Lieb's Correlation Inequality for Plane Rotors

V. Rivasseau
Centre de Physique Théorique, École Polytechnique, F-91128 Palaiseau Cedex, France

Abstract

We prove a conjecture by E. Lieb, which leads to the Lieb inequality for plane rotors. As in the Ising model case, this inequality implies the existence of an algorithm to compute the transition temperature of this model.

Introduction

In [2], Simon proved and applied certain correlation inequalities. These inequalities are special cases of a class of inequalities proved earlier by Boel and Kasteleyn [3-6]. For a finite range pairwise interacting Ising ferromagnet on a lattice L, the inequalities in [2] are:

$$
\begin{equation*}
\left\langle s_{a} \cdot s_{c}\right\rangle\left\langle\sum_{b \in \boldsymbol{B}}\left\langle s_{a} \cdot s_{b}\right\rangle\left\langle s_{b} \cdot s_{c}\right\rangle,\right. \tag{1}
\end{equation*}
$$

where B is any set of spins separating a from c.
Lieb has generalized this inequality. In [1], he showed the stronger assertion:

$$
\begin{equation*}
\left\langle s_{a} \cdot s_{c}\right\rangle \leqq \sum_{b \in \boldsymbol{B}}\left\langle s_{a} \cdot s_{b}\right\rangle_{A}\left\langle s_{b} \cdot s_{c}\right\rangle, \tag{2}
\end{equation*}
$$

where A is the union of B and the connected component of $L-B$ containing a, and $\langle\cdot\rangle_{A}$ denotes expection values with respect to the A system only. He also reduced the proof of a similar inequality for plane rotors to a conjecture on directed graphs, which he proves in a special case, and which we prove generally in the next section. Hence we obtain:

Theorem. Let us consider a plane rotors model with pairwise interaction between two spins \mathbf{s}_{a} and \mathbf{s}_{b} of type $-J_{a, b} \mathbf{s}_{a} \cdot \mathbf{s}_{b}$, with $J_{a, b} \geqq 0$. Then

$$
\begin{equation*}
\left\langle\mathbf{s}_{a} \cdot \mathbf{s}_{c}\right\rangle \leqq \sum_{b \in B}\left\langle\mathbf{s}_{a} \cdot \mathbf{s}_{b}\right\rangle_{A}\left\langle\mathbf{s}_{b} \cdot \mathbf{s}_{c}\right\rangle, \tag{3}
\end{equation*}
$$

where B separates a from c, and A has same meaning as previously.

Among the consequences of (3), is the existence of an algorithm to compute the transition temperature of this model (in the sense that above, but not below, there is exponential decay of the two point function), and the continuity of the mass gap as function of the interaction, for nearest neighbor interactions [1, 2].

Finally we remark that the method used to prove our lemma extends to prove other combinatorial results of the same kind. We intend to explore more completely in the future the consequences of these results for the plane rotors model.
I) We prove a slightly stronger result than the original conjecture of [1]:

Lemma. Let G be a finite directed graph (possibly with several edges between two vertices) and let the valence at vertex M_{i}, i.e. the number of arrows in minus the number out of M_{i}, be m_{i}. Clearly, $\sum m_{i}=0$. Suppose $m_{1}>0$, and m_{2}, $m_{3}, \ldots, m_{k}<0, m_{i} \geqq 0$ otherwise. Let $N(G)$ be the set of subgraphs of G (subsets of edges), including the empty graph, having valence 0 at each vertex. Let $K\left(M_{1}, G\right)$ be the set of subgraphs of G with the following property: vertex M_{1} has valence +1 , some vertex M_{i} with $2 \leqq i \leqq k$ has valence -1 , all other valences are 0 .
Then:

$$
\begin{equation*}
|N(G)| \leqq\left|K\left(M_{1}, G\right)\right| . \tag{4}
\end{equation*}
$$

Proof. We prove the lemma by induction on the number of edges in G. The lemma is trivial for a graph with a unique edge. We suppose it is true up to l edges. Let G have $l+1$ edges, among which l_{1}, \ldots, l_{p} are the arrows into M_{1} and l_{p+1}, \ldots, l_{p+q} are the arrows out of M_{1}.
We define:

$$
\begin{aligned}
& \text { for } \quad 1 \leqq j \leqq p \quad\left\{\begin{array}{l}
N_{j}(G)=\left\{S \in N(G): l_{j} \notin S\right\} \\
K_{j}\left(M_{1}, G\right)=\left\{S \in K\left(M_{1}, G\right): l_{j} \in S\right\}
\end{array}\right. \\
& \text { for } \quad p+1 \leqq j \leqq p+q\left\{\begin{array}{l}
N_{j}(G)=\left\{S \in N(G): l_{j} \in S\right\} \\
K_{j}\left(M_{1}, G\right)=\left\{S \in K\left(M_{1}, G\right): l_{j} \notin S\right\} .
\end{array}\right.
\end{aligned}
$$

We claim that for $1 \leqq j \leqq p+q$,

$$
\begin{equation*}
\left|N_{j}(G)\right| \leqq\left|K_{j}\left(M_{1}, G\right)\right| . \tag{5}
\end{equation*}
$$

Assuming this, the lemma follows easily, since every subgraph in $N(G)$ belongs to exactly p subsets $N_{j}(G)$, and every subgraph in $K\left(M_{1}, G\right)$ belongs to exactly $q+1$ subsets $K_{j}\left(M_{1}, G\right)$. Hence:

$$
p|N(G)|=\sum_{j}\left|N_{j}(G)\right| \leqq \sum_{j}\left|K_{j}\left(M_{1}, G\right)\right|=(q+1)\left|K\left(M_{1}, G\right)\right|
$$

and $(q+1) / p \leqq 1$ is precisely the condition $m_{1}>0$.
To prove the claim, we consider first the case $1 \leqq j \leqq p$. Let l_{j} be the arrow $M_{j} M_{1}$. If $m_{j}<0$, we have a natural injection of $N_{j}(G)$ into $K_{j}\left(M_{1}, G\right)$: to S we associate $S \cup\left\{l_{j}\right\}$. If $m_{j} \geqq 0$, we apply the induction hypothesis to the graph $G_{j}=G$ $-\left\{l_{j}\right\}:$ in $G_{j}, m_{1} \geqq 0, m_{j}>0$, hence $\left|N\left(G_{j}\right)\right| \leqq\left|K\left(M_{j}, G_{j}\right)\right|$. On the other hand, there are natural bijections of $N\left(G_{j}\right)$ into $N_{j}(G)$, and of $K\left(M_{j}, G_{j}\right)$ into $K_{j}\left(M_{1}, G\right)$ (respectively $S \rightarrow S$, and $S \rightarrow S \cup\left\{l_{j}\right\}$). In both cases, (5) is proved.

Finally, if $p+1 \leqq j \leqq p+q$, either $N_{j}(G)$ is empty, and (5) is trivial, or there exists a subgraph L_{j} containing l_{j} in $N_{j}(G)$. We then note the effect of reversing arrows in a given subgraph L belonging to $N(G)$. We call G^{L} the graph obtained from G by this transformation. The valences m_{i} do not change. Moreover, there are natural bijections between $N(G)$ and $N\left(G^{L}\right)$, and between $K\left(M_{1}, G\right)$ and $K\left(M_{1}, G^{L}\right)$, which to a subgraph S associate $S \Delta L$, where Δ is the symmetric difference of subsets. Returning to the proof of (5), we reverse the arrows in the subgraph L_{j} previously introduced, and transform the problem into one of the preceding kind for $G^{L} j$, hence already solved. Hence (5) holds in every case.

Acknowledgements. I should like to thank E. Speer and C. de Calan for useful discussions.

References

1. Lieb, E.: Commun. Math. Phys. 77, 127-135 (1980)
2. Simon, B.: Commun. Math. Phys. 77, 111-126 (1980). See also references therein
3. Boel, R.J., Kasteleyn, P.W.: Commun. Math. Phys. 61, 191 (1978)
4. Boel, R.J., Kasteleyn, P.W.: Physica 93 A, 503 (1978)
5. Boel, R.J., Kasteleyn, P.W.: Commun. Math. Phys. 66, 167 (1979)
6. Kasteleyn, P.W., Boel, R.J. : Phys. Lett. 70 A, 220 (1979)

Communicated by E. Lieb
Received June 24, 1980

