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Riemannian Structure on Manifolds of Quantum States

J. P. Provost and G. Vallee
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Abstract. A metric tensor is defined from the underlying Hubert space
structure for any submanifold of quantum states. The case where the manifold
is generated by the action of a Lie group on a fixed state vector (generalized
coherent states manifold hereafter noted G.C.S.M.) is studied in details; the
geometrical properties of some wellknown G.C.S.M. are reviewed and an
explicit expression for the scalar Riemannian curvature is given in the general
case. The physical meaning of such Riemannian structures (which have been
recently introduced to describe collective manifolds in nuclear physics) is
discussed. It is shown on examples that the distance between nearby states is
related to quantum fluctuations; in the particular case of the harmonic
oscillator group the condition of zero curvature appears to be identical to that
of non dispersion of wave packets.

1. Introduction

In recent years there has been renewed interest in the usefulness of geometrical
ideas in quantum mechanics. The geometrical structure which has been most
studied is the symplectic one. The reason is that the symplectic forms take an
important part in the Hamiltonian formulation of the classical mechanics [1] and
that they can also be defined on the Hubert space of quantum states. The key role
of this structure is particularly evident in the geometrical quantization program of
Kostant and Souriau [2]. It has also been claimed that this geometrical structure
remains present in the nonlinear generalizations of the quantum mechanics [3].

Another useful geometrical concept is that of a Riemannian structure. In the
framework of quantum mechanics this notion has not been much investigated. An
explanation may be that, although the scalar product on the Hubert space induces
naturally a distance between the quantum states, one is not interested in the local
properties of the manifold of states. Indeed the physically relevant quantities are
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the transition probability amplitudes which are defined for any two states
whatever be their relative distance.

However, such a Riemannian structure has been recently considered by
theoreticians of nuclear physics interested in the description of the collective
behaviours of the nucleons (such as nucleus deformation etc. ...). In order to
extract the meaningful collective subdynamics from the manybody dynamics, they
have introduced the concept of "collective submanifold" in the many particle
Hubert space [4]. This manifold, which in general is not a vector space, must be
chosen in some optimal way. To this end it has been proposed to consider the
Riemannian curvature as a test of the collectivity [5].

Our aim in this paper is twofold.
First, on a mathematical level, we want to describe in some detail how the

hermitian product on the projective Hubert space induces a meaningful metric
tensor on any manifold of quantum states. An interesting situation often
encountered is the case where the manifolds are generated by the action of a Lie
group on a fixed quantum state following Perelomov [6] we call them generalized
coherent states manifolds (G.C.S.M.). Geometrical properties of several explicit
examples of G.C.S.M. are considered and a detailed study of the curvature tensor
is presented in the general case.

Secondly, we want to initiate a discussion on the physical signification of such
a metric from a general point of view (not in the particular framework of nuclear
physics where this structure seems to have been first introduced). We show on
G.C.S.M. examples that the components of the metric tensor are related to the
dispersion of the quantum operators acting on the underlying Hubert space;
roughly speaking, the metric structure on the manifold is fixed by the quantum
fluctuations. This has to be compared with the results obtained in a recent paper
[7] where it has been shown that, in thermodynamics, a meaningful Riemannian
structure can also be defined on the manifold of equilibrium states of a system. In
this later case the metric is related to the thermal fluctuations of the system i.e. the
Riemannian structure originates from the underlying theory of statistical me-
chanics. A strict analogy would suggest that a Riemannian manifold of quantum
states may be considered in some sense as "classical" and more generally that one
should pay attention to metric structures when considering the connection
between classical and quantum mechanics.

The paper is organized as follows. In Sect. 2 we introduce the different
geometrical structures which can be defined on any manifold of quantum states.
We emphasize the gauge invariance of these structures. Several examples are
worked out. In Sect. 3 we study G.C.S.M. in some detail. Finally Sect. 4 is devoted
to physical comments relative to the metric and the curvature tensors.

2. Geometrical Structures on a Manifold of Quantum States

2.1. Definition of a Meaningful Metric Tensor

As a first step towards obtaining of a metric structure let us consider a family
{\p{s)} of normalized vectors of some Hubert space which smoothly depend on an
n-dimensional parameter s = (s1 ...sn)eW. Let || || and ( , ) denote the norm and
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the scalar product on the Hubert space. The distance

\\ψ(52)-ψ(51)\\ (2.1)

between two close vectors in the family induces a metric in the following way.
Writing si=s and s2=s + ds we develope the quantity

|| φ + ds) - φ) | | 2 - (xp(s + ds) - φ), φ + ds) - φ)) (2.2)

up to second order:

ί Aj (2.3)

Separating the real and the imaginary parts of the hermitian product

{3ίψ93]ψ) = γί] + ίσί] (2.4)

one observes that

yij(s) = yji(s) and au(s)=-ajt(s). (2.5)

Thus(2.3) reads:

dsj. (2.6)

The quantities y.fis) so defined have been proposed as the components of the
metric tensor on the "manifold of collective states" [5]. [From (2.4) it is clear that
the y.̂ s possess the correct transformation property under a change of the
coordinates s—•s'(s).]

However we emphasize that this tensor is meaningless as a metric tensor on a
manifold of physical states in ordinary quantum mechanics. Indeed, as long as the
phase of a vector state is not observable [8], the physical states are represented by
rays of the Hubert space and the two vectors tp(s) and ip'(s)

V/(s) = eia(s)v>(s) (2.7)

define the same point on the manifold (of rays). Consequently the metric tensors
associated with the families {t//(s)} for a(s) sufficiently smooth and (tp(s)} should be
identical and this is not true from (2.4) the tensor y' with components

^ y ) (2.8)
is different from y. More precisely we have:

Yij = lij + ββρ) + ββί*) + (Sfl){d/x) (2.9)

with

(2.10)

(the normalization condition on ψ implies that β is real).
In order to get a metric tensor whose components are independent of the gauge

transformation (2.7). We remark that, with respect to this transformation, the
/Jj's change according to:
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Then, the comparison of the formulas (2.9) and (2.11) leads to the following
definition of a meaningful metric tensor:

θιΜ) = 7ι&)-β1ί5)βρ). (2.12)

These g.j(s) clearly transform like the components of a tensor under a change of
coordinates. They are invariant under the transformation (2.7) by construction.
Finally the metric is positive definite. (This last property is verified by writing the
distance element άί2 between two nearby points on the manifold in terms of the
vector states associated with these points:

άί2 = gtj dst dsj = (δψ, δψ) - \(ψ, δψ)\2

(<5t/;(s) = \p(s + ds) — ip(s)).

The positive definiteness occurs since, according to Schwartz's inequality, άί2 is
different from zero unless the vectors ψ and δψ are proportional, i.e. unless the
vectors ψ and ψ + δψ define the same point on the manifold of rays).

Remark. A straight way to recover the metric (2.12) consists in defining a distance
on the projective Hubert space of rays rather than on the Hubert space of state
vectors. The square of the distance D(xpv ψ2) between any two rays ψί and ψ2 with
associated normalized vectors ψ^ίαι and \p2e

i<X2 is defined by

Ό2(ψνψ2)= Ini \\ψ1β^-ψ26
ί«ψ = 2-2\(Ψνψ2)\. (2.14)

αι,α 2

This distance naturally induces the metric (2.12) on the manifold {tp(s)} of interest
up to second order one has:

D\xp(s + ds), xp(s)) = gij(s)dSi dsj. (2.15)

(See Appendix 1 for details.)

2.2. Definition of a Symplectic Structure

Before we consider some explicit examples of manifolds of quantum states we
recall, for the sake of completeness, that a symplectic structure can be obtained
from the imaginary part of the scalar product in the Hubert space [3]. Indeed, the
antisymmetric tensor afj-(s) allows one to define a 2-form σ:

a(s) = σ{ρ) dst A dsj (2.16)

which has the following nice properties

i) da = 0 (d -.exterior differentiation). (2.17)
ii) σ is invariant under the transformation (2.7). These properties are straight-

forward consequences of the locally true equality:

(2.18)

and of the transformation law (2.11) written under the form:

(2.19)
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2.3. Some Examples

We now review the geometrical properties of some manifolds without entering
into the details of the calculations. Let us only remark that the quantities β and
ytj + \σ{- are easily obtained from the scalar product between any two members of
the family {xp(s)}:

CSl CSj

Of course, the list of examples considered below is not exhaustive. Our choice is
motivated by the fact that these examples will support the general study of Sect. 3
and the physical discussion of Sect. 4. It contains some wellknown families of
quantum states and therefore we do not specify our notations which are the
standard ones.

2.3a. Family of Translated States. Let ψ0 be any state vector of some quantum
system and P. (ζ = 1,2,3) be the generators of the group of translations R 3 in
ordinary space. We consider the family {ψ(χ}} of translated states

0 (2.22)

with scalar product

(ψ(χ), ψ(χ')) = (ψ0, e~ίΡ(χ' ~χ)Ψο) (2-23)

If < >λ denotes the mean value of an operator in the state ψ(χ) one gets:

Μ2 = gij{x)dxi dxj = <Ρ ; Pj\ - <Ρ;>Χ (Pj}x dxt dXj

= <Ρ,Ρ, > ο - < Ρ , > ο < ^ > ο ^ 1 ^

and

σ = θη{χ) dxt A dxj = 0.

The metric structure on the manifold {ψ(χ)} of translated states is that of an
Euclidean space. (This structure was not initially present on the group 1R3.)

2.3b. Glauber Coherent States (Harmonic Oscillator). These states can be defined
by:

( ^ ) 4 = ̂ e C ) . (2.25)
η = 0\η )

From their scalar product

<a|a/> = exp{aa /-^|a| 2-i |a / | 2} (2.26)

one gets

di1 = doc2, + doc2

2 = do1 + ρ2 άφ2

1 2 (2.27)
σ = 2dcc1 A da2 = 2ρ άρ A άφ.
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The metric and the symplectic structures are those of a 2-dimensional plane.
Therefore the Riemannian curvature of the manifold {|οζ>} of Glauber coherent
states is zero.

2.3c. Atomic Coherent States [9]. These states which have a component of the
angular momentum equal to —j in the (0, φ) direction read:

j ί 2/ \ 1 / 2 / 0\j+mi 0\j~m

= Σ ( ,) s i n . c o s ? exp(-;(/>m)(/>)|j,m>. (2.28)

From their scalar product

) ' (2.29)> ( s i n ^ s i n ^ + cos^cos^

\ 2 2 2 2

one gets:

άί2=\]{ύη2θάφ2+άθ2)
2 . (2.30)

σ =j sin θ άθ A άφ.
The metric and the symplectic structures on the manifold {\θ, </)>} are those of

the sphere S2. Therefore, the Riemannian curvature of this manifold is positive and
constant. It is equal to 2j~1. (This value is the inverse of the square of the radius of
curvature.)
2.3d. \ζ} States (Harmonic Oscillator) [10, 6]. These states are defined by

00

|ζ> = (1-|ζ|2)1/2 £ ζ"\η> (ζ = ρ ^ € € ) . (2.31)
η = 0

From their scalar product

<φ'> = (1 - ΈζΤ χ(1 - N 2 ) 1 / 2 ( l - \ΑΨ2 (2.32)

one gets (ρ = th - :

(2.33)
2 1

(1 — ρ 2 ) 2 2

The metric and the symplectic structures of the manifold {|7>} are those of the
manifold {\θ7φ}} for ) = \ provided one replaces the trigonometric functions by
hyperbolic ones. They correspond to the Lobatchevski plane. Therefore the
curvature of this manifold is constant and negative.

3. Curvature of G.C.S.M.

3.1. Definition

In all the previous examples the manifold of physical states is obtained by the
action of a Lie group G on a fixed state. This is clear on the Example 2.3a for which



Manifolds of Quantum States 295

G = IR3. In the case of the Example 2.3b, it is wellknown that the Glauber coherent
states can also be written

|a> = e<afl+-5e>|0> ( O , a + ] = J) (3.1)

and the manifold of rays {jcT>} is identical to the manifold (εχφ(βϊ^^
(XeW). This manifold is obtained by the action on the vacuum state |0> of the
Heisenberg-Weyl group whose Lie algebra is generated by J, α, and α +. Since the
rays ja} are invariant under the action of the subgroup K = {eiU} the manifold
{|α>} may be considered as an homogeneous space parametrized by the coset
space G/K. The Examples 2.3c and 2.3d can be similarly analyzed [6].

We are therefore naturally lead to consider the case of an arbitrary G.C.S.M.
Such a manifold is by definition [6] a set of rays of the type U(g)\p0 {ge G) where U
is an irreducible unitary representation of the Lie group G on a Hubert space Jf
and ψ0 is a fixed vector in jf. In order to parametrize the G.C.S.M. and to recover
the notation (ψ(7)} let us introduce the subgroup Κ of G which leaves ^ 0 invariant.
Κ is the set of elements geG such that

o = Ψο

Let ^ and Jf be the Lie algebras of the groups G and Κ and consider a
decomposition of & under the form:

^ = jT0if. (3.3)

(3£ is a vector space in ^ but not, in general, a Lie algebra.) Then, in a
neighbourhood of ψ0 the manifold {U(g)\pQ} can be identified with the manifold
{tp(s)} obtained from the vectors

V(s) = e M j V o (s = (Sl...s,,)6lR"), (3.4)

where the η hermitian operators Χ form a basis of 3£ in the representation U. The
left-action of an element geG on the manifold changes the parameter 5 into gs such
that:

ϋ(^)φ) = ψ(^). (3.5)

3.2. Properties of the Metric Tensor

The metric on the G.C.S.M. is that introduced in Sect. 2 [formula (2.12) or (2.15)].
The group structure which enters into the definition of a G.C.S.M. implies that the
metric is left-invariant under the action of the group:

g^dSidsj = gij{gs)d(gs)id(gs)j. (3.6)

This in variance follows from (2.15) and the fact that U(g) defines an isometry on
the projective Hubert space equipped with the distance D [formula (2.14)]:

(ψ1 = xpisj ψ2 = y>(s2). (3.7)

As a consequence it is sufficient to know the metric at one point of the
manifold since it can be carried to the remaining points by a left-translation. We
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shall choose the point xpo(s = 0). At this point the components of the metric tensor
gl7(0) are calculated from (2.21) as in the Example 2.3a; the result is:

gij(0) = Re<XiXj}o-<Xi>o(Xj)o. (3.8)

The tangent space to the manifold at the point ψ0 can be identified with the
subspace 9£ of the Lie algebra ^. Therefore, in this way, the metric structure on the
manifold induces a pseudo-scalar product on ̂ . Denoting the elements of ̂  by
small letters and their hermitian representatives in the representation U by capital
letters, this product < , > is:

<fl,fe> = Re<4S> 0 -<4> 0 <B> 0 . (3.9)

It is real and symmetric since A and Β are hermitian operators moreover it is
positive definite on the subspace 9C since, according to formula (3.8):

{xueX). (3.10)

If however one of the elements belongs to the subalgebra Jf, say a = fc^eJT, then
from (3.2) the vector ψ0 is an eigenvector of Κμ and the product <&μ, b) is equal to
zero. One can understand that the vectors k^Jf are isotropic in <& in the following
way. If the group Κ is not trivial the manifold is an homogeneous space of G
roughly speaking it can nevertheless be identified with the whole group G in so far
as the distance between two points which are deduced from each other by the
right-action of Κ is arbitrary small.

3.3. Curvature of a G.C.S.M.

In the examples of Sect. 2.3 the manifolds are 2-dimensional ones. In that case the
curvature is well described by a scalar. In more than 2-dimensions one associates a
scalar curvature to each 2-plane belonging to the tangent space of the manifold at
a point s. These "Riemannian bisectional curvatures" [11] are the curvatures of
the 2-dimensional smooth surfaces generated by the geodesies whose tangent
vectors at s lie in the 2-planes. They have the following properties:

i) in the case where the manifold is 2-dimensional the bisectional curvature
reduces to the scalar curvature considered above

ii) if the manifold is n-dimensional (η>2) let {ί } (ί= 1,..., η) be an orthonor-

mal basis in the tangent space at the point s. There are — - — bisectional

curvatures Cf.f corresponding to all pairs {ii5 ί } of basis vectors (i<j). Their sum

£ C'tii. is invariant under an orthogonal change of basis and is equal to the scalar

Riemannian curvature.
The group structure which enters into the definition of a G.C.S.M. and the fact

that the metric (2.12) is left-invariant enable us to use an extension of a result by
Arnold to calculate the bisectional curvatures at the point ψ0 (s = 0). Indeed,
Arnold has given an explicit formula for the bisectional curvatures at the neutral
element when the manifold is a Lie group equipped with a left-invariant metric
[12]. We show in Appendix 2 how this formula can be extended to the case of an
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homogeneous space but, for further discussions, it is sufficient to set here the
notations and the general form of the result.

Let {xj be an orthonormal basis in 9£ with respect to the scalar product (3.10):

<x i,xJ.>=5y. (3.11)

The commutator of two basis vectors xf and χ. splits in two parts belonging
respectively to $C and X:

(The quantities / are structural constants of G.)
The bisectional curvature C$ % in the 2-dimensional direction {xi5 Xj} is given

by:

C i l S j = Qijif) - i « i [ ^ fcy], *i> - <*[*„ fey], * ,» , (3.13)

where Qtj(f) is the following quadratic function of the structural constants:

Qitf)=Σ (W +fti2+Wti -fa) - Kffi)2 -fiffl (3 ΐ4)

When the manifold is the whole group (jf ΞΞΟ; 3C = <&) β*//) is equal to Ciijt and
one recovers Arnold's result.

3.4. Some Examples

In order to see how the formula (3.13) works we reconsider and generalize some
examples of the Sect. 2.3.

In the case of the Heisenberg-Weyl group X is generated by {/} and a basis of
3C is χί=χ (position operator) and x2—V (momentum operator). Therefore the
structural constants f(2 are zero and k12 is in the center of ^. Each term in (3.13) is
zero and the curvature is null. This result is true whatever ψ0 may be. (ψ0 is the
vacuum state for Glauber coherent states.)

In the case of atomic coherent states ψ0 is the state \j, —j} and the group G is
the rotation group. JT and 9£ are respectively generated by {7*3} and {jl9j2} (DWJJ

= isikjj). From formula (3.8) and standard results such as (Jf)o = - one sees that

/2\1 / 2

the elements x f = Ι τ j . (ΐ=1,2) are orthonormal vectors in S£. Then, the

constants of structure/f2 = c1 2 j f (/=1,2) are zero and the element k12 of Jf is —j 3 .

Finally from (3.13) the curvature is:

0 υ 2 ? ΛΐΛ>-<^ 1,Λ^2» = 2Γ 1 . (3.15)

An example of a manifold whose dimension is greater than two is the one
obtained by the action on some state ψ0 of the group of the Harmonic oscillator
whose Lie algebra is generated by the operators / (identity), χ (Galilee transfor-
mation), ρ (space translation), and Η = \(χ2 + ρ2) (time translation). This manifold
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in general is 3-dimensional {χ,ρ,Η} being a basis of the subspace &C&. Let
{χνχ2,χ3} be an orthonormal basis of 9C\

χ1=α1χ; χ2 = α2(ρ + α1χ) χ3 = α3(Η-^~α2χ-\-α3ρ). (3.16)

(In these expressions the normalization constants α{, which are strictly positive,
and the af depend on t/;0.) The scalar Riemannian curvature

l i 3 (f) (3.Π)
is found to be:

It is generally negative but can be zero iff ο^ = 0 and — = 1, that is iff the state ψ0 is
α2

such that:

Re<xp>0-<x>0<p>0 = 0 ; <x 2> o-<x>g = <P2>o-<P>o. (3.19)

Moreover, in that case each term in (3.17) is zero.
Using the notations of (3.16), a similar calculation can be achieved in the case

of the group of free motion 1 Η= ^- the corresponding result is

Contrary to (3.18) this curvature, as well as the bisectional curvatures in the planes
{χ,ρ}9 {χ,Η} or {ρ,Η}, can never be set equal to zero. These results (3.18) and
(3.20) will be shortly discussed in Sect. 4.

4. Physical Comments

Although the notion of distance between quantum states has been invoked in the
context of measurement theory [13], its physical signification has not been much
discussed. The same comment may be applied to its infinitesimal version, that of a
metric, with which we are concerned in this paper. Therefore we now want to
initiate a physical discussion on this subject.

A first remark is that the concept of a metric on a manifold of quantum states
is the only structure which remains of the underlying Hubert space. Therefore the
question naturally arises whether there exist quantum physical situations which do
not require the full Hubert structure. We think that this may be the case for
macroscopic systems which exhibit collective behaviour. Indeed, for such systems,
the possibility of going from one state to another one is not described by a direct
transition amplitude (scalar product in Hubert space) but rather through a
succession of infinitesimal steps on the manifold of collective states. The relevant
distance between distinct states is then the distance measured along geodesies on
the manifold.



Manifolds of Quantum States 299

A second remark is that the infinitesimal distance di between two nearby states
differing only by the parameter st is related to the quantum fluctuations of the
corresponding generator X.. From (3.8), dl reads:

The distance element ά£ being dimensionless, (AXt)~* appears to be a natural unit
for the parameter st on the manifold. Heuristical arguments from Fourier analysis
of the type AX^S^l (St operator conjugated toXt) show that the unit for the
parameter st is proportional to the fluctuation ASt.

The last comment deals with the results (3.18) and (3.20). It is interesting to
note that in the case of the "harmonic oscillator manifold" the condition of zero
curvature (3.19) is identical with the condition of non dispersion of the wave
packet [14] similarly, in the case of the free motion where it is known that any
wave packet disperses, formula (3.20) shows that the curvature can never be set
equal to zero. These examples and the fact that the curvature is constant for any
G.C.S.M. suggest that the curvature may be used to define a "collective" dispersion
for a non commutative family of quantum operators.

Acknowledgements. The authors are indebted to Dr. F. Rouviere and Dr. A. Cerezo for useful discussion
and to Professor I. Sakmar for carefully reading of the manuscript.

Appendix 1

If one inserts the Taylor expansion

y>(s + ds) = v>(s) + (d^)(s)dsi + \{didj\p){s)dsidsj + ...

in the scalar product (xp{s\ \p(s -f ds)) one gets, up to second order:

(tp(s), \p(s + ds)) = 1 -I- /?f(s)dsf -f \{ψ, didj\p)(s)dsidsj.

The modulus of this product is:

\{xp(s\ w(s + ds))\ = 1 + £[Re(v>, δ&ψ)® + j S ^ j S / s ) ] ^ ^

But:

Re(y;, δίδ]ψ) = - Re(3fy>, d}\p) = - y . .

since di(xp,djyj) = id$j is imaginary.
Therefore, with use of (2.14):

= gij(s)dsidsj.

Appendix 2

Let G be a Lie group equipped with a left-invariant metric, ̂  its Lie algebra, < , >
the scalar product in ̂  which determines the metric and [ , ] the Lie bracket in ̂ .
According to Arnold [12] the sectional curvature of G at the point g0 {g0 identity
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of G) in the two dimensional plane defined by the orthonormal vectors m and ή of

Cm,n = <ί d} + 2<α, b} - 3<α, a} - 4 < £ Λ , Β,} . (Α.2.1)

In this expression a, b, c, Β^ and Bh belong to ^ and are defined by :

Id = B(m, h) + Β(η, m) 2b = B(m, ή) - Β(η, m)

2a = lm,n\ 2ΒΛ = β(Α,?η),

where the operation Β :& x ^ - ^ ^ is such that:

<B{p9q)9fy=-<Jlq,?]9py. (Α.2.3)

In the case of an homogeneous space G/K, we introduce the decomposition
(3.3) ^=Jf®^ and recall that the metric is zero on Jf. This implies that the
operation Β is no longer defined. However, one can generalize in a simple way the
results by Arnold by considering this metric as the limit of a positive definite
metric on ^ whose restriction to 9C is maintained fixed while its restriction to Jf
goes to zero.

To this end, let {χ } be a fixed orthonormal basis is S£ and let {/cj be a basis in
Jf such that:

<*,Λ> = ΙΙΜ2«μ, ( Α 2 4 )

<*,Λ>=ο.
We consider the limit where the norms ||fc || go to zero (isotropic vectors) and
show that the quantities (Α.2.2) have a definite limit, although the operation Β is
not defined in the limit.

Writing [χ , xj] under the form

^ Σ ^ Σ ^ ( Α 2 5)
e μ

the Β operation on 3C reads

B(xi9 xj) = Σ ήΑ -ίΣ\\Κ\\~2 <ί*ρ Μ ' *i> Κ ( Α 2 6 )
ί μ

In order to calculate the quantities (Α.2.2), one uses the crucial identity

<}lXi, Kl Xj} = - <iixfi fcj, xt} (Α.2.7)

which occurs since the state xjT0 is invariant under the group Κ. One easily finds

<α, by = ι (Σ ημ){ - m - i Σ/Γ/<!Λ > Kl **> - <[**. y '

(Α.2.8)

€
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All the terms in (Α.2.8) clearly have a definite limit when \\k^\2 goes to zero. From
(Α.2.1) one recovers immediately the formula (3.13) for the bisectional curvature
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