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Abstract. A general formulation is given of Simon's Ising model inequality:

<<Vy) = Σ (σaσb) <\σbσ

yy where B is any set of spins separating α from γ. We
beB

show that (σΛσby can be replaced by <crασb)^ where A is the spin system
"inside" B containing a. An advantage of this is that a finite algorithm can be
given to compute the transition temperature to any desired accuracy. The
analogous inequality for plane rotors is shown to hold if a certain conjecture
can be proved. This conjecture is indeed verified in the simplest case, and leads
to an upper bound on the critical temperature. (The conjecture has been
proved in general by Rivasseau. See notes added in proof.)

In an accompanying paper [1] in this volume Simon proves a correlation
inequality with important consequences. For a finite range pairwise interacting
(generalized) Ising ferromagnet (the spins take on values 2M, 2M — 2,..., — 2M),
Simon shows that

where B is any set of spins separating α from γ (i.e. any path from α to γ must run
through B). Aizenman and Simon [2] have proved a related inequality for N-
component spins. In this paper we shall generalize (1) in the following way: <σασ&>
can be replaced by (σaσbyA, where A is the connected component of the lattice
containing α and B and < }A denotes expectation values in the A system alone.
The possibility of extending this inequality to plane rotors is also discussed, but
the proof is carried to completion only in a special case. (See notes added in proof.)

In [1] Simon discusses the consequences of (1) and our generalization. We shall
not repeat them, except to note that the most interesting consequence of the
extension is that for the first time one has an algorithm for computing the
transition temperature, Tc (in the sense that above, but not below Tc there is
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exponential decay of the two point function ( ^ Q ^ ) ) , to arbitrary accuracy. Take
α = 0 and let B be the spins on the boundary of a square of side L centered at 0. By
boundary we mean all points within a distance R of the geometric boundary,
where R is not less than the range of the interaction. The A system is the inside of
the square alone. (σoσb)A can be computed explicitly, and if

beB

for some T, then there is exponential decay for that T. This sets an upper bound to
Tc. It is easy to see [1], however, that as L-> oo, TL [the T for which equality holds
in (2)] approaches Tc. While the convergence of TL to Tc is expected to be
extremely slow, the mere existence of the algorithm is an interesting matter of
principle. It is not known if TL is necessarily monotone decreasing in L this is an
open question.

A consequence of our generalization is the continuity of the mass gap as
function of the interaction, for nearest neighbor ferromagnetic interactions, proven
in [1]. A more general stability of the mass gap, m, under perturbations was
pointed out by Aizenman (private communication). It is expressed by the lower
semicontinuity of m, as function of the interaction, in the cone of pairwise
ferromagnetic interactions of any fixed finite range. This is proven in the following
way. Suppose the (finite range) Hamiltonian H is given and T is such that for the
infinite system

<σ o σ x ><C ε exp[(-m + ε)|x|]

for all x, all ε>0, but not ε<0. m is then the mass gap and it will be assumed that
m > 0. Given ε > 0, it is easy to see that for any R there must be a finite box such
that

l (3)
beB

for μ = m — ε. Conversely, our generalization of (1) shows that if (3) holds with some
μ for some box, then the mass gap is not less than μ.

Since condition (3) (with μ = m — ε) refers to a finite system, by continuity it
continues to hold (with μ = m — 2ε) when the Hamiltonian is changed from H to
H + K and ||X|| <δ0, for some <50>0 and independent of K. If we also require that
H + K is pairwise ferromagnetic and has range ^ R, then (3) (with μ = m — 2ε) and
our generalization of (1) imply that the new mass gap is not less than m — 2ε.

Simon's proof of (1) uses a graphical expansion. The analysis presented here
will not use this explicitly, but instead will use certain "gaussian correlation
inequalities" of Newman [3]. While it is true that Newman's inequalities are
themselves proved by graphical means, it is hoped that the decomposition of the
problem into the two steps given here will be useful.

Let us begin with some definitions. The system under consideration is viewed
as the union of two subsystems of spins A and C.

AnC = B
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is the set of spins common to both. To say that the B spins separate A from C
means that

HA + C = HA + HC, (4)

where the JTs are Hamiltonians. The symbols Z denote partition functions, <( )
denote expectation values and ( ) = Z< > denote unnormalized expectation values
- all at reciprocal temperature β. Thus, for example,

(σA)A = ΊrσAexp(-βHA)

βHA) (5)

Here σA is some observable in the A system. It may, of course, depend on the B
spins since they are in A.

The spins that are mostly relevant to our analysis are the B spins. The word
"spin" is to some extent a misnomer, for the only hypothesis is that at each point
bsB there is an independent a-priori probability measure dμb on some measure
space Ωb. For simplicity we take these to be independent of b. Let {φn} be a
complete orthonormal family of functions in L2(dμ). The choice of the {φn} is
important because the hypotheses made later can be expected to hold, if at all, only
for special choices. With n = {n1,n2,...) a multi-index on B = (bί,b2,...), we denote
the following orthonormal functions on γ[ Ωb:

beB

Φn

B=Φl\Φl\-. (6)

Example 2 (Spin \ I sing Model). Here Ω = { — 1,1}, μ gives weight \ to each point
and {φn} ^{φ^φ1} with φ°(σ)=l, φ\σ) = σ.

Example 2 (Plane Rotor). Ω is the unit circle 0 ^ β < 2 π , dμ(θ) = dθ/2π is the
uniform measure, and φn(θ) = Qxp(inθ) with n = 0, + 1 , ± 2 , . . . .

The constitution of the remainder of the A and C systems is irrelevant to the
general formalism we present. It can be composed of quarks, for example. σA

(resp. σc)will denote observables in the A (resp. C) systems and they can both
depend on the B spins. Note that the functions φ^ can be regarded either as A or as
C observables.

A formula connecting A, C and A + C expectations is required. In other words,
we have to "glue" the A and C systems together to form the A 4- C system.

Lemma 1.

K*cW=ΣK^)>c^)c (7)
n

In particular,

Proof. In a schematic notation, let x,y, and z respectively stand for the B
variables, the A variables other than B, and the C variables other than B. The
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Boltzmann factor is M(x,y)N(x,z) where M(x, y) = exp [ — βHA(x, j/)] and N(x,z)
= Qxp[ — βHc(x,z)~]. Let the a-priori measure be dμβ(x)dμa(y)dμy(z) and let
F(x)=$dμa(y)σA(x9y)N(x,y), G(x) = $ dμy(z)σc(x,z)M(x,z). Then, by Parseval's
theorem,

(^A^C)A + C= \dμβ{x)F{x)G{x)= ΣKK
n

with Dn= Jdμβ(x)φ^(x)F(x) and En = jdμβ(x)φ^(x)G(x). But this sum on n is
precisely the right side of (7). Π

Henceforth we fix the observables σA and σc, the Hamiltonians HA and Hc,
and make the following hypotheses (with respect to σA and σc) about the A and C
systems.

H.Cί (Posίtivίty). (σcφ
n

B}c^0 for all n. (9)

H.Aί (The Gaussian-Type Inequality [3]J. There exists a function F(n), not
necessarily nonnegative, of the multi-index such that

<σΛφS>ΛZ ΣF(nKσAφ»>AφBφ">A (10)
n

for all m such that <crcφ™>c>0.
The meaning of H. Al will become clear later when we consider the Ising and

plane rotor models as examples. For now we note that comparatively little is
required of system C. The main theorem is the following:

Theorem 1. Under hypotheses H.Aί and H.Cί

Proof. Multiply (11) by ZAZA + C and use Lemma 1. We require that

5Ξ ΣiΣF(n)(σAφ
n

BUφn

Bφ^A\(φ^σc)c. (12)
I J

Here, φ^ has been regarded as an A observable. In view of H.C1 it suffices to prove
(12) for each m but, if we divide by ZA, this is seen to be H. Al. •

The analogue of Simon's inequality [1] would have < }A + C instead of < }A on
the right side of (11). There are then two natural questions: When does the Simon
type of inequality hold and when is it weaker than Theorem 1, as it is for the Ising
model? The following hypotheses help to answer this.

H.C2. <05>C^O, all n. (13)

H.A2 (inequality of the second Griffiths type).

<σAΦ
nB>A<ΦB>A^<°AΦnBΦB>A> all ii (14)

whenever <</>™>c>0.
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Theorem 2. Suppose H.Λ2 and H.C2 hold. Then

<σAφ
n

B)AS<σΛφ
n

ByΛ + c, all n. (15)

Proof. (15) is equivalent to

A(^WAΦB)Λ^ZA Σ

but this is implied by (13), (14). •

Corollary 1. Suppose (11) and (15) hold and F(ή)^0. Then

Moreover, the right side of (16) is not less than the right side of (11).

If F(n) is not nonnegative, (16) can still be proved under a further hypothesis:

H.A3.

<σAφ
n

Bφk

B)A<φnM)A. (17)

whenever both {σcφ^}c>0 and (φB}c>0

Theorem 3. (16) holds under hypothese H.C1, H.C2, and HA3.

The proof of Theorem 3 is an imitation of the proofs of Theorems 1 and 2. Note
that under these hypothese one cannot say that (16) is weaker than (11).

The following is a trivial consequence of the definitions

Lemma 2. If F(n)^0 then H.A1 and H.A2 imply H.A3.

The Ising Model as an Example

Spin 1/2 Ising Models

The φn are given in Example 1. We take σA and σc each to be products of an odd
number of spins. H.C1, H.C2, and H.A2 are Griffiths' inequalities. Newman's
inequality [3] states, in particular, that if F is a family of partitions of K = {1,..., k}
into two disjoint subsets then (with <yD = σaσb...σd when D = {a,b, ...,d})

f l f 2

feF

whenever \K\ = 2L is even and every partition of K into L pairs is a refinement of
some/ei7. Sylvester [14] also gives a proof of (18).

Let the spins in B be labeled σ1 ?..., σM. In (10), m can be thought of as a subset
of {1, ...,M}. Clearly, (σAφ™}A>0 implies that |m| is odd.

Assume that σA is just one spin, σα, and, without loss, that aφB. Taking
K = {α}um, and all/j of the form {α,z} with z'em, (18) implies (10) with

F(n)=l if | n | = l
= 0 otherwise. (19)
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[Note: There are more terms on the right side of (10) than the right side of (18).
The excess terms are nonnegative by Griffiths first inequality.] In this case we
conclude that

< σ « σC>A + C ̂  Σ < σ α σb>A <σb σC>A + C (2 0)
beB

as stated in the introduction. It was not assumed that |C| = 1.
If σA is a product of iV(odd) spins then (18) implies (10) with

F(n)=l if |n|=l,3,...,JV

= 0 otherwise. (21)

Then (20) changes to

<σAσC>A + C^ Σ <σAσb>A<σbσC>A + C ( 2 2 )
bcB

\b\ύ\Λ\

Other I sing Models

One generalization is to spin M>\ with σ = 2M,..., — 2M. A way to proceed
would be to use an appropriate orthonormal basis {φn} of dimensions 2 M + 1 . We
have not pursed this possibility. A second method is to use Griffiths' trick [5] of
writing a spin M as M ferromagnetically coupled spin \ spins. H.C1, H.C2, and
H.A2 follow from this, as does (20) and (21) by summing over the "component"
spins. Much is lost this way, however.

Another generalization, which we shall not explicate, is to allow multi-spin
interactions.

The Plane Rotor Model

We consider pairwise ferromagnetic interactions; the interaction between two
spins σa and σb is -Jabσa-σb= -Jabcos(θa-Θb), with Jab^0. The basis {φn} is
given in Example 2.

There is some reason to believe that the analogue of (20) holds in the following
sense:

>A + C ^ Σ <5« °b>A <°b ' °c>A + C ( 2 3 )
bsB

when σa and σc are single spins. In terms of the φn we have

Therefore we require that (9) and (10) hold when σc (resp. σA) is φ] or φ~x (resp. φ\
or φ~γ) and F is given by (19). With these choices for σA and σc, (9), and also (14)
hold [6]. The difficulty lies with (10).

We do not have a proof of (10), but believe it to be true. A possibility would be
to try to imitate the graphical proof [3,4] that is successful in the Ising case. It
would then be necessary to deal with directed graphs (digraphs). The following, if it
were true would immediately yield a proof of (10):
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Conjecture. Let G be a finite direted graph (possibly with several edges between
two vertices) and let the valence at vertex i (the number of arrows in minus the
number out of i) be M . (Clearly, ΣMt = 0.) Suppose M1 = + l, and M 2 ,
M 3 , ...,M f c<0, and M f ^ 0 otherwise. Let N be the number of subgraphs (subsets
of edges) of G, including the empty graph, having valence 0 at each vertex. Let K
be the number of subgraphs of G with the following property: vertex 1 has valence
+ 1 , some vertex j , with 2 ^ j ^ k, has valence — 1, and all other valences are 0. Then

There is one special but important case in which the conjecture, and hence (23)
holds. Suppose σa is connected to n nearest neighbors, which we take to be B. It is
immaterial whether the B spins are connected together, for any such interaction
can be regarded as part of Hc. In a v dimensional cubic lattice n = 2v.

The graph G in the conjecture then has the following structure: it has n+1
vertices and is star-like with edges only between the central vertex Vί (which is
really the original vertex marked a) and the other n. Suppose M 2 < 0 . Then it is
easy to see that the conjecture is verified if the following is true: Let G be the
subgraph of G consisting of vertices 1 and 2 and all the edges between them. Let N
be the number of valence 0 subgraphs of G, and let K be the number of subgraphs of
G with Mx = + 1 , M 2 = — 1. Then N^K. The easy proof of this is left to the reader.

This simple case can also be conveniently viewed in terms of (10) directly. We
require that

<ΦIΦB>^Σ iΦlΦt'XΦlΦβ}' (24)
b=ί

n

Both sides of (24) vanish unless ^ m ^ - 1 . Let P(m) be the Fourier transform of
1

exp[/?cos0], namely

P(m) = Im{β)>0,meΈ, (25)

where Im is the modified Bessel function. Then (24) reads

{P(0)"} ( Π PimΛ g t {P(0)"- XP(1)}jp(m +1) f] P(mj)\. (26)

Suppose mγ <0, say. It is sufficient to have

(27)

If both sides of (27) are expanded in a power series in β, (27) is true term by term.
This is just the graphical exercise mentioned above. However, the following
stronger result, which implies (27), holds.

Lemma 2. Fix β^O. The function rn^>Im(β) is log concave on the integers, i.e.

(28)
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Proof. Im(β) = I_m(β). (28) is trivial for m = 0, so it is sufficient to consider m ^ 1. If
both sides of (28) are expanded in a power series in β, we claim (28) holds term-
wise. Use

j=o

Thus for the coefficient of β2m+2\ t^O, we require

Σ go(J - t/2)gjj - ί/2) £ Σ 0o(/ - tβ)gjj + 1 - ί/2), (29)
j=o j=o

where gp(x) = [Γ(ί/2 + 1 + p + x)Γ(ί/2 + 1 + p - x)] ~ 1 θ(x) and 0(x) = 1 if |x| ^ ί/2 + p
and = 0 otherwise. Now Γ(x) is log convex for x > 0 and hence gp(x) is even and
log concave. Thus, for j an integer in [0, ί], go(j—t/2) is a positive sum of func-
tions of the form μa(j) = l if a^j^t — a and = 0 otherwise, for a = 0,1, ...[ί/2].

Hence, it suffices to have Σ QrJJ ~ tβ) ~~ QmU + 1 ~ tβ) ^ 0. But this is true because

gjj — tβ) is also a positive sum of the μb(j) functions (with — m^b^[ ί/2]) and
t — a

Σ /ib0' + r) i s decreasing for r^O, ΓGZ. Π

Since (23) holds when σa is a single spin and £ are its neighbors, we can
conclude using (2) that

Theorem 4. For the plane rotor model on a v-dimensional hypercubic lattice there is
exponential fall-off of the two-point function if <σfl σ&)<l/2v for the two-spin
system consisting of a and b alone. This is equivalent to 71(jβ)//0(j8) < 1/2v if Jab = 1 is
assumed for the nearest neighbor coupling constant. In particular

β c^0.52 (v = 2); β c^0.34 (v = 3).

For v = 2, Frohlich [7] has shown that /?c^0.64, and Aizenman and Simon [8]
have shown that βc^0.88.
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Notes added in proof. (1) Simon's inequality (1) for the Ising model is a special case of a class of
inequalities and identities discussed by Boel and Kasteleyn [9, 10]. They found necessary and sufficient
conditions for such inequalities to hold; therefore (1) can be proved by their methods.

(2) The conjecture in this paper has been proved by Rivasseau [11]. Thus inequality (23) for rotors
holds for all subsystems Λ, not merely for the case of the star graph proved here.
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