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Lawrence E. Thomas
Department of Mathematics, University of Virginia Charlottesville, VA 22903, USA

Abstract Let μί and μ2 be thermodynamic Gibbs measures on Rm and R",
respectively. Diffusions are constructed having μ1, and μ2 as invariant mea-
sures. These diffusions are then coupled; inequalities between expectations
of certain random variables on the two spaces result.

1. Introduction

Let (X.μ^ and (Y,μ2) be two probability measure spaces and let φlί...,φk and
ψl9...,ψk be families of random variables on X and Y respectively. Then we
say μl is stochastically less than μ2 with respect to φί,.. ,φk',ψί,...,ψk, and

write μ^μ29ίί for all (λ1,...9λk)eRk

9μ1{φl^λ19...,φk^λk} ^μ^ψ^λ^...,

ψk ^ λk}. Note that if μ1 ^ μ2 and/is an increasing function on R, ^f(φj)dμ1 ^
)f(ψj)dμ2, from integration by parts stochastic inequality of measures allows
one to compare expectations of certain random variables on X and Y. The purpose
of this article is to describe conditions under which this stochastic comparison
can be made, in the setting where μ1 and μ2 are thermodynamic Gibbs measures
on IRm and R" and φ j , . . . , φk and ^,..., ψk are linear functions on Rm and Rn,
respectively.

The basic ideas of the paper are illustrated in the simple example of dμ^x) —
exp( —Hί(x))dx,dμ2(y) = exp( —H2(y))dy both probability measures on R,
φ(x) = x, ψ(y) = y9 and Hi and H2 smooth. Let K = \(Vx + Vy)

2 - ^(VχHί)Vx -
j(VyH2)Vy be a differential operator acting on continuous functions on R2. (From
an operator standpoint, the "coupling" is the cross term VxVy in K.) Under suitable
conditions, K is the generator of a semigroup exp(ίfc) representable by
exp(ίK)/(x0, y0) = E/(x(ί, x0), y(t, y0)) with E expectation with respect to Brownian
motion and (x(ί, x0), y(ί, y0)) the solution to a coupled set of stochastic differential
equations. Suppose V^H^x) ̂  VxH2(x). Then these equations yield a stochastic
differential inequality which implies that x(ί, x0) ̂  y(t, y0) if the initial values for
x(ί,x0),>(ί,y0) satisfy x0 ^.y0 Let μ be a probability measure on R2 supported
in the region x <; y and let g ί ( x , y ) = f ( x ) , g 2 ( x , y ) = f ( y ) with / a continuous
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increasing function on IR. Then for t > 0

^dμexptKg1 ^ §dμexptKg2. (1.1)

On the other hand, restricted to functions of x only, exp K "collapses" to the

"marginal" semigroup exp -(Jχ — (V^/fJVJ which, under suitable hypotheses,

is ergodic with invariant measure μl . Similar remarks hold for exp tK restricted
to functions of y. Taking the limit f -> PO of ineq. (1.1), we obtain

which implies μί^μ2. (Note that the condition VxHί(x)'^.VxH2(x) means the
second force F2 = — VχH2 exceeds the first force F1 = — VXH1 one might expect
the second measure to have its mass shifted to the right, relative to the first measure.
Indeed, this is the case.)

The main theorem concerning stochastic comparison of measures is given
in Sect. 2. Not too surprisingly, the conditions on the measures are closely related
to those of the FKG correlation inequalities. In the last section a version of these
inequalities is derived as a corollary of the theorem. The last section also contains
a comparison of a measure on [Rm with a one-dimensional Gaussian measure and
a remark on extending the theorem to manifolds.

It is appropriate to mention that there is substantial literature on the study
of statistical mechanical states via stochastic models having these states as their
invariant measures, e.g. Holley and Stroock's work on the stochastic Ising model,
[1], and Holley [2]. See also the fine survey article by Liggett [3]. Recently,
Paris [4] has studied diffusions on manifolds having the Gibbs state for the
classical Heisenberg model as invariant measure. Finally, we point out that the
strategy used here to prove the theorem of Sect. 2 is in part an adaptation to the
continuous case of a coupling argument employed by Holley in [2] to prove a
discrete version of the FKG inequalities.

I am particularly indebted to Loren Pitt for many useful discussions.

2. Stochastic Comparison of Thermodynamic Measures

In the following, x will denote a point in [Rm, y a point in IR". Let dμ^x) = e~Hί(x)dx,
dμ2(x) = e~H2(y]dy be probability measures on lRm and Un respectively. The main
result is the following.

Theorem. Assume Hl , H2 are C°° functions tending to oo for their respective
arguments tending to oo, and satisfying VHi'VHi — 2ΔHi ^ c, i = 1, 2 for some
constant c. Let 01(x), Φ2(x\ ... , Φk(x) be k real linear functions on [Rm, ψ^x),
Ψ2(x), ... ,ψk(x), k real linear functions on IR", and assume there is a unitary trans-
formation Cfrom span {V\l/ί , . . . , Vψk} c Rn to span {V01 , . . . , V0 J c Rm such that
CV\l/i = Vφ.i = 1, 2, ... , k. Suppose further that on each hyperplane S. in [Rm x Rn

defined by

(2:1)
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holds where S. intersects U = {(x,y)eUm x Rw φ.(x) ^ φ.(y),j = 1,... ,/c}. Finally,

suppose U has non-empty interior. Then μί :g μ2 with respect toφί,...,φk;ψi,...,ψk

in the sense that

μl{φi^λl,...,φk^λk}£μ2{ιl/l^λ19...9ιl/k^λk} (2.2)

for all (1 1 , . . . ,λ k )eR k . If f is a bounded function on [Rfc, increasing in each of its
variables, then

ίf(φ19...9φ1)dμ1^ίf(ψ19...9ιlf1)dμ2. (2.3)

The smoothness condition of the H.'s can be relaxed somewhat. In particular,
if the H.'s are limits of smooth H's satisfying the hypotheses, the conclusion of
the theorem will still hold. Note that {Vφ 1 ? . . . , Vφk} may be linearly dependent
and k may, in fact, exceed m, n.

Proof. The proof first involves construction of a coupled process, and then
completion of the proof.

Stepl. The coupling. Extend the matrix C to all of IR" (regarded as a vector
space) by setting it equal to zero on the orthogonal complement of span {Vψ.}
continuing to call the extension C. Let A be the (positive) (m -h n) x (m -f n)
matrix.

(2.4)

where d. = d/dxti rg m, d. = d/dy._mi > m. A priori Δs is a quadratic in tangent
and normal vectors to the 1-codimensional surface S. in Um x U" defined in the

m + n

statement of the theorem but since Σ ^jfi annihilates φ. — ψ.i = 1, 2,... ,fe, Δs

i
in fact involves tangent vectors only and acts invariantly in S. (and translates
ofS.). Let5 0 -{(x,y)G[R m x Un\Vφ. x = V\l/.-y9 ί - 1, 2,..., k}.

Let {expf ίzlj be the semigroup acting in C(Um + n) (continuous functions with

bounded sup-norm) generated by Δs. Let W(t) = (w^ί), w2(ί))e50 c Rm x R" be the
associated (degenerate) Brownian motion originating at the origin. Now exp^ί/ls,
restricted to functions depending only on x(resp. y), reduces to Qxp~tΔί (resp.
exp^ίz!2) with Δ19Δ2 the Laplacians on [Rm, (resp. ίRn), as follows from the definition
of Δs. Moreover the components of W(t) = (w1(ί), w2(ί)) are just normal m and n
dimensional Brownian motions respectively, which, however, are coupled in the
sense that W(t) stays in S0.

Let X ( t , X Q , y Q ) = (x(t\y(t)) be the solution to the coupled set of stochastic
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differential equations

dX(t)-ίdx(t)]- ±(VHι(x(t))]dt + (dwι(t)} (26)
dX(t) ' (dy(t)J- 2(vH2(y(t))Γ W)J (

with X(t) originating at (x0,y0). (The existence, continuity and uniqueness of
X(t) is outlined in the appendix, lemma (A.I).) Since W lies in 50, dW = (d\vί , dw2)
is perpendicular to the constant vector (Vφ. , — V^ .) for each z, thus

- Vιl/. VH2(y(t)))dt, (2.7)

which is negative by Eq. (2.1) on the surface S in the region where S. intersects
U. It follows that if X(t) starts at a point (x0,j;0)eU = {(x,y)\φj(x) ^ ψj(y)j =
l ,2, . . . ,/c}, then φj(x(t)) g ψj(y(t))for all t ̂  0 so that X(t9xQ9y0)e\J.

Step 2. The Coupled Semigroup and Completion of the Proof. Let K* be the operator
acting in C(R(m+n}) defined by

Q 9 y 0 ) ) (2.8)

with E expectation with respect to W. Let / be a bounded continuous increasing
function on (Rfc in the sense /(z1 , . . . , zfc) ^/(z^ , . . . , zk) if z1 ^ z't , . . . , zk ̂  z^ ,
and set /° </>(*) ̂ /((^(x),...,^ (regarding them
as functions on (Rm+"). Finally, let Λ(x, y) be a bounded positive continuous function
on Rm +" satisfying §h(x,y)dμί(x)dμ2(y)= 1 and which is supported in the region
U defined in the theorem. (This is possible since U has non-empty interior).

Now if X(t) starts in U, it stays in U by the last paragraph of Step 1, so that by
eqn. (2-8) and the increasing property of/,

γ° φ(x)dμί(x)dμ2(y) g Jfc(x, y)K'/° ψ(y)dμi(x)dμ2(y) . (2.9)

On the other hand, K* restricted to functions of x (resp. y) only reduces to

p^ = exp^C^ - VH1 V)(resp. P\ = exp ^(z!2 - VH2 V)), by Eq. (2.6) and pro-

positions (A.2), (A.3) of the Appendix. Inequality (2.9) becomes

f(f ft(x, y}dμ2(y)}P\f»φ(x)dμ,(x} ^ ̂ h(^y)dμl(x))Pt

2f^(y)dμ2(y). (2.10)

Now both P^ , P*2 are self-adjoint contraction semigroups in the Hubert spaces
L2([Rm,Jμ1), L2(Un,dμ2) respectively and both have unique ground states given
by the constant function (see Proposition (A. 3)). Taking the limit t -> oo , we obtain,
by Proposition (A.4),

ί/o φ(x)dμ,(x) g ί/° Ψ(y)dμ2(y) (2.1 1)

To obtain ineq. (2.3) for arbitrary/, we simply apply (2.11) to a sequence of
increasing continuous functions {/J converging (weakly) to/ Ineq. (2.2) follows
by choosing /to be the indicator function for zί ^ λί , ... ,zfc ^ λk. This concludes
the proof of the theorem. Π
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3. Application and Remarks

Example 1. Comparison with Gaussians

Let B be a real positive definite m x m matrix, φ a real eigenvector of B with
m

eigenvalue ε, and normalized in the sense Σφ(l)2 = 1. Let dμ^x) = e~Hί(x}dx be a
/
1 m

probability measure on [Rm with H^x) = ~ΣBιi'xιxi' + (̂*) an^ ^ such that
2U' ' Γ-m m

Σφ(/)V,F(x)^0. Let φ(x) = Σ$(l)xr Let dμ2(y)= —exp-ε/2y2dy be a
ί i V 2π

g

Gaussian measure on R so that H2(y) = - y2 + const and set ψ(y) = y. Then

) for ψ(χ) - \l/(y\ \ Vφ \ = \ Vψ \ , so that by the

theorem μi&μ2 with respect to φ,ψ. If / is increasing,

Remark 2. FKG Inequalities

There is a connection between the main theorem and FKG inequalities [cf. 5].
The following is a version of these inequalities.

Corollary 3.1. Suppose in addition to the smoothness and boundedness assumption
of the theorem, H(x) on Rm satisfies

— (x 1 , . . . ,x ί _ 1 ,χ.,x ί + 1 , . . . ,xj^— (X'l9...9x'l_ί9xi,x

f

i+i9...9x'm) (3.1)

for x^x'^... ,xi_i^x'i_ί,xi+1^x'i+ί,...,xm^xm, for each i,l^i^m. Then
iff and g are increasing on Rm,

0 (3.2)

with ^ y = l('}e-Hdx = l(')dμ.

Proof. Assume first that / is smooth and bounded. For ε ̂  0, let Hε(x) = H(x) —
sf(x) + c(ε) with c(ε) adjusted so that dμε(x) = exp( - Hε(x))dx is a probability
measure. Let φ^x) = \j/.(X) = x. i = 1, 2, . . . , m. Then inequality (3.1) implies
Vφi'VH(x)^Vφi-VHε(y) on each surface φi(X) = ψi(y) in (R2m for φ .(x) ^ \j/.(y\

j φ i, so that by the theorem μ rg μf and if g is increasing then

Dividing this inequality by ε and taking the limit ε -> 0, we obtain (3.2) for smooth
/ For arbitrary /we simply apply (3.2) to a sequence {/J of smooth increasing
functions converging (weakly) to/
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Remark 3. Measures on Manifolds

The strategy of proof of the theorem perhaps can be extended to obtain comparison
of measures on manifolds. A heuristic result in this direction is:

Proposition (3.2). Let dμί = exp( — H1)dΩv,dμ2 = exp( — H2)dΩv' be probability
measures on v and v' dimensional sphere Sv, Sv' respectively, v, v' ̂  2, with H1(ί2v),

H2(ΩV) smooth. Let θ, θ' be the colatitudes on the respective spheres. Then μ1 ^ μ2

in the sense μ^θ ^λ)^ μ2(θ' ^ λ)for 0 ̂  λ ̂  π if

^(H1-(v-v')lnsinθ)^^7H2 (3.3)

for all Ω\ Ωv' such that θ = θ'.

Outline of Proof . In order to set up suitable diffusions, it is convenient to first
map the spheres to cylinders by Ωv = (θ, Ω^1)-^ (z, Ω^1), Ωv = (Θ'ΩV>-1) ->
(z', Ω"''1) with z = — cot θ, z' = — cot θ'. The respective measures become
dμ^z, Ω*"1) = exp - (//t + (v + l) ln( l + z2)ίf2)dzdΩv~l, and a similar expression
for dμ2. (The exp — (v + l)ln(l + z2)1/2 factor is a Jacobian.) Suitable diffusion
processes on the cylinders can then be defined, corresponding to semigroup
generators G 1 5 G2 with

^ ( V + 1 ) Z V 1V H V~ ~ V - H V

and a similar expression for G2(Δ&v.l is the Laplacian on Sv~1). The diffusion
processes are solutions to stochastic differential equations involving Brownian
motion on the cylinders; they are coupled by identifying the axial components
of Brownian motion on the two cylinders. The remaining argument is analogous
to that used in proving the theorem. D

Appendix

We review briefly some technical aspects of the semigroup generators encountered
in the text. Most of the results here are well known and are a straight forward
adaptation of [6]. Let dμ(x) = exp( — H(x)}dx be a probability measure on [Rm

and let w be normal m-dimensional Brownian motion originating at the origin.
Let x(t) be the solution, if it exists, to

*W = *o ~ \ \ VH(x(s))ds + w(ί) (A.I)

Tf we wish to make the initial value for x(ί) explicit, we write x(ί, x0).

Lemma (A.I). Suppose that H(x) is C°°, VH-VH- AH is bounded below on Rm,
and that H(x) -> GO , x -> oo . Then x(t) exists, is continuous, and is unique for almost
every w( )

Proof. The local existence, continuity, and uniqueness of w(ί) follows from a
contraction mapping argument [6], since VH satisfies local Lipshitz condition.
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By Ito's lemma [7], the differential of H(x(t)) is

dH(x(t)) = %(- VH-VH(x(t)) + AH(x(t)))dt + VH(x(t)) dw ^ cat + VH(x(t))dw

for some constant c. Taking the (Brownian motion) expectation of this inequality,
we obtain

implying E(H(x(t))) is finite, hence x(i) exists a.s. Π
Let C(Um) be the Banach space of continuous functions on Rm in the sup norm,

and define Pcf(x0) — Ef(x(t,x0)) with x(ί, x0) the solution to eqn. (A.I).

Proposition A. 2. Let H satisfy the hypotheses of lemma (A.I). Then the family
{P1} is a contraction semigroup on C(Rm). The generator G ofP1 restricted to functions
in C%(Rm\ is given by

= ± ( A - V H - V ) f ( x ) . (A.2)

Proof. Continuity of Ptf(x) in x follows from the fact that x(ί, x j ->x(f, x0)
for x1 -> x0 a.s. and a dominated convergence argument. Moreover Pr is clearly
contractive so that PΊCOR"1) -> C(Um). The semigroup property of {Pr} follows
from the Markov property for χ(t).

Let/eC*([Rw). Then by Ito's lemma [7],

( - Vf-(VH(x(s))ds + d.v) + Vf(x(s))ds)
o

(A.S)

which converges to G/(x0) for ί -> 0 (by dominated convergence). D
We conclude with some Hubert space theory for G, defined by equation (A. 2).

Let 3tf = L2((Rm, dμ) with inner product <,>^

Proposition (A.3). Assume that H satisfies the hypothesis of lemma (A.I) and,
in addition, assume that (VH)2 — 2AH is bounded below. Then G, regarded as a
symmetric operator on 2tf is essentially self-adjoint on C*((Rm). The spectrum of
G is contained in ( — oo, 0] Γhe operator G has a unique ground state given by the
constant function fQ(x) = 1 with corresponding eigenvalue 0. The semigroup gene-
rated by (the closure of) G agrees with P* on C(Rm).

Proof. Let U : 2tf -> L2([Rm, dx) be the unitary map given by Uf(x) =
exp( - ±H(x))f(x). Then G' = UGU'1 = \(A - \ (VH)2 +^ΔH\ and, for example,
by Kato's inequality [8] G' is essentially self adjoint on C^([Rm). Hence G must be
essentially self adjoint.

Now G has Dirichlet form Q(f, g) = < V/5 Vg >^> implying that the spectrum
of G is negative. Any eigenfunction/of G is smooth by elliptic regularity so that
Q(f,f) < 0 unless/is constant, which implies uniqueness of the ground state.
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To prove the final assertion is tedious. One begins by first defining a sequence
of Hamiltonians {Hn} converging to H, with each Hn smooth and constant outside
some ball of radius n. For each n we define a process xn(i) (by Eq. (A.I) with H
replaced by Hn) and corresponding semigroup Pl

n. The generator Gn of P*n is clearly
dissipative; Kato's inequality can be applied to Gn to show, by the Hille-Yosida
theorem, that P*n considered as acting in C0(Um) is uniquely determined by the
action of Gn on CGO(lRm). Moreover Gn is symmetric in Jlfn = L2(ίRm,exp( - Hn)dx)
and, again by Kato's inequality, essentially self-adjoint on C^(RW). It follows
that {P*n} and the ίΛsemigroup {exp tGn} can be identified on C^(ίRm). Since
Pt

nf(x) converges to Ptf(x) (because xn(t) -> x(t) a.s.) and the ίΛsemigroup exp tGn

converge to exp tG it follows that P* and exp tG can be identified on C™(Um).
Finally, for / arbitrary in C(Rm), let/BeC£(RM) with || /JC(Rm) ̂  ||/|| converge
weakly to / Then

/*/(*) = lim P'/π(x) - lim exp tGfn(x) = exp tGf(x). Π

Proposition A.4. Let H satisfy the hypothesis of proposition (A.S). Let ge.^f,
/eC(ffr). Then

ί->oo

Proof. By the previous proposition P* can be identified with the contractive
ίΛsemigroup having unique ground state /0 = 1. The result follows from appli-
cation of the spectral theorem. Π
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