55] and Wells [52]. Both methods really
come down to identifying the cohomology H1(Pί(C),Θ(k)) by means of Serre
duality [43]. This integration has been replaced by taking the first direct image
v*0(fc) in (2.11). To describe the inverse transform 0>~ι explicitly we must use the
integral formula in Lemma 3.1 to reverse μ* as in Theorem 3.2, together with an
explicit method of inverting the direct image v*. Both of these steps involve
some choice but this is only to be expected as the Dolbeault form produced in
this way is supposed to be only a representative (one of many) for a cohomology
class. A particularly natural way of inverting v* is to choose harmonic representa-
tives for the cohomology of the fibres of v. This is described explicitly by
Woodhouse [55] for massless fields and by Rawnsley [42] for instanton bundles.
For the potential description of left-handed fields (Sect. 7) integral formulae can
be avoided for P since we are only using Liouville's theorem that Pχ(C) supports
only constant holomorphic functions (cf. Penrose and Ward [41 ]).

In our discussion of fields in M we have been careful to maintain a distinction
between primed and unprimed weights. The physical significance of this distinc-
tion is not altogether clear, and its role played in this paper is not a crucial one.
However, it may be pointed out that if a local rescaling of the metric is made, as
was discussed in Sect. 2 (cf. (2.4), (2.5)), according to which εAB*-* ΩεAB and zA,B, *-*
ΩεA,B, with Ω and Ω independent scalar functions on (subsets of) IM1 then the
field equations are locally invariant for helicity | r (where r is a positive or negative
integer) if the weights are taken to be [ — \r — y] \_\r — \]'. This works also for



Cohomology and Massless Fields 349

r = 0 if the wave equation is taken in the form (• + \R)φ = 0, where R is the
scalar curvature, the metric being rescaled according to gab -> ΩΩgab. The potential
description of Sect. 7 is invariant for helicity — \n(n > 1) if the weights are [ — ̂ π]
\^n — 1]'. When the ratio Ω/Ω is constant over M (as is the case for the global
GL(F) transformations considered here) local conformal invariance depends only
on the sum of the primed and unprimed weights (cf. (2.4)), and for massless fields
the value — 1 for this sum, as obtained in Sects. 5-8, agrees with the above local
invariance.

The role of the more general conformal invariance that these fields exhibit when
Ω/Ω need not be constant is obscure, but the specific weights that arise, as men-
tioned above, seem to be related to the phenomenon of Grgin [15a] according
to which it is only the fields of odd integral helicity that can satisfy the field equa-
tions globally on real compactified Minkowski space, assuming that they are to
be represented as tensor fields in the ordinary way. Such fields of even integral
helicity would require a twofold cover of this space and those of half-odd helicity,
a fourfold cover. This arises from the fact that the fields change by a factor of
(— i)(1/4)r-i/2 a c r o s s infinity. It is, however, not necessary to take these covering
spaces if the fields are regarded as cross-sections of the appropriate twisted vector
bundles (see Lerner [24a]). In fact, this interpretation is implicit in the descriptions
of this paper. The definition of the spin-bundles Θ A, and ΘA that were introduced
in Sect. 2 incorporate this twist in a natural way (cf. also [32]).
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