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Abstract. A method for solving certain nonlinear ordinary and partial
differential equations is developed. The central idea is to study monodromy
preserving deformations of linear ordinary differential equations with regular
and irregular singular points. The connections with isospectral deformations
and with classical and recent work on monodromy preserving deformations
are discussed. Specific new results include the reduction of the general initial
value problem for the Painleve equations of the second type and a special case
of the third type to a system of linear singular integral equations. Several
classes of solutions are discussed, and in particular the general expression for
rational solutions for the second Painleve equation family is shown to be

— — ln(A+/A__\ where Δ+ and Δ_ are determinants. We also demonstrate

that each of these equations is an exactly integrable Hamiltonian system.* The
basic ideas presented here are applicable to a broad class of ordinary and
partial differential equations additional results will be presented in a sequence
of future papers.

1. Introduction and Outline

This paper is the first in what is planned to be a series of studies on deformations of
linear ordinary differential equations with coefficients rational on a Riemann
surface. The deformations in question preserve the monodromy at singular points
of the linear equation, and this requirement forces the coefficients of the linear
equation to satisfy certain nonlinear ordinary or partial differential equations of
considerable interest. The theory of monodromy-preserving deformations over-
laps the theory of isospectral deformations (i.e., soliton theory), and indeed one of
our aims will be to understand the connections between these two types of
problems. Applications of the nonlinear equations governing monodromy-
preserving deformations have been discovered in nonlinear waves, statistical
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mechanics and quantum field theory; we shall present some new results along
these lines, and we intend to develop relations between soliίon ideas and the
applications mentioned above.

The next section of this paper will describe in considerable detail the history of
relevant work on monodromy-preserving deformations, as well as connections
between different approaches and problems. The paper itself deals primarily with
two representative examples. The first of these is the system

(1.1)

with x, q, r, v constant in ζ. The singular points of (1.1) are at ζ= oo (irregular) and
ζ = 0 (regular) if vφO. A deformation of (1.1) is monodromy-preserving if the
Stokes multipliers associated with formal solutions about ζ= oo, the monodromy
matrix about ζ = 0, and the matrix connecting fundamental solutions at ζ = 0 and
oo are unchanged (when x is varied, and q, r change as functions of x). For this it is
necessary and sufficient that (as function of x) r = qx, and

(1.2) is the second Painleve equation [1]. By posing an irregular-singular Riemann-
Hilbert problem, we exploit the connection with (1.1) to reduce (1.2) to an
equivalent system of linear singular integral equations. In a special case, this
reproduces the solution, due to Ablowitz and Segur, of (1.2) by a Marchenko
integral equation [2]. Other special cases yield the rational or Airy-function
solutions of (1.2) discovered by Airault [3], but this time by procedures very
familiar from the inverse-scattering derivation of multisoliton formulae.

The second and somewhat more complicated example, whose study we begin
in this paper, is afforded by the system

/ . i \ ( xux •
U l ζ = — ZX+ -jCOShM t^-f -^y- + -T^'

(1.3)

]υ< + f i x -

This system has irregular singular points at ζ = 0, oo. The deformation equation is
equivalent to a special case of the third Painleve equation,

(xux)x= -4sinhw. (1.4)

This equation and its linearization via the Riemann-Hilbert problem for (1.3)
provide a link between the inverse scattering transform and the extensive work of
Barouch-McCoy-Tracy-Wu [4-6] on the Ising model and of Sato et al. [7] on
monodromy-preserving deformations and quantum field theory.

Our principal aims in this first paper are:
1. To point out relations between mondromy - and spectrum - preserving

deformations.
2. To introduce a new method for solving the initial value problem for

equations such as (1.2) and (1.4) which can be written as monodromy preserving
deformations.
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3. To point out that both (1.2) and (1.4) are exactly integrable Hamiltonian
systems.

4. To discuss the connections between our method, the inverse scattering
transform and the novel ideas of Krichever and Novikov for investigating
multiperiodic solutions of soliton equations.

Following a general discussion in Sect. 2, in Sects. 3 and 4 we describe in detail
the mapping from the coefficients of the differential equations (1.1) and (1.3) to the
monodromy data and prove that this data is independent of x. In each case we also
derive the inverse mapping which allows one to reconstruct the solutions to (1.1)
and (1.3) (and therefore both the equations they satisfy and the coefficients in these
equations, the quantities of interest) from a knowledge of the monodromy data.
The result appears as a set of coupled linear singular integral equations. We
examine several limiting cases and derive some useful formulae for special classes
of solutions, although we have not, as yet, been able to prove the existence and
uniqueness of solutions in the general case.

2. Introduction and Discussion

2A. Deformations

Nonlinear ordinary and partial differential equations do not, in general, admit
explicit solutions, because the solutions of the typical nonlinear equation are so
wildly irregular that they could not possibly be represented by known functions.
Conversely, nonlinear equations with very well-behaved solutions should be
expected to have uncommon properties. One feature shared by many such special
nonlinear equations was discovered towards the end of the 19th century, was
exploited for about forty years and then (apparently) forgotten quite recently it
has re-emerged in a somewhat different form. This is the observation that
"solvable" nonlinear equations arise as ίntegrability conditions for certain kinds of
deformations of linear equations.

The most recent version of this technique centers on the idea of isospectral
deformation. The best known and most celebrated example involves the

?2

Schrόdinger operator [8] L — — -j-̂  +q(x). One asks, how can one deform the

coefficient q(x) as a function of an additional parameter ί, so that the eigenvalues
of L [as operator on I?(R\ say] do not change? The simplest nontrivial such
deformation is already one of great physical importance: the deformation is
isospectral if q(x, f) satisfies the Korteweg-de Vries equation,

qt-6qqx + qxxx = ΰ. (2.1)

In recent years, studies of isospectral deformations have uncovered many more
nonlinear equations of physical relevance and mathematical interest the whole
subject appears to be deeply involved with Lie groups and differential and
algebraic geometry.

Another kind of deformation, perhaps not as widely known, is associated with
the monodromy group of Fuchsian differential equations. Consider a (matrix)
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system of ordinary differential equations,

(2.2)

where the Aj are constant m x m matrices. The fundamental solution of (2.2) is (in
general) a multi-valued function of complex ζ. If ζ moves on a path \ζ — cij\ = ε
encircling aj9 the solution Y(a + £) will change into Y(a.-f εe2πί) = Ϋ which is a
matrix whose rows are linear combinations of the rows of 7(0,

7(0-M.7(0. (2.3)

MJ is the monodromy matrix at a . The deformation problem is: how can one
change the Aj, as function of the poles aj9 so that the monodromy matrices Mj

remain fixed? The simplest nontrivial example is again of considerable interest.
The linear Eq. (2.2) is taken to be a 2 x 2 system, with three poles fixed at 0,1, GO,
and one pole τ subject to variation. A priori, there are twelve adjustable entries in
the coefficient matrices Aj(j= 1,2,3), but they can all be expressed in terms of a
single function z(τ) which satisfies the equation [9,18]

1 1 1

τ τ— 1 Z /7 Ί 7 T \ T I T I IZ — I Δ — I I L ^ t \-J

(2.4)

The frightening Eq. (2.4) is the most general 2nd order equation

z" = R(τ,z,z')

with R rational in z, z' and analytic in τ, which has the property: the location of
any algebraic, logarithmic, or essential singularity of its solutions is independent of
the initial conditions.

Equations with this property were studied in exhaustive (and exhausting) detail
by Painleve and Gambier [1]. There are fifty canonical types, which include linear
equations such as z" = z, equations solved by elliptic functions, such as

Z — Z^Z ~\~ CZ V , \^" )

and six equation types whose general solutions can be proved not to be expressible
in terms of the basic special functions (except for isolated cases, see Sect. 3 below).
These six equations are called Painleve equations, and their solutions Painleve
transcendents. These equations are, as the summary above indicates, distinguished
among non-classical ordinary differential equations of the form (2.4) in that the
nonpolar singularities of their solutions can be predicted from the equation alone.
Equations (1.2) and (1.4), which we study in this paper, fall into this class [(1.4)
only after the change of variables f=eu~\. We shall describe later some of the
important applications of the Painleve transcendents.

A third kind of deformation involves the properties of solutions of ordinary
differential equations near irregular singular points. This, indeed, will be the main
concern of the present paper, and for the moment we provide a brief description
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only. Consider the system

Y' = A(ζ)Y, (2.6)

where the (matrix) function A is polynomial in ζ. ζ = oo is an irregular singular
point, and typically only formal solutions

are available near oo. A formal series such as (2.7) is, in fact, asymptotic to a true
solution Y in certain sectors S in the complex ζ-plane, and one may have

ΎΓΎ in S,

Yk~Ϋ in Sk

for different true solutions Yp Yk in different sectors Sp Sk. The discontinuity of
asymptotic expansions is known as the Stokes phenomenon, and the matrices which
connect the different true solutions with fixed asymptotic expansions in the
various sectors are called Stokes multipliers, Y. = YkMkj. The deformation problem
we pose is: to change the coefficients in (2.6) so that the Stokes multipliers Mkj

remain constant.
The immediate object of our paper is to study this deformation problem for a

particular 2 x 2 system which leads to the second Painleve equation

q" = 2q* + xq-v (2.8)

as integrability condition. (2.8) is a nonautonomous version of the elliptic function
Eq. (2.5). We will reduce this nonlinear ordinary differential equation to a system
of linear integral equations, and in the process we will recover some known special
solutions. There are, however, deep and entirely unexplored connections amongst
these various types of deformation problems, and equally interesting relations
between monodromy-preserving deformations and questions in statistical me-
chanics, quantum field theory, and wave dynamics. We plan to address some of
these topics in later papers, and want to detail in this overall introduction the
ingredients of what we think will eventually become a beautiful and useful
complement to current soliton theory.

2B. Applications

Painleve transcendents are encountered in several important physical problems, of
which we describe two. In one of these, the connection with solitons (more
precisely, with isospectral deformations) is evident. In the other, there are certain
analogies with soliton theory which first stimulated our interest. We now outline
the relevant facts.

/. Self-Similar Solutions of Wave Equations. Although the following considerations
apply to many soliton equations, we restrict ourselves to the modified Korteweg-
de Vries (MKdV) equation, in the form

qt-6q2qx + qxxx = 0. (2.9)
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If q(x, t) solves (2.9), then so does

for any β. A solution which is invariant under this scaling is called self-similar :
q(x, t) = q(x, t). It follows that for such q,

4(x,ίH(3ίΓ1/3/M3£Γ1/3). (2.10)

The function f(ξ) satisfies

/" = 2/3 + £/ -v (2.11)

(v is an arbitrary integration constant), as can be seen by substitution of (2.10) into
(2.9). (2.11) is the second Painleve equation. Now, it is known that MKdV can be
integrated by the inverse-scattering problem for

(2.12)
U 2 χ - 2 = ^ 1

with the ί-evolution of the eigenfunctions governed by

v^

For the self-similar solution (2.10), the ί equation is in a sense redundant, since
q(x,t) is known for all t once it is given for £=1/3, say (q(x, l/3)=/(x)). This
observation can be put to use in two ways.

Ablowitz and Segur [10] in their analysis of the asymptotic behavior of
solutions of the KdV equation were led to the following procedure (described here
for MKdV). Apply the usual inverse method for MKdV up to the Marchenko
equation by which q(x, t} is determined from the scattering data. At that stage,
assume q(x9t) to be self-similar, and observe that t can be scaled out of the
Marchenko equation altogether. This leads to the Fredholm equation,

- -ρ κ2(x,s) Ai

(2.14)

and one recovers the Painleve transcendent f(x) by

f(x) = K1(x9x). (2.15)

It is a consequence of the scaling invariance of the Marchenko equation that the
reflection coefficient r(ζ) has the special form

K0=e*8ίζ3/3. (2.16)
The Fourier transform of R(ζ) is the kernel of (2.14), which explains the occurrence
of the Airy function. This method produces the unique solution of (2.11) which
satisfies
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(Hastings and McLeod [11]). More recently, Ablowitz et al. [12] have shown how
to bypass the f-evolution in linearizing (2.11) and similar equations for solutions
which decay at + oo. This is more satisfactory, since scattering theory is not really
applicable for potentials such as /(x) which have poles, or at least decay slowly at
-f or — oo.

It is also possible to use the scaling invariance directly on the ί-equation (2.13).
If v(x,ί,Q solves (2.12), (2.13), then so does y(βx,β3t9β~1ζ) for the potential q.
Define, in the case of self-similar q,

then

v(x, f, 0 - w(x(3ί)" 1/3, C(3ί)1/3) .

Hence

ot e

and upon using the x-equation (2.12) to eliminate — , one can rewrite (2.13) as
c/x

follows [we replace x(3ί)"1/3 by x, and C(3ί)1/3 by ζ]:

2

This is coupled to (2.12), rewritten now without use of t:

w^ + iζw, =fw7lx * 2 (2.18)

If one imagines /(x) to decay so rapidly at ± oo that scattering theory can be
applied, one looks at a solution of (2.18) which satisfies

At +00,

and it follows from (2.17) that

Inverse scattering then reproduces the results of Ablowitz and Segur. There is a
conceptual question, which leads to the main point of our paper. In MKdV theory,
the x-equation (2.12) is basic. It is deformed in ί in a special way; namely, so that
the transmission coefficient a(ζ)~ 1 is independent of ί. The ί-evolution (2.13) is one
possible expression of this requirement, and MKdV is the integrability condition
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for these two systems. For self-similar solutions, however, there is no t in (2.18), so
what is being deformed? As we explain in this paper, it is now the ζ-equation (2.17)
(alias ί-evolution) which is basic. Vary x in (2.17), and change the remaining
coefficients as functions of x so that the Stokes multipliers of (2.11) are independent
of x. The original x-equation (2.18) describes the appropriate evolution of the
solutions o f ( 2 Λ l ) in x, and the Painleve equation (2.11) with v = Q is the integr ability
condition. In this way an isospectral deformation leads, for self-similar solutions, to
monodromy- preserving deformations associated with the irregular singular point.

We also want to point out that whereas the self-similar solutions of integrable
evolution equations appear to give solvable nonautonomous ordinary differential
equations, there are many members of the latter class which do not result from
self-similar limits of the former. (See Example 2, Appendix I.)

//. Correlation Functions of the Ising Model. A most remarkable occurrence of
Painleve transcendents was discovered by Barouch et al. [4] and was incorporated
into a powerful general framework by Sato et al. [7]. The interest here is in
computing the /c-point correlation functions of the rectangular Ising model in the
scaling limit. First we recall some terminology about the Ising model. A spin
variable σmn = ± 1 is attached to each point of an M x N lattice. The energy E(σ)
corresponding to a configuration σ = {σmn} is

N N M N

E(σ)=-Jί £ £ σmnσm+l,n-J2 Σ Σ °mn°m,n+ 1
m = l π - l m= 1 n— 1

(periodic boundary conditions). The partition function is

7 — \ p-βE(σ) 0_
^MN~ ̂  ' P~ £jo

(summed over all possible σ), and the /c-point correlation functions are

One is interested in obtaining explicit formulae for these quantities as M, Λf — > oo. It
is well known that the partition function is not analytic at some critical βc,
corresponding to a critical temperature Tc. The scaling limit is a continuum limit of
the lattice as T-+T* [13]. The 2-point correlation functions and their scaling
limits were first evaluated and studied in [4]. Of particular interest for us is the fact
that the 2-point functions in the scaling limit admit closed expressions in terms of
solutions of the third Painleve equation (see the survey by Tracy [13]). Without
invoking any deformation ideas, Wu et al. derived series expansions for the
correlation functions certain of these expansions for k = 2 are equivalent to the
Neumann series subsequently studied by Ablowitz et al. [12], and identical to
iterative solutions obtained from our singular integral equations (see Sect. 4
below).

The deformation idea was introduced into this circle of problems by Sato et al.
[7]. Their work presents a remarkable synthesis of apparently unrelated fields : the
theory of rotations in Clifford algebras, monodromy-preserving deformations, and
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quantum field theory. Certain of their discoveries show a particularly strong
similarity to facts familiar from inverse-scattering theory and lead directly into the
investigations of the present paper.

We present a brief sketch of the basic deformation problem of [7] (algebraic
details of the connection are given in Appendix III). [7] deals with solutions of the

(w ,

w

d d
~-w_— m w , , — w, = m w _ , m>0, (2.19)
dz dz

which: are multivalued, having root type branch points at 2n points α1? ...,%,

= -e-2π//vw(z,z ), (2.20)

satisfy certain growth conditions at (αv, άv), v — 1, ..., fc and decay as £~2 m ' z ' as
|z|~»oo. For n=l, the only solution is a modified Bessel function of the second
kind. In general, the space Wk of such solutions is fc dimensional [7]. Let

W = \ w^ = (w^,w^)r (2.21)

W*v
be a basis (appropriately normalized) of Wk. There is a differential equation
satisfied by W,

ι +EV/9 (2.22)
C7Z <7Z /

where MF — z- -- z -- h - l J and J5, B, E are constant matrices which
dz dz 2 \0 - 1/

depend on /v, αv and αv, v = 1, . . ., fc. Equation (2.22) together with (2.19) completely
characterizes the space Wk. One now asks : /ιow do the matrices in (2.22) change as
functions of the branch points a , άjΊ Because these matrices characterize Wk, which
in turn is the space of solutions determined by the monodromy requirement (2.20),
this question is about deformations of (2.19), (2.22) preserving the root mono-
dromy and growth conditions. The solutions of the deformation equations lead to
closed expressions for the fc-point functions for fc = 2, these reduce to the formulae
mentioned above involving the third Painleve transcendent. In [7], Eq. (3.3.39),
Sato et al. point out that a formal Laplace transform

converts (2.19), (2.22) into

. (2.23)
du
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This again produces a system of ordinary differential equations with poly-
nomial coefficients, with irregular singular points at w = 0, oo. These equations
involve the αj5 ap and other parameters. We may ask: how should these other
parameters change as functions of a., a., if the Stokes multipliers of (2.23) are to
remain constant? For k= 1, the system of deformation equations is trivial, and for
/c = 2, one recovers the sinh-Gordon similarity solution (i.e. a special case of
Painleve III). The exact connections are given in Appendices I and III.

2C. Classical Work

The work of Sato et al. was in part stimulated by, and then re-applied to, some
classical problems of deformation theory. We have already mentioned the work of
Fuchs [9] on Painleve VI as a deformation equation. The general system of
deformation equations for (2.2) was derived by Schlesinger [14]:

δ^_[^μ]

3^— '̂ (Z24)

£ dAj

 Λ

[7, Part II] details a constructive solution method for (2.24) based on a
specialization of the deformation theory of the Dirac equation (Sect. B, above).
Equation (2.24), of course, relates to monodromy groups of systems whose
singular points are all regular. The question of irregular singular points was also
taken up, by Gamier [15], but (as far as we can tell) on a purely formal level, by
analogy with results of Fuchs on the regular-singular case. Garnier considers, in
connection with Painleve II, the 2nd order equation for y(ζ\

3/4 ' ** ' - (2.25)

He then asks : how can one complement (2.25) by an equation

(2.26)

with A, B rational in ζ, so that (2.25), (2.26) is an integrable system (in the sense :
yxζζ = yζζx)^ If w = 0 in (2.25) and λQ = λ, it turns out that one possible choice for
(2.26) leads to Painleve II as the integrability condition,

There has apparently been no discussion, so far, of the deformation theory
underlying (2.25), (2.26), even though the work of Birkhoff [16, 17] presents most
of the necessary ideas relating to the monodromy concept for an irregular singular
point1. Starting from the requirement that the Stokes multipliers of (2.25) [or
rather, of (1.1)] be independent of x, we will prove (in Sect. 3) that an equation like
(2.26), with rational A, B, must be satisfied.

1 After this work was completed, we learned of work of K. Ueno on this question (see Sect. 5)
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2D. Further Connections Between Isospectral and Monodromy-Pre serving
Deformations

Of the three deformation problems listed in Sect. 2 A, only two have been shown to
be related up to this point of our discussion.

isospectral

self-similar solutions

regular monodromy irregular monodromy

It is probably not surprising that connection 2 can be established. If one coalesces
two or more regular singular points of an ordinary differential equation, one
expects to get an irregular one. Indeed, Gamier [15] states (without details) that
an equation such as (2.25) is obtained from one with all singular points regular by
confluence, with the corresponding deformation equations passing into each other.
This amounts to the observation of Painleve (see, e.g. [1]) that the 6th equation,
(2.4), (which is the integrability condition for a regular monodromy-preserving
deformation) yields all other Painleve equations I-V (associated with irregular
monodromy) by appropriate limiting procedures. Yet, the geometric content of
this statement is still very obscure.

Much more surprising is connection 3, again due in large part to Gamier [18].
It is fairly well known (Davis [19]) that the change of variables

converts Painleve II into

1 1 g 2v
a" — 2q —2q a + - -~- —υ * * ty 9 t2 3ί

which, for |ί|->oo in certain regions of the t plane reduces to

g" = 2g3-2g.

This is solvable in terms of elliptic functions. Indeed, the solutions of Painleve II
are "asymptotically elliptic" (much as Bessel functions are asymptotically trigono-
metric). Gamier takes the general Schlesinger system (2.24), lets the a^ao so that

—L-»—- (fixed) and sets α,logα, = τ ; then (2.24) formally becomes
a. Λj > >

8AJ [Al,Aj~

dτ,
(2.27)
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This is now an autonomous system, which Garnier integrates in terms of Abelian
functions. It is remarkable that his basic lemma says that the eigenvalues of the
matrix

are unchanged when the Aj solve (2.27) - a typical isospectral flow. One special
case singled out (and solved) by Garnier is the system

(2.28)

which is now known [20, 21] to contain the finite-gap KdV theory as special case.
It was, in fact, discovered some 60 years earlier by C. Neumann as describing
uncoupled harmonic oscillators constrained to move on a sphere.

Garnier's system (2.27) covers a large class of the integrable periodic problems
solvable by inverse spectral methods. There are other known periodic isospectral
flows contained in (2.27). We will discuss these in the next paper, in which we will
also re-interpret Garnier's method in the language of isospectral flows.

3. The General Solution of Painleve II

3 A. Outline

We have already mentioned (and full details are given in Appendix I) that r =
and

v (3.1)

are the integrability conditions of the Eqs. (3.2) and (3.3) below

- 2 , (3.2a)

- 2ίr v, + (4ίζ2 + i(χ + 2q2))υ2 , (3.2b)

The method of isospectral deformation, or 1ST, concentrates its principal attention
on (3.3). In order to implement the method, one must have some information on q
as function of x for example, that it decays to zero or a constant as x-+ + oo and
also that certain moments exist. If

] (l + \x\)\q\dx<ao, (3.4)
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one can define the fundamental solution matrices Φ(x, ζ) and Ψ(x, ζ) by the
asymptotic properties

as x->-oo (3.5a)

and

Ψ(x,ζ)-+E(x,ζ) as X-+ + QO. (3.5b)

Condition (3.4) ensures that certain analyticity properties hold, and in particular
that the scattering matrix A(ζ) = Φ~1Ψ is defined with its diagonal entries
admitting analytic extension. The ζ behavior of A(ζ) (or the (ζ, ί) behavior of A(ζ, t)
- see [33]) is inferred from (3.2)

For the class of equations and solutions we wish to discuss, condition (3.4) does
not hold. Therefore, we propose a new method, in which one focuses central
attention on Eq. (3.2) and uses (3.3) as an auxiliary equation. We note straightaway
that (3.2) is much simpler: the coefficients are polynomials in the independent
variable ζ. The points ζ = 0 and ζ = oo are regular and irregular singular points of
the equation, respectively, and the solution matrix is a meromorphic function of ζ
on an appropriate Riemann surface. If v is an integer, the solution matrix is
meromorphic in the finite complex ζ plane; otherwise, one must introduce the
multisheeted Riemann surface of ζv.

The steps in the method exactly parallel the steps used in 1ST. First, at a given
value of x, where q and qx are given, one determines various properties of the
solution matrix connected with the singular points ζ = 0 and ζ = oo of the equation.
Around the singular point ζ=co, one has the Stokes phenomenon: the analytic
continuation of a solution from one sector to another does not have as its
asymptotic expansion, as £— »oo in the new sector, the analytic continuation of the
asymptotic expansion in the first sector. If one identifies a solution matrix in each
of the sectors abutting infinity by a fixed asymptotic behavior, then these solutions
will not evolve from one sector to another in a continuous fashion, but will be
connected by Stokes multiplier matrices. The entries of these Stokes multiplier
matrices are the Stokes multipliers and are part of the characteristic data of the
singular point. The other data needed at ζ = oo are the coefficients of the
polynomial in the exponent of the formal asymptotic expansion of the fundamen-
tal solution matrix. If the rank of the irregular singular point is r, then the
components of the solution vector will have asymptotic expansions of the form

(3.6)
i = l

In the case under discussion, r = 3, ω3=4z'/3, ω2 = 0, ωi = z'x, / = 0. One also needs
to know how the solution changes as the point ζ = oo is encircled does it return to
the value in the first sector? This can be determined by examining the behavior of
the solution in the neighborhood of the regular singular point. Thus, one
introduces the monodromy matrix at ζ = 0. Finally, one must specify the
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connection matrix between canonical fundamental solution matrices at ζ = 0 and
ζ= oo. The characteristic parameters at ζ= oo (the Stokes multiplier matrices and
{ω7 }, /), the monodromy matrix at ζ = 0, and the connection matrix are together
called the transform data.

The second step in the method is crucial. We ask: how do the transform data
evolve as the parameters ωi in (3.6) change? From (3.3), we will show that their
evolution is trivial: they are constant.

Therefore, the third step is to reconstruct the coefficients r and q in (3.2) and
hence q and qx at any x. This is achieved by deriving linear singular integral
equations for the columns of the fundamental solution matrix.

We now discuss these steps in detail in connection with the system (3.1)-(3.3).

3B. The Direct Transform

A formal asymptotic analysis of (3.2) at ζ = oo will show that the two linearly
independent solutions have the expansions

(3.6a)

(3.6b)

Since our concern is with (3.1), we will henceforth write qx for r. If (3.1) holds,
X

q2 — xq2 — q4 + 2vq = — §q2dx + const and if q, qx tend to zero sufficiently rapidly
00

as x->oo, this coefficient is simply J q2dx. The growth or decay of the two formal
X

asymptotic expansions \p(1\ζ,x) and ψ(2\ζ,x) as ζ-»αo is determined by the
exponential factor £± 4 l ζ 3 / 3; the former (latter) series is dominant (recessive),
meaning exponentially growing (decaying), as ζ-*co in the sectors S15 S3 and S5

shown in Fig. 1 below, and recessive (dominant) in the sectors S2, S4, S6,

Sj= JCI |ζ|>ρ, some ρ, ̂ ^ ̂ argζ< Jy|.

The initial lines of the sectors Sj are called the anti-Stokes lines. The lines on which
the solutions are maximally dominant or recessive (in this case π/6 + π//3,
7 = 0, 1, ..., 5) are called the Stokes lines.

Consider the solutions ψ(^(ζ,x) and ψ(^\ζ,x) of (3.2) which in Sί have the
asymptotic expansions φ(1) and \p(2\ These solutions will usually be defined by
integral representations following the procedure suggested by Birkhoff [16], or as
solutions to integral equations. Then, by standard methods (steepest descent,
iterative solutions), one can find asymptotic expansions for these solutions in other
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Fig. 1. The six sectors of infinity for (3.2)

sectors and, by taking appropriate linear combinations, one can determine
canonical bases {t/^ίί,*), t/^ 2)(ζ, x)}J= 2 which have the properties

We emphasize that the sector Sj includes its initial ray on which the asymptotic
expansions are neutral (neither growing nor decaying). The fundamental matrix
Ψj(ζ,x) will not, in general, be equal to its contiguous neighbors Ψj-i and ̂  +1,
but will be related to them by the Stokes multiplier matrices A (x\

(3.8)

Each Aj(x) is triangular and has the form
/I αΛ / I 0\

(o. ι ) o r U 1}
The entries a are called the Stokes multipliers. The reason the matrices are

triangular is this: one can show by analytic continuation of the integral
representation, that a solution which is recessive in Sj admits analytic continuation
to Sj+ί and has the same asymptotic expansion (which is now dominant) there
[16]. On the other hand, the dominant solution in a sector Sj may need to pick up
a recessive component before it can represent a recessive solution in the
neighboring sector Sj+1.

This phenomenon was first discovered by Stokes in 1857 in his analysis of the
Airy function

ί rιikx + i/c3, (3.9)
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Stokes noticed that whereas the asymptotic expansion

Ai(x)~_^ ι / 4exp(-fx3 '2) (3.10)

is valid in the Poincare sense in the region |argx| <π, it is necessary that a portion

of the solution whose asymptotic behavior is —— exp(f x3/2) be added before
7T X

argx reaches π. At which value of argx the extra portion is first added was the
subject of debate, a debate only recently resolved by Olver [22], who pointed out

that uniform bounds on the error were only obtainable for |argx| < —, that is, up

to the last Stokes line before argx = π. In fact, Stokes himself knew by direct
calculation that the asymptotic representation (3.10) was a poor approximation to

the exact solution, which he computed by power series, once |argx| exceeded —.

For our purposes, it is not crucial to know on which line a given dominant
solution must pick up a multiple of the recessive solution all we use is that in each
sector, Ψj~ Ψ — (\p(l\ φ(2)) in the Poincare sense of asymptotic expansions (that is,
exponentially small terms can be omitted).

The Stokes multiplier matrices A have certain symmetry properties which
follow from the symmetry properties of (3.2). If Ψ(ζ, x) is a solution of (3.2), so is

MΨ(-ζ,x), where M = Γ Λ Thus,

ιp(

4

1\ζ,x) = Mιp(2\-ζ,x\ ψ(?\ζ,x) = Mψ<}\-ζ9x), ιp(

6

i\ζ,x) = Mψ(

3

2\-ζ,x) (3.10a)

as each of these solutions is recessive in the sector indicated by the subscript, and
recessive solutions are uniquely determined by their asymptotic expansion. The
dominant solutions satisfy the same symmetry properties:

V/4

2)(C, x) = MψW( - ζ, x), ψW(ζ, x) = MV

(

2

2)( - ζ, x),

(-ζ,x). (3.10b)

Indeed, since Mιp(^\ — ζ9 x) goes like exp(4i£3/3 + iζx) on argζ = π and is also a

dominant solution in S4, it is exactly φ(

4

2)(ζ,x). The remaining relations of (3.10b)
follow similarly. If q(x) is real, then if Ψ(ζ,x) is a solution so is M*P*(ζ*,x), which
will imply further restrictions on the Stokes multipliers [see (3.26)].

We now write down the fundamental solution matrices Ψj(ζ,x) = (ψ(l\ζ,x)9

ψf\ζ, x)) which have the asymptotic behavior

Z 2- — u7Y — xq —q+'.
2ζ

i (1U)

~(
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where θ = 4iζ3/3 + iζx. From now on, we drop the subscript on Ψί.

, y1(ζ,x)sy(ζ,χ) = (v

(1),ψ(2)), (3.12a)

a (3.12b)

(3.12c)

(3.12d)
\C I/

(3.12e)

Ψ6(ζ,x)=ys(ζ,x)(* °j, (3.12Q

(3.12g)

We remark now, and prove later, that each Ψj(ζ, x) also satisfies the x-equation
(3.3). The fundamental matrix ΨΊ(ζ,x) is defined on a sector including the positive
real axis argζ = 2π. If Ψ is meromorphic in the complex ζ-plane, ΨΊ = Ψ. However,
multivaluedness cannot be seen from the asymptotic behavior at ζ = oo, but can be
inferred from the behavior of the solution about ζ = 0. This we shall consider in a
moment. First, however, let us use the symmetry properties (3.10) to show that
d = a, e = b, f=c. For example, since ψ { 2 } = ψ{^} + a\p(^\ one has Mψ(2\—ζ)
= Mψ(ΐ\-ζ) + aMψ(

1

2\-ζ) or φ(

5

2)(0 = Ψ(42)(0 + «Φ4)(0. Comparison with (3.12e)
shows d = a. The remaining relations follow similarly.

It is straightforward to write down linearly independent solutions of (3.2) near

ζ = 0. When v is not a half integer — - — , they are of the form

(3 13a)

(3.13b)

where the normalizing factors e±u(x\ ux = q(x) have been introduced in order that
(3.13) satisfy (3.3). The coefficient vectors in (3.13) can always be chosen to

alternate between and this is automatic when v φ n, but we impose this
w \ ~ V

pattern also when v = n. The reader can readily verify that even though v be an
integer, so that the difference 2v of the indicial roots — v and + v is an integer, no
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logarithm terms are needed. When v = — - — , there will, in general, be logarithm

terms. The two linearly independent solutions will then be φ(2\ζ,x) and

φ(1)(C, x) = - ίjφ(2\ζ, x) Inζ + φ(1)'(C, x) , (3.14)

where φ ( 1 ) / has the form of ζ~v times a holomorphic function. In (3.14), j is
proportional to the coefficient of ζ 2 v ~ 1 / 2 in the series (3.13a). For example, when

2". (3.15)

Note that the logarithms will disappear if 7 = 0; when v = ̂  this implies

4* + * 2+f =0. (3.16)

(3.16) defines a one-parameter family of solutions of (3.1) for which the second
order Painleve equation reduces to a first order equation (see 3F).

The solutions φ(l} and φ(2) satisfy the symmetry condition

Mφ(1\ζe-iπ)=-evπίφ(1\ζ)-πje-vπίφ(2\ζ), (3.17a)

ίφ(2\ζ). (3.17b)

Also, from (3.14), if Φ(ζ,x) is the fundamental matrix (φ(1\φ(2}) in 0^argζ<2π,
then

Φ(ζe2πi,x) = Φ(ζ,x)J (3.18a)

is a fundamental solution matrix in the sector (2π, 4π). The matrix J is

\2πje2πιv e2πιv

where 7 is only nonzero when v is a half integer, in which case e~ 2πίv = e2πlv = — 1.
We remark now, and prove later, that J is independent of x.

Finally, we specify the relation between Ψ(ζ, x) and Φ(ζ, x) to be

ψ(ζ,x) = Φ(ζ,x)A9 (3.19a)

where

^ (3.19b)

and α^ — jSy^l since det!P = detΦ = l.
The set of data

T= {a, b, c, α, j3, 5, aδ — βy = 1, vj', ω1? ω2, ω3, /} (3.20)

is the transform data; in our case, ω3=4z'/3, ω2 = /=:0, ωj =ix.
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3C. Some Properties of the Transform Data.

With the conventions adopted here, the transform data are not uniquely specified
by (3.2), (3.3) because there are some ambiguities in the definitions (3.13), (3.14) of
Φ. First, we consider this situation when 2v is not an integer. The exponent ± u(x)
in (3.13) is determined only up to an arbitrary constant; a change in this constant
amounts to the multiplication of φ(l} by some k and of φ(2) by fc"1. Therefore, a
one-parameter family of connection matrices A is consistent with a normalization
of the type (3.13). One could remedy this by imposing

Γv
-J l 1 1

ζ = 0 ]/

but as the ambiguity will cause no problems, we shall not insist on such a
condition. When v is an integer, another potential indeterminacy appears because
any linear combination φ(1) + /cφ(2) will be of the form ζ~nx holomorphic function.

This would, however, violate the patterns imposed on the coefficients in

(3.13), and hence the symmetry (3.17). When v= — - — andjφO, there is again one

free scaling parameter, and A and the jump; are determined up to this parameter.

The only really singular situation arises when v = — - — and j = 0. Then the

symmetry condition (3.17) does not distinguish between different linear com-
binations φ(l) + kφ(2\ This case is exceptional in many respects; to illustrate its
peculiar features, we turn now to an analysis of various relations among the
transform data.

Our attitude is always that x and v are given, and that q and r in (3.2) are to be
found. If the transform data do indeed determine those two complex numbers,
then all of α, b, c, 7, α, β, y, δ should depend on only two quantities in the list. Of
course, otδ — βy = 1, and there will always be one free parameter in A and j due to
the scaling freedom just discussed. Modulo this indeterminacy, we have the
following results :

(A) As long as v Φ — - — or v= — - — and jΦO, any two of the three Stokes

multipliers determine all transform data.

(B) If v = — - — and j = 0, — or — determines all remaining transform data (the

second determining constant in this case being j). In particular,

Remark. The inverse problem for the exceptional case (B) can be solved - all
systems (3.2) with such transform data can be constructed explicitly.

We now prove assertions (A), (B). To this end, we derive two sets of relations
among the transform data the relations are consistent but carry slightly different
information.
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First, we note that from (3.19a) and (3.18a)

and thus

Now choose ζeSί (whence ζe2πίeSΊ) and let |ζ|->oo both ΨΊ(ζe2πί) and Ψ(ζ) then
tend to the same asymptotic matrices. Hence,

/I 0 \ / 1 b\(l 0 \ / 1 α \ / l OW1

1 0\β V \° V
If we write

/I OW1

\α l) \0

\c i) \o i; \b

b \ / ι owo r
i j l c iMi o,

then

AG2 = J~1A. (3.22)

(3.22) does not use the symmetry (3.17) and so misses some information. Thus,

we derive a second set of relations. In (3.19a), set ζ = ζe~iπ, and apply M =

Use Mψ(l\ζe-iπ) = ψ(2\l Mιp(2\ζe-
ίπ) = ιp(^(ζ) on ψ and (3.17) on Φ in the

resulting expression. Finally, re-express ψ(^\ ψ(£\ φ(1} and φ(2} in terms of ψ(l\ ψ(2}

by (3.12) and (3.19a), and equate coefficients of φ(1), ιp(2\ The result is:

b = - aδevπί - βye ~ vπί + πjaβ e

l+ab = 2αy cos vπ — π/α2 e ~ vπί

(3.23)

From (3.23), we deduce immediately that,

= — 2isinvπ, (3.24)

so that any two Stokes multipliers (and v) determine the third [(3.22) almost yields
(3.24) the sign of the right-hand side is not determined]. (3.23) is not convenient if
one wants, as we do, to express everything in terms of these two Stokes multipliers.
(3.22), on the other hand, is linear in the entries of A. A tedious but straightforward
computation shows the following.

When 2v is not an integer, or when v = — - — andjΦO, (3.22) has rank 2, so that

α, j8, y, δj are determined up to two arbitrary constants one is fixed by aδ — βy = 1,
the other reflects the scaling freedom in Φ.

When v = n, (3.22) reduces to 1 = 1, while (3.23) yields expressions for α, /?, 7, δ in
terms of two Stokes multipliers (again, up to the one free constant).
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When v= —-— andj^O, (3.22) reduces to 1 = 1 again. (3.23) can be solved for

α, b, c to give

a = b = c = (-l)n+1i. (3.25)

This has used α<5 — βy = 1, and there are no further constraints contained in (3.23).
Thus, A depends on three free parameters. Two are connected with the inde-
terminacy of the definition of Φ, as explained above. The third parameter, which

can be taken to be — or — (α or β may be zero), labels different systems (3.2)

corresponding to the one parameter family of solutions of (3.16) (this will be shown
later in this section the systems will be constructed explicitly).

Remark /. (3.22) provides a quick proof of the absence of logarithms when v = n.
Indeed, (3.22) says traceG2 = trace J~1 = 2 computing trace G2, one finds that this
implies a + b + c + abc = 0. The characteristic polynomial of G then turns out to be
λ2 — 1 = 0, so its eigenvalues are ± 1. G is therefore diagonalizable, and hence so is
G2. But J = AG2A~1 has Jordan block form unless 7 = 0.

Remark 2. When can all Stokes multipliers be zero? Since then G2 = /, (3.22) shows
that J = I9 whence v = n. This is another case of which all systems (3.2) can be
constructed explicitly.

Remark 3. If, contrary to our previous position, v is considered unknown, another
parameter from the transform data must, of course, take it place. Suppose, for
example, that α, b, c are given. Then

a + b + c + abc= — 2isinvπ (3.24)

determines vmod2, and it is clear that (3.22) and (3.23) are not affected by a
replacement v—»v + 2m. If α, 6,c are replaced by their negatives, (3.22) and (3.23)
remain consistent provided v-»v + 2m+l. In other words, sets of transform data
which differ only by an integer translation in v and sign of α, b, c are possible this
circumstance is related to Airault's [3] Backlund transformation, which produces
a solution of (3.1) for v± 1 from a solution of (3.1) for v.

Remark 4. If x,q,r in (3.2) are real, the symmetry F(ζ,x)—>MF*(ζ*,x) shows

fl=-c*. (3.26)

3D. The x-Dependence of T

It has been mentioned repeatedly that the transform data are independent of x,
provided that the Painleve equation (3.1) is satisfied. We verify this result, and also
prove a strong converse: given matrix functions Ψj(x,ζ\ Φ(x,0 with global
connection properties characterized by transform data independent of x, there are
unique systems (3.2), (3.3) satisfied by ΨJ9 Φ. As a corollary, one can see that there is
at most one set of functions Ψjy Φ possessing given transform data.

Because Eq. (3.2) is determined solely by the global connection properties of its
solution, while (3.3) follows from the x-independence of the connection parame-
ters, the whole theory can be rephrased in a much more geometrical manner
without reference to differential equations this is done in Sect. 6.
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In the remainder of this section, we deal with functions satisfying the following
conditions: , . Λ

(a) matrix functions Ψj holomorphic in S.= <ζ\ |CI>0, (j— 1)— ^argζ< —>,

such that ^

C

as |(|->oo in SJ9 and

ψj+ι = ψjAj> l ί l>someρ.

(b) A matrix function Φ of the form

/Γv

0

with Φ(ζ) holomorphic, such that for

[For sake of simplicity, we omit the modifications necessary when Φ(() contains
logarithms.]

The formal series Ψ(ζ) is assumed to have the symmetry

(c) MΨ(-ζ)M=Ψ(ζ), M=(°

The functions studied earlier have all these properties.
We now prove the following facts:

Proposition 1. Let ψ., Φ satisfy (3.2), with ΨJ9 Φ normalized as in (3.6) and (3.13). //
the Painleve equation (3.1) holds (so that (3.2), (3.3) are compatible), then these Ψ , Φ
are also solutions of the x-equation (3.3).

Proposition 2. // ΨJ9 Φ satisfy both (3.2) and (3.3), then the Stokes multipliers AJ9 the
connection matrix A, and the jump matrix J are independent of x.

Remark. Propositions 1 and 2 show that the transform data introduced above are
all independent of x.

Proposition 3. Let Ψ , Φ have properties (a), (b), (c), and suppose that A and A are
independent of x. Then Ψp Φ satisfy differential equations of the form (3.2), (3.3).

Proposition 4. There can be no more than one set of functions ΨJ9 Φ, satisfying
properties (a\ (b), (c) above.

Proof of Proposition!. Write Eq. (3.2) as Ψζ = PΨ and (3.3) as ΨX = QΨ.
Differentiate the first of these equations with respect to x and solve the resulting
inhomogeneous equations by variation of parameters to obtain

ίψχ)l.Q+ψ\ψ-^PχΨdζ. (3.27)
ζo
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But the compatibility condition of (3.2) and (3.3) is Px = Qζ + [.Q,P'] and, since

])= ^(V~lQΨ), we have from (3.27) that
dζ

Now let ζ0 tend to infinity on the initial ray of that sector in which Ψ ~ Ψ as given

in (3.6). One finds ψχ-Qψ = O ί — J, which tends to zero. Hence, ΨX = QΨ.A similar
\ ^ o /

proof holds for Φ.

Proof of Proposition 2. We prove that Aj is independent of x. A.= ΨJ1 Ψj+1, and

proof that A and J are independent of x is similar.

Remark. From the form of J when, for example, v = -|, it is by no means obvious
/ χ\

that jx = 0. However, note that the x derivative of j = 2 \qx 4- q2 H— \e~ 2u is zero by

virtue of (3.1).

Proof of Proposition 3. First we note that (c) implies the following symmetry for
the coefficient C1 in the expansion Ψ:

-MC1M = C 1 .

It follows that C 1 > 1 2 = — C1 > 2 1 and C1 > 1 1 = — C 1 2 2 ; we set C1 1 2= g, and

C1}11 =p. Now differentiate .̂+ x = .̂̂ 4^ with respect to x, and multiply bv ^-+1 :

ΨJ+

^̂ •~ x is therefore well-defined and holomorphic in a deleted neighborhood of oo,
and its asymptotic expansion is ΨXΨ~1, uniformly for |ζ|>some ρ.

The asymptotic expansion is therefore convergent we set

Q(ζ) being a Laurent series in ζ~ *, with a simple pole at ζ= oo. Near ζ = 0, we find
in a similar way that

But ΦXΦ~1 is holomorphic at ζ = 0, so that Q(ζ) contains no negative powers of ζ.
The explicit form of Q(ζ) is now easy to obtain by inserting the expansion Ψ into
(3.28). The result is

or
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Hence, ΨJ9 Φ satisfy an equation of the form (3.3) in x. A similar argument shows
that Ψj ΨT1 is well-defined and holomorphic away from 0, oo, so that

P(ζ) has a double pole at ζ= oo. Near C = 0, we find

1

Hence, P(ζ) contains at most the negative power ζ~1. We wish to show that in fact
ζ"1 enters P(ζ) in the form

v / O 1\

oj

'-1 °k-vm_/
0 V

must be zero; otherwise there would be a term ζ±v in the expansion Ψ [16]. In
terms of the entries Φ^O), this means

Φ11(0)Φ22(0) + Φ12(0)Φ21(0) = 0.

But also detΦ(0)=l, and a short computation shows that ε12 = ε21

1. Property (c)
implies the symmetry

Put Φ(0)( n 1 J Φ 1(0) = (είj). First, we note that the diagonal entries εn, ε22

and this forces ε12 = ε21, so ε12 — ̂ 21 = ±1, as was to be shown.
It now remains to compute Ψ.Ψ~ί=P(ζ) through the ζ° term. There are

certain non-obvious cancellations, e.g. of ζ~2 terms, which are automatic by the

analysis at ζ = 0. By (c), C2 has the form . One finds that
\z y

1

1

or

v O 1

lϊr = 4z—2ipq, this is precisely the form required by (3.2), up to the ambiquity in
the sign of v. The hypotheses do not allow one to distinguish between

+ - , with Φ as defined in (3.13),

and

with Φ = (ώ(2\ — ώ(1)).



Monodromy- and Spectrum-Preserving Deformations

Had we assumed, in addition, that Φ(0) is proportional to ί , the choice
v / 0 1\ \~ '

+ - would have been the only acceptable one.

Remark. In the first case, q will satisfy Eq. (3.1). In the second case, q solves
v, but —q again solves (3.1).

Proof of Proposition 4. Suppose that Ψ and Ψ'. (j — 1, . . ., 7) have property (a), with
the same Stokes multipliers AJ9 and suppose that Ψ1 = ΦA, Ψ[ = ΦΆ with Φ, Φ'
satisfying (b). Then

so S^ΨjΨj^1 is well-defined and holomorphic about ζ= oo, and from the

asymptotic expansion one sees that 5 is a Laurent series in ζ, S(ζ)=I + 0 -. Near

C=o,

Ψ[ψ-l^Φ'φ-l^Φ'φ-1 -const + 0(0,

a Taylor series with no negative powers. Hence S(ζ) = /, as was to be shown.

3E. The Inverse Transform

We now turn to the existence problem are there solutions Ψp Φ giving rise to a
prescribed set of transform data? Here we derive linear singular integral equations

Fig. 2. The contours in the ζ-plane for the inverse problem for Painleve II
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from which the solutions ψ. and Φ may be constructed. The parameters in these
equations are x and the Stokes multipliers. For simplicity of presentation, we take
v = n, a positive integer. The results for v φ n are given in Appendix IV.
Consider

(1) + Θ

dξ, Θ = 4ιζiβ + i ζ x ; (3.31)
C! ς-c

for convenience, we take ( to lie in the interior of Sr Our goal is to write a system
of linear singular equations for ψ(1} and ψ(2). The strategy will be to relate, by
Cauchy's theorem, the integral along C1 to one along C2 and to continue this
process around the singular point ( — oo.

We begin by noticing that

j dξ = 2πiψ(l\ζ)eθ—ό~(rj + ί ~^—γ^-eθdξjτ J ——y~dξ, (3.32a)
d £-£ 3 W c2 c-ζ V l ς-C

where we have used (3.12b). Now t/;(

2

2) e°-> oo as (-» oo in S2, and therefore it is not

possible to relate the term — a J 2 <j^ by contour integration to an integral
c2 ζ~ζ

along C3. This integral is not transformed any further and appears in this form in
the final equation. We can, however, continue with

Ψ(2]eθ

 d,_ π i / l \ y^V φ^^
i ξ-C ~~ 3 \OJ + J3 ξ-ζ + , 2 ξ - ζ

Continuing in this manner around the (-plane we find,

r Ψ(

3

υ^ J K πi /1\ Γ φ(

4

1}-cφ(

4

2)

 fl J r f φ^V J C
ί ^T—rdξ=--τ\Γ\+ J % ;4-ge^+ j -Hr-p-^, 3.32ccJ3 ξ-C 3 \o; C

J

4 ξ-( y

J

3 ς-(

^^ m / l \ ^ ^c4 ξ-C 3 \0) 15 ξ-ζ I ξ-ζ

P \pr β Til 11 \ p tp^ — bψβ a c Ψs ^
——F "ζ= — -^r L + z—z— e dξ + I ——— dξ, (3.32e)cJ

5 ξ-ζ 3 \o; 16 ξ-ζ ;5 ξ-ζ
and

f^dί=-|Q+J^+J^dί. (3.32f)c6 ζ-ς ^ w/ ci C-ς T6 ς-ς

Here, we have used ιp^ = ψ(] \ which is a consequence of the assumption v = n.
Adding the Eqs. (3.32a) through (3.32ί), we find

,3.33,
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where we have substituted for ιpj.2), 7 = 2,4, 6 from (3.12) in terms of φ(1), ψ(2} and
used identity (3.24), = Q. The contour C4 is one which runs inward
along C4, then clockwise along y4 and y3 and goes out along C2. The contours C6

and C46 (which is — C64) are defined in a similar way (see Fig. 3).

Fig. 3. The contours C42 and C4

Remark. Note that the same contours are used in the integral representations of
the Airy functions. In fact, (3.33) contains the Airy function representations as a
limiting case [see example (i) which follows in 3F].

By considering

ί (3.34)
Ci

we find

•-ίo~; Jξ = o ξ-ζ 2τπc

J

53 ξ-ί

j f __:_ Af
' Λ . 1 <•> <s aS

/7T7 Λ /

Csi

(3.35)

Equations (3.33) and (3.35) are linear integral equations whose solution determines
φ(1) and φ(2), and hence all the coefficients in the Eq. (3.2). In particular, from the
asymptotic expansions (3.6), we known that

q=

ζ-^oo

(3.36a)

(3.36b)

where the subscripts in (3.36) refer to the component, and not to the sector.
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The integral Eqs. (3.33) and (3.35) have been derived on the assumption that
functions ψ. with the prescribed Stokes multipliers exist. Conversely, one wants to
answer the following questions:

(1) For which x, α, i>, n does a solution of (3.33), (3.35) exist?
(2) Does it exhibit the prescribed Stokes jumps?
(3) What properties of q(x) can one deduce from the solution Ψ so

constructed?
(4) What is the dependence of q(x) on the parameter α,fc?
Some preliminary observations follow from the known properties of the

Painleve transcendent, q(x). It is never an entire function of x, unless it is
identically zero it is, however, the ratio of two entire functions. This suggests that
for given n, a, b, the solution of (3.33) and (3.35) will exist for all but a countable set
of x. In particular, the inverse problem (Riemann-Hilbert problem) is not always
solvable subject to the symmetry imposed on (3.2).

It is not too hard to see that any solution of the integral equations will have the
required jumps this follows from the behavior of the Cauchy integrals when ζ
crosses an integration contour. The first problem, however, is existence of a
solution. We have not found a proof; indeed, we have not really looked for one.
The reason is this: other irregular-singular monodromy problems will lead to
different, and more complicated sets of singular integral equations - see Sect. 4, for
example. One needs a quite general theorem, if case-by-case existence proofs are to
be avoided. It is clear that existence will depend in a subtle way on the exponent
θ(ζ), particularly when θ contains several independently varying parameters (cf.
Appendix II). Local existence in x is probably easier to get, but not of much
interest for applications to Painleve equations. Thus, we restrict ourselves in this
paper to the examination of various limiting cases and special examples. Other
properties of Eqs. (3.33), (3.35) are under investigation.

3F. Special Solutions

(i) The linear limit

Take v = 0 and a,b,c, small. The usual procedure in solving (3.33) and (3.35) is to
form the Neumann series. Here we keep only the terms linear in the parameters α,
b, and c. We find

ξ-ζ 2mc\6 ξ-ζ

Therefore from (3.36)

b_ J eβiί3/3 + 2iί*d|

,{.

(3.37)
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when Ai(x) and Bi(x) are the Airy functions. Note that when q(x) is real, c— — a*,
b = a* — a to leading order and

fl-hα* ., , i(a — 0*) ., ,
4 = -γ~ Aι(x) + 2 Bι(x)

- Reα Ai(x) - Imα Bi(x) . (3.38)

(ii) Solutions which decay as x-» -f oo. Throughout this example, v is taken to be
zero. In this case, a one-parameter family of solutions of (3.1) has been studied by
use of the Marchenko equation of the inverse scattering transform ([2, 10-12]),
Eq. (2.14). Such techniques apply when g(x)-»0 sufficiently rapidly as x-*4-oo;
(3.1) then reduces to qxx = xq for large x. It can be proved that q(x) has the expected
asymptotic behavior,

q(x)~ρM(x) (3.39)

for some constant ρ.
The rapid decay (3.39) ensures that the constructions of scattering theory can

be used on the x-equation (3.3) at x = + oo. In particular, the eigenfunction v(x,ζ)
of (3.3) with asymptotic behavior

is defined for large enough x, and it admits the triangular representation

/0\~
(3.40)

By repeated integration by parts in (3.40), one may derive the asymptotic
expansion

/n\ r
(3.41)

valid in the upper half (-plane. Now, v(x, ζ)e~4/3ίζ3 is precisely the solution ιp(2} of
(3.2) on argζ = 0, and since the expansion (3.41) is valid in S19 S2, S3, the Stokes
multiplier b must vanish. In this case, (3.33) reduces to

1

+ T ί τ - ^ . (3.42)
2πϊ_J

0 0 ^-C

Since φ(1) + αφ(2) = φ(

4

1) = Mφ(2)(—ς), we may change ζ-^ — ζ in (3.42); then

.
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Substitution of (3.40) into (3.43), followed by a Fourier transform [23], will recover
the Marchenko equation (2.14). The constant ρ in the asymptotic form (3.39) of
q(x) coincides with the nonzero Stokes multiplier a.

In this example, therefore, one can see explicitly how the Stokes multipliers a
and b characterize the Painleve transcendent q(x) :

6 = 0 implies g(x)— »0 as x— > + oo,

α describes the asymptotic behavior, g(x)~αAi(x).
It is shown in [II] that there is exactly one q(x) satisfying these conditions. A more
detailed analysis [11] of the Marchenko equation (2.14) reveals that q(x) has no
pole on the real axis when — 1 <a< 1, whereas it has at least one real pole when
\a\ > 1. A proof based on (3.43) would be quite analogous to the argument in [11] :
for |α <1, the inhomogeneous Eq. (3.43) can be solved for any real x (remember
that x enters in θ), while any a with |α| > 1 is eigenvalue of (3.43) for some real x. It
may be possible, however, to go beyond the results of [11, 12]. Since (3.43) is local
in x, one can study the limits x-> + oo separately. This is relevant to the solution of
the connection problem for the second Painleve transcendent [10, 11] : what is the
behavior at x= — GO of the solution which goes as (3.39) at + oo? The Marchenko
equation (2.14), by the time x goes to — oo, contains information about q(x) for all
real x, and it is apparently difficult to extract the asymptotics at — oo.

Connection formulas between singular points of Painleve transcendents are
important in several applications in the Ising model, for example, the behavior
near x — 0 of the third transcendent is of physical interest [4, 13]. We hope to
return to these questions in a later paper.

(in) The rational solutions : the "solitons" of the Painleve equations. In the inverse
scattering transform, the solitons are associated with the bound states of the x-
equations (3.3) which are located at the poles of the reflection coefficient in the
upper half C-plane. The analogue to the multisoliton solution is a class of rational
solutions which are associated with the poles of the fundamental solution matrix
Ψ(ζ, x) at ζ = 0. When v = n, we find these solutions by setting α = b = c = 0. Then
from (3.35),

/ (2)e~θ

-. (3.44)

We mention that Eq. (3.44) will provide the rational solutions for the full class of
equations of the Painleve II family which is defined and discussed in Appendix II.

Near C = 0, the solution ιp(2} will be a linear combination of (/>(1) and (/>(2) as
given in (3.13) and thus will have the form

Now since a = b = c = Q, ιp(2}e Θ is meromorphic and tends to as ζ—>oo and
therefore must have the form \ '
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which follows from (3.44). From (3.6),

(3.46)

where the subscripts 1 and 2 refer to the components of un_1. Set

e° = £ T/', θ = Σ iω2;+ ιC2j'+ V2; + 1 + iζx .
j = 0 j=0

Expand φ(2) in a series in ζ,

- ...

We compute the coefficient of ζk, and demand that it be orthogonal to

k= — n, ...,n— I, as required by (3.45). With the notation ξj = u{+uj

2, η.--
the resulting 2n equations can be written (if we use T0 = 1):

(3.47)

(3.48) decomposes into two separate systems for ξ, η:

. 0 \ / 0 '

T TJ 2«-2 ••' J ?2

depending on whether n is odd or even

Co

ζn-l

=

0 \

T1 1

T
\ ^3 /

or
I °

— 1

-T2 ,
\ ' /

ln-2l

(πodd), (fi even).

\Tn-J

(3.48)

(3.49a)

(3.49b)

It is useful to observe that the matrices in (3.49) are Wronskians. Indeed,

-r~eθ = iζeθ, so that Tjx = iTj_l. Hence, the derivative of each column is i times the
tt.X

next column.
We now solve (3.49) for £ M _ l 5 nn-± by Cramer's rule. The denominator

determinants are denoted by A +, zl _. By the Wronskian property, — - A ± is a single
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determinant in which the last column is replaced by its derivative, and it is easy to
see that this derivative is in all cases proportional to the right-hand side of (3.49).
Specifically,

From (3.46) we find

These are the solutions determined by Airault [3] through a series of recursion
relations. The first two are, for the case θ= f iζ3 -i-iζx:

n=l. A+ = l, A_=ix, q=—.
x

4 ix3 1 3x2
~ A . . Ί . ίΛ 1 JA

n = 2. Δ + = zx, zi _ = — i - , q = | - - r .
3 3 x 4 + x3

Observe that all these solutions satisfy a Riccati equation:

qχ + q2= — 2(\ogA+)xx. (3.52)

An interesting class of solutions of the higher-order equations of the Painleve II
family with Θ given by (3.47) is obtained when — 2(ln^+)xx in (3.57) is

Φ-i)
x2 '

These solutions are related, by a Miura transformation, to certain rational
solutions of the KdV hierarchy [25]. To get these solutions, let
θ = i(ω2k+ lζ

lk+1 + ζx) and pick n^k+l. In that case, all entries of A + arise from
powers of iζx in the expansion (3.47) of eθ, and A + is the Wronskian determinant of

(ix)2 (ix)4 (ix)2""2

1,——,-——,...,— —. This is easily seen to be proportional to x x2 x3 ...x""1

n('n-l)

= * 2 . Hence, -2(logzJ+)XJC-φ-l)/x2.

For each n, only one solution of

will also solve a Painleve equation, and in fact it will solve all the equations of the
Painleve II family (Appendix II) in which the first nonzero power of ζ (besides iζx)
is at least ζ2""1.

(iυ) Solutions with v= —-—, j = 0. It was noted in 3C that this is an exceptional

case. We begin with a detailed description of the situation for v = |.
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According to (3.15) and (3.16), j = 0 implies

97

Let q(x)= — Inχ; then

whose general solution is

The solutions of (3.2), (3.3) can be verified to be

and G((, x), which contains Bi instead of Ai here

Using the asymptotic properties of Airy functions, one may verify that

1 &

-i i
1 i
-L I

Ψ2=(-2iF9F-iG)=Ψί

Ψ3=(-2ίF,-F-iG)=Ψ2 0 I '

= ( -iF-G, ~F-iG)=Ψ3

Ψ5=(-iF-G,-2F)=Ψ4

-i I / '

1 -Γ

0 I / '

0

1 -i

from which it is evident that a = b = c= —ί. The solution matrix Φ(£,x)
ζ,x),φ(2)(ζ,x)) defined by its behavior at the origin ζ^O is

anyψ
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where β0 = iα0/24/3π. The indeterminacy described in 3C is seen in the arbitrariness
of K1 9 K2.

Finally, note that since Ai(z) and Bi(z) are single valued functions of ζ, the only
contribution to the jump matrix J is from the square root C~ 1 / 2 . Hence, J=—L

We next describe the general case v = —-— (n ̂  0).

Let A(x, ζ) be a fixed solution of Axx = (— \ x — ζ2)A. The solution φ(2} of (3.2) is
sought in the form

/ Ί / 2 J Aίv r\(r . i i . ^ « + ι \ , A (^ nr*ι . . «+ι (3.53)

where C0 = l , d1 = ι ' ( +1 1, and the coefficients follow the alternating
~ ~

2n+1

pattern. By definition, the leading power in φ(2} is C 2 Qne must therefore
\ - V _ 2 n + l 2n- 1

equate to zero the coefficients of C 2 , 5 C 2 in (3.53); this gives 2n+l
equations for C15 ...,Cn + 1, d2, ...,ίin+1, and the coefficients of these equations will

2n+1

involve derivatives —-τA(x,ζ) . The coefficient of ζ 2 jn (353) js e

u(χ) rsee

(3.13)], and its log derivative is the required q(x).
A concise expression is afforded by

where y(x) = A(x, 0), and W is the Wronskian determinant. (These solutions were
discovered by Airault [3].)

4. Painleve III; Solution of an Initial Value Problem

4A. Outline

In Appendix I, we show that the equation

(xw x) x=-4sinhH, (4.1)

a special case of the Painleve equation of the third kind, is the integrability
condition for

i 1 \ (-XU

X

 l U \ ίλ O \•shMJUi + l +-2smhu\v2, (4.2a)

-xux i \ ί i \ ,„„,,
-—- -ysmhw\v 1 + (ιx- -ycoshw v2, (4.2b)

' \ 2C C / \ C /
and

q=-ux/2, (4.3a)

(4.3b)
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In Appendix III, we show how these equations relate to the work of Sato et al. [7].
Following the steps described in Sect. 3, we give the general solution of (4.1). The
principal difference between (3.2) and (4.2) is that the former has one regular and
one irregular singular point, while the latter has two irregular singular points, one
at ζ = oo and the other at ζ = 0.

4B. Step 1: The Direct Transform and Properties of the Transform Data

It is straightforward to write down the asymptotic forms φ(1), φ(2) of two linearly
independent solutions of (4.2) as C->oo:

-f... (4.4a)

ί/ζ

I/ ζ\ixq2/2-i(ί-coshu)
(4.4b)

Note that, from (4.1), xq2/2 + coshu— I = ΐ j g 2 + const. We have found it con-

venient for reasons of symmetry to include the i/ζ term in the exponent of (4.4). At
ζ = 0, two linearly independent solutions φ(1\ φ(2) have the asymptotic behavior:

\_x,- iζ*- i/ζ

,
cosh-

- sinh -
(4.5a)

-sinh-^

,
cosh-

(4.5b)

In particular, we note that, if we write Ψ = (ψ(1\ψ(2)) and Φ = (φ(l\φ(2}\ the
following relations hold:

and

where

M= and

,U . U
cosh- — sinh-

• ι " ^u

-sinh- cosh-
-1 0

(4.6)

(4.7)

(4.8)
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Indeed, from Eqs. (4.2), (4.3) one can show that if Ψ(ζ,x) = (φ(i\ζ,x), ψ(2\ζ,x)) is a
solution, then so is

MΨ(-C,x) and Nψ--,x. (4.9)

From the asymptotic expressions (4.4), (4.5), we observe that the lines on which
the asymptotic solutions change from recessive to dominant and vice versa, the
anti-Stokes lines, are arg£ = rcπ, n= — 2, — 1,0,1,2,.... Accordingly, we designate
the sectors — 2π^arg£<— π, — π^argζ<0, 0^arg(<π, π^argζ<2π, and
2π^arg£<3π as S_2, S^ί9 S19 S2, S3, respectively, and define Ψj(ζ,x) and Φ.(ζ,x\
j= — 2, — 1,1,2,3 to be the solutions in these sectors which have the asymptotic
behaviors (4.4) and (4.5) on the initial ray of each sector. For convenience, we omit
the subscript 1 when referring to the first sector. /,

We will now show that all the Stokes multiplier matrices for the Ψj are

or \ and for the Φ,, . . 1 or _ 1. First, if x <0, t/)(1) and φ(l} are recessive
\α I/ J \0 I/ \α I/

in S_2, SΊ, 53, and dominant in S'_1, 52, ιp(2\ φ(2) are recessive in S_ 1 5 52 and
dominant in S_2, S1? 53. Therefore,

~ 1 ~ ~ 2 \ 0 1

V x V " A ' (4.10)
α\ / I 0\

i;

From the symmetry (4.9), we have that

MΨ(ζe~iπ,x)M~1 — Ψ (ζ,x), (4.11a)

MlP2(Ce-/π, x)M~1 - y3(C, x). (4.1 Ib)

To see this, observe that the left-hand sides of (4.11) are solutions of (4.2) with the
required asymptotic properties on the initial rays of the respective sectors S2 ana
S3. Substitute in (4.lib) from (4.10) and find

"(ί
whence α2 = α. By a similar argument, α_2 — α_v—α. We can also prove that ά is
the only Stokes multiplier connecting the matrices Φ.. If x>0, the Stokes
multiplier matrices are the transposes of those for the case x<0:

ij ' Ψ3 = ψ2(β i
The matrices Ψ and Φ will, in general, not be single-valued. We next calculate

the monodromy matrices Jτ and J defined by the relations

(4.13)
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in terms of the Stokes multipliers a and a. The subscripts —, + refer to the cases
x<0 and x>0, respectively. From (4.10) (the case x<0), we have

I -a

-a l+a:

Now let ζeS1 tend to infinity; then

1 -a

-a 1+α" (415)

since both Ψ 3 ( ζ e 2 π ί ) and Ψ(ζ) tend to Ψ(ζ). Similarly, if x>0,

(4.16)
. + a2 -a

•4

Also,

1 -a

-a 1 + r2 ' '

Finally, we specify the connection matrix A between Ψ and Φ,

(4.18)
\y

From the normalizations of Ψ and Φ, aδ — βy = l. Let us now derive relations
between J, J_, A, for the case x<0. Let ζ-*ζe2πi in (4.18), and use (4.13) to find

AJ_=JA. , (4.19)

Since J_ and J are similar, their traces are equal; from (4.15) and (4.17), ά = sa,
s = +1. Comparison of the other entries in (4.19) gives

β = sy, a = s(δ + ay). (4.20)

Among the transform data, therefore, there are only two independent constants
"V

which we take to be a and -. The reason for the sign parameter s is discussed later.

Similarly, if x > 0, we find

AJ+=JA, (4.21)

from which we have

a = sa, % = sδ, β = s(y + aδ). (4.22)

4C. Step 2 : The x-Dependence of the Transform Data

Arguments which exactly parallel those given in Sect. 3 show that:
(1) If (4.2) and (4.3) and therefore (4.1) hold, the transform data, which consist

of the Stokes multiplier matrix , the monodromy matrices J +, J _, J and the

connection matrix A, are independent of x.
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(2) Conversely, if the transform data are independent of x, and if we specify
functions ψ., Φ to be (a) connected as in (4.10), (4.13), and (4.18), with (b) the
symmetry properties stemming from (4.9), and (c) with the asymptotic expansions
(4.4) and (4.5), then the functions Ψ., Φj satisfy differential equations in ζ and x
which have precisely the form (4.2), (4.3). The coefficients in the equations are
directly related to the coefficients in the specified asymptotic expansions.

4D. Step 3: The Inverse Transform

Here we show how to derive, at any fixed position x, a singular integral equation
for the matrix function Ψ(ζ,x) from which one can, in principle, construct the
function Ψ(ζ,x) and the Eq. (4.2) which it satisfies. Since the coefficients in this
equation are functions of the solution u(x) of (4.1), we have therefore found
w(x)(mod2πi) for any given x. We first look at the case x<0. Consider

with θ = iξx+τ.
ξ

(4.23)

The reader should refer to Fig. 4 for the definition of the contours. The contour Γ
has a large radius, the contour 7 a small one. Let ζeS1? outside the circle
designated by λ.

Fig. 4. The contours in the C-plane for the inverse problem for Painleve III, x<0
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Using Cauchy's theorem, we obtain

(1}eθ f \ \ w(1}eθ w(l]eθ

=2πVV+ l^rdξ+ l^dξ. (4.24)
c2 ζ — 4 A! ς — 4

But φ(1) = v4

1Π(1)^ / - j \ 1n(l)*0 in^V0

- (4 25)
C2 ζ~ <r

We add the two equations to obtain

a w(2}eθ 1

upon making use of the relations ψ(^ = ψ(ί) and [from (4.13)] ψ(ί\ζe2πi) = ψ(ί\ζ)
— αφ(2)(0. Λ, is the union of the two contours λ1 and λ2. We will see later that, in the
linear limit, the second term on the RHS of (4.26) gives rise to the solution

K0(4 J/^oc) of the linearized (4.1), and the third term, which will be associated
with the off-diagonal terms in the connection matrix A, gives rise to the solution

fo(4 l/-^) of the linearized (4.1).
Using (4.18), we find

(ί)θ (l}θ (2}eθ w(l]eθ

Γ _L _ _/7^\ --dξ,
~

which, because φ(i)eθ is bounded on the contours y1 and y2 whose radius is
arbitrarily small, is equal to

(ί)° (l)θ (2)θ W θ

But φ(2] = φ(i\ and continuing the second integral into the lower half plane and

using the relations φ(ί\ζe2πί) = φ(i\ζ)-saφ(2}(ζ} and φ(1)- -U(1)= ^Ψ(2\ we find

λ £ — C ^ D! ξ — C λ ~

Finally using φ(2}= — βιp(l] + aψ(2} and replacing α and β from (4.20), we find

a y r V ^ (4 27)

- -

which together with Mψ(2\ζeίπ} = ιp(1\ζ) defines the solution matrix Ψ(ζ,x).
(4.27) is a singular integral equation in which the parameter x<0 only appears

in the exponent θ(ξ) = iξx+ -. The initial conditions w(x0), ux(x0) are represented

yby the parameters a and -. Notice that the sign parameter s has disappeared
ό
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altogether and plays no role in the determination of the solution u(x) of (4.1). Its
appearance in the transform data is a consequence of the symmetry

1 0\ /-I 0\
\v or \v ,

present in (4.2), (4.3). This is reflected in (4.27): note that ifψ(1nζ,a,-\ \p(2)\ζ,a,-
\ o \ o

is a solution, then so is \ψ (1)κ, — α, — - and φ(2) ζ, — α, — - .
\° -i/ \ <V \ o v \ <V

Observe that this transformation also satisfies the symmetry condition, since

° Lf-1

-ij I o
yWe now apply the linear limit to (4.27) by taking a ana ̂  to be small, neglecting
o

all quadratic and cubic terms in the parameters and approximating ψ/2) by I \eθ

to leading order. Then, using

q(x)= ΞL^x. = - lim 2iζιp(

>

ί

2

}e~θ= lim 2iζιp(2)eθ (4.28)

(the subscripts refer to the components), we find that

π o πό λ

Integrating with respect to x, setting ξ = — - eφ in the first integral, taking λ to

be the circle |^|= — - in the second and setting ξ= —~=,eiφ, we find

id °° ^ π

u(x)= — jcos(4]/^sinhφ)rf0+^- J e41^*^ dφ
π o πd o

T X , 2 ;̂

= - K0(4 |/3^) + ̂  J0(4 /Γ^) . (4.29)

7We observe that if u is real, α is pure imaginary and - is real. This may be proved as
o

follows. If u is real, Mιp*(ζ*,x) is a solution if φ(C,x) is. From the asymptotic
behaviors we have that MΨ*(ζ*)= Ψ^^ζ)M and MΨ*(ζ*)=Ψ(ζ)M. But

Ψ_,=Ψ\ and ¥% = ΪM and from these relations we find α* = — α.
\-a i; \o i;

yThe reality of - follows from similar arguments.
ό

The solution of (4.1) studied by Sato et al. corresponds to the case- =0; that is,
d

the inside-outside connection matrix A is the identity (s > 0). From the remarks in
example 2 of Sect. 3F, the reader may convince himself that this is also the case
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which can be treated by inverse scattering theory. In other words, the function
ιp(1V/ζ is analytic in Imζ>0and in particular bounded as £->0 only if φ(1) contains
no component of φ(2\ which from (4.18) and (4.20) means that β = y = 0.

When x > 0, the derivation of the singular integral equation is simpler and can
be accomplished without the contour λ. Let ζeS2.

1/) β
Use Cauchy's theorem to express j —dξ in terms of an integral along C2.

Because this will involve an integral along yί on which contour φ(2}eθ is

Fig. 5. The contours in the ς-plane for the inverse problem for Painleve III,

exponentially large, we must subtract an appropriate amount of ψ(2) from w(1) in
order that the 0(2) component be eliminated:

w(1)eθ

ft^ί=f
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But ιp(2} = ψ(\ \p(l} = \ p ( } — a\p(\ Thus we have

w(1}e
Now ψ(2}eθ, φ(1}eθ, φ(2}eθ are bounded on Γ2 and y2 respectively, and thus j —

~

can be continued to arg£ = 2π. On this line, φ(

2

1)(ζe2πί) = φ(1)(ζe
= (1 + α2)ψ(1)(0 - αφ(2)(0 + a\p(2\ζ) - a2ιp(1)(ζ) = ιp(1)(ζ). Thus the integrals

w(l}eθ w(l]eθ

ί 1 — Γ^£ on argξ = 0 and J 2 d£ on arg£ = 2π cancel. We find
~ ~

Taking the linear limit, we obtain (as expected)

j0(4|A) with x>0, (4.31)

the solution of the linearized (4.1).
We remark, in conclusion, that just as the contours involved in the singular

integral equations for finding the solution of Painleve II are those used in the
representations of Airy functions, so the contours appropriate for (4.1) are familiar
from the representations of Bessel functions.

5. Hamiltonian Systems

Another property shared by monodromy - and spectrum - preserving defor-
mations is that the deformation equations can be written as completely integrable
Hamiltonian systems. The modified Korteweg-deVries equation (2.9) can be

£ TJ 1 00

written qt = d/dx—, with H=- j (q* + q4)dx. It can be shown [24] that the
VQ ^ - oo

mapping to scattering data is canonical and that suitable combinations of the
scattering data are action - angle variables. In contrast, Eqs. (1.2) and (1.4) can
each be written as a four-dimensional Hamiltonian system with x playing the role
of time.

Consider (1.2) and let

P1=qx,q1=q9p2 = %] q2dx,q2 = x. (5.1)

Then

: l n 2 _ !„ n*±p - ^qϊ + vq. (5.2)

is the Hamiltonian. It can be verified directly that H is constant and that
Hamilton's equations are satisfied by (1.2). But we have already shown that each
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piece of monodromy data (a, b, cj, α, β, y, δ) is also a constant of the motion and
thus

ax = {H9a}=0, (5.3)

where {H, a] is the usual Poisson bracket. Therefore we have two independent
constants of the motion in involution and thus the system is exactly integrable.

Similarly, for (1.4), set
x

P1=xux,q1=u,p2=±$u*dx,q2 = x (5.4)
X0

and

H(p19qi9p2,q2)= — p2

1+p2 + 4coshq1. (5.5)
zg2

Again any one of the monodromy data is an independent constant of the motion
which commutes with H and the system is again integrable.

The Hamiltonian property carries through for any one of the members of the
Painleve II family discussed in Appendix II.

We have not as yet examined in what sense the transformation from x, q, qx to
the monodromy data is canonical nor have we identified the appropriate angle
variables in the new coordinates.

6. Further Discussion

There is a vast literature on monodromy problems, starting with the investigations
of Riemann on analytic functions defined by their branching properties, up to the
algebraic geometry studies of recent years (for an introductory survey, see [26]).
We have not found modern mathematical work which has concerned itself with
the "linearizability" properties of the nonlinear deformation equations which
express the monodromy preservation property, excepting, of course, the papers by
Sato et al., and the recent thesis of Ueno.

It has been mentioned repeatedly that the work of Sato et al. [7] not only
provided the stimulus for the present paper, but also suggests many further
problems about singular points and deformation theory. After completing a first
draft of this paper, we learned that K. Ueno of the Kyoto University RIMS had
carried out investigations [27] which overlap ours to some extent. He derives
deformation equations for nxn systems with singular points of various ranks at
C = 0, oo, and establishes results of the kind contained in Sect. 3C above. In other
respects, his work and ours are complementary. He has not yet considered the
inverse problem on the other hand, he had found a remarkable generalization of
our rational-solution example in 3F. By including apparent singularities in
equations such as (3.2) or (4.2), i.e., by including a term

with certain assumptions about the indicial roots at the Oy, he can recover the
N-soliton solutions of MKdV, sine-Gordon, etc. (an appropriate limit, in which all
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α7 ->0, should yield the rational solutions). This is the clearest evidence yet that
soliton and self-similar solutions will fit into a unified framework.

As we expect that monodromy-preserving deformations will play an increas-
ingly important role in diverse problems of physics and applied mathematics, we
now give a brief description of some of the other papers we have found particularly
useful. We also outline various reformulations of the inverse problem discussed in
earlier sections, in order to emphasize the similarities with well-established and
successful approaches to other inverse spectral problems.

The pioneering work on irregular-singular Riemann-Hilbert problems is that
of Birkhoff [16, 17]. In [16], Birkhoff analyzed the behavior of certain canonical
equations near an irregular singular point, counted the number of characteristic
parameters of the asymptotic solutions and showed it to equal the number of
adjustable coefficients of the differential equation, and hence suggested the
possibility of solving the inverse problem. In our formulation of the problem, we
have been guided more by inverse scattering than by Birkhoff s solution, which we
have found to be inaccessible on certain points.

While the structure of solutions near an irregular singular point has been the
object of many studies since Birkhoff s influential papers, the problem of finding
equations with prescribed Stokes multipliers is encountered only rarely. The
extensive work of Sibuya [28] should be mentioned in this connection; its
relevance to deformation problems is still unexplored. The work of Sato et al. is
obviously relevant to problems of irregular singular monodromy; except for a
brief comment in [7, III], however, they have not developed this aspect of their
theory. Their work shows that irregular singular points of ordinary differential
equations can be transformed to regular singular points of partial differential
equations. Indeed, the idea suggested by their approach, to use partial differential
equations to find representations of and to investigate solutions of ordinary
differential equations with irregular singular points, has not yet been explored and
seems to be a fruitful area for study.

The irregular-singular Riemann-Hilbert problem fits quite naturally into the
inverse spectral approaches developed for the solution of nonlinear evolution
equations. We briefly describe the various connections.

In [29], Zakharov and Shabat solve the inverse scattering problem as follows.
Define solutions φ, ψ of

by

J e~ίζ*5 *-> - oo, φ ~ Π eiζx, x-» + oo . (6.1)

* ΓThen φ = aψ + bψ, where φ = (φ*(χ, ζ*),φ*(x, ζ*)Γ (q is real). Set



Monodromy- and Spectrum-Preserving Deformations 109

From the jump of Φ across the real axis,

η(ξ, x) = Φ(ξ + iO, x) - Φ(ξ - ΐO, x) , (6.3)

reconstruct Φ by a Cauchy integral this leads to a system of singular integral
equations for φ.

One can reword this approach. For Im£>0, Φ(ζ,x) has an asymptotic

expansion + ΣΦn(~" The analytic continuation of this expansion to Imζ<0

is not the expansion of an analytic continuation of Φ from Imζ >0 rather, it is the
expansion of Φ as defined by (6.2) in Imζ<0. The jump (6.3), η(ζ,x), is given by

.rIζλW,*); (6.4)

it is analogous to, and has the form of, a product of a "Stokes multiplier" and a
"recessive solution". In contrast to the cases discussed in the present paper,

however, - (ζ) has a very general dependence on ζ. The reason is that φ(ζ9 x) and

φ(C, x) do not satisfy differential equations in ζ with polynomial coefficients. When
they do [if q evolves in a self-similar manner, or if the t dependence is dropped in

(A.4)], the reflection coefficient has the form of the product of-(O) and exp8zζ3/3.

Appropriate scaling of the solutions φ and ψ with the factors exp±4iζ3/3 then
shows the jump (6.4) to be the product of a Stokes multiplier and a recessive
solution.

Zakharov [30] has recently propounded an extension of inverse-scattering
ideas, based on Riemann-Hilbert problems. This generalizes the Zakharov-Shabat
method sketched above, in that the eigenfunctions are reconstructed from
prescribed jumps across arbitrary closed curves in the ζ-plane. Whereas Zakharov
has formulated his new method in extreme generality, the only solutions published
so far have a soliton character, in that they correspond to point spectra of certain
operators. Our paper, from this perspective, provides the first other type of
solution derivable by ideas related to Zakharov's and not accessible to inverse
scattering. The curves across which the "jumps" are prescribed are more com-
plicated in our examples than is envisaged in [30].

It is interesting that the irregular monodromy preserving deformations relate
as naturally to periodic inverse spectral theory as they do to scattering theory. The
approach developed by Krichever ([31], see also Novikov [32]) is particularly
relevant. Give

i) a Riemann surface S, of genus g, with a point called oo,
ii) a nonspecial divisor P1 4- . . . -f Pg,

and seek a function φ(x, ί, y, P), meromorphic for PeS, except at P= oo, such that

iii) ψ~exp(kx + R(k)t + Q(k)y) near fe =00 - is the local parameter at oo 1
\k

iv) φ(0,0,0,P)=l,
v) the poles of ψ are at P1? ...,P , independently of x,ί,y.
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There is a unique such function it is analogous to the Bloch eigenfunction of
a differential operator with periodic coefficients. The coefficients in the asymptotic
expansion of ip at k = oo are functions of x, ί, y, from which solutions of a certain
Zakharov-Shabat equation

can be constructed.
These requirements determine a holomorphic line bundle over the Riemann

surface S. The transition functions of this bundle are defined in the finite part of S
from functions which locally realize the divisor (ii), and at oo by the function (iii).
The bundle depends on x,t,y because of this construction at oo, and it turns out
that the variation with x, t,yis linear in the space of moduli of line bundles, i.e. the
Jacobian variety of R. This leads to the well-known linearization of isospectral
flows on the Jacobian, by means of θ-functions.

The Stokes multiplier problem suggests an analogous construction. In con-
nection with (3.2), for example, we cover the complex plane by six slightly
overlapping sectors. To each point, we attack the group SL(2,(C). The transition
functions of an SL(2, C) principal bundle are defined by the Stokes matrices (3.12),
with some modifications to incorporate a V Φ O branch point or a v = n pole. This
construction is not really useful until the discontinuity of Stokes jumps at oo can
be resolved; only a bundle over a non-contractible surface will carry nontrivial
geometric information. Nevertheless, the idea is suggestive and is currently under
investigation. We expect that the bundle will vary with the coefficients x, ί, . . . in
the exponent θ(ζ) this geometric interpretation should make quite clear that in
any deformation problem, the coefficients of θ(ζ) are to be regarded as independent
variables. In particular, our method is applicable to classes of nonlinear, non-
autonomous equations in several independent variables (some examples are given
in a report to appear in the Proceedings of the 1979 US-USSR Symposium on
Solitons held in Kiev).
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Appendix I

Here we quote results published in reference [33]. It was shown there that the
most general equation with x-dependent coefficients which can be solved by the
inverse scattering transform associated with the nth order system

(A.I)

j)> ft/ = °> V an "-vector, is

G(DR9 t)Pt = Ω(DR, t) [C, P] + F(DR9 ί)x[R0, P] . (A.2)

In (A.2), G, Ώ, and F are entire functions of an integro-differential operator DR, C is
a diagonal matrix and the bracket denotes the commutator. The operator DR,
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which is only applied to off-diagonal matrices HF(hlm), hn = Q, is defined as follows.

First introduce the matrix (HF)R=\ lm ), the solution of [_R0,(HF)R]=HF.
~

The diagonal counterpart of HF is defined to be HD = — J [HF,P~]Ddy. Secondly,
00

define the operator D acting on HF to be

d -

= ~H+IH,P^,H=HF+HD. (A.3)

The subscripts F and D in (A.3) denote the off-diagonal and diagonal parts of the
designated matrices, respectively. Finally, DRHF = D(HF}R. We use the lower limit
oo in the definition of HD in a formal manner, to indicate that we simply ignore the
constant of integration. The corresponding ί and ( dependence of V(x, ί, () is given
by

G(ζ, t) Vt + F(ζ, ί) Vζ = (xFR0 + (Q + S-T)}V. ( A.4)

The quantities β, S, and Γ are defined as follows. Let Ω(DR, t)= Σωm(t)D%, then

Q= Σω

mQM where δ(m) = δm + βm-ιC+ ... + Q1ζ
m-1 + Cζm, and °

QSF=(Oi~1[C,P])Jt, S=ί,...,m,

Define the sequences {Tk}, {St} in a similar way;

TkF = (Dk

R~1P,)R, TkD= ] [TkF,p-]Ddy, Tk=TkF+TkD,k^ί ,

Then if G= 0(t) and F=

Example!. Let us look at the case where n = 2, G=l, F = f1DR, Ω = ω3DR,

\ v \ z? /^ 7 v v i i v i I v i I TVi ̂ ^hy3), R0 = c0=-,y1, y, = i _ 1 , ya = ι I, y3 = I I. Then

e1=ίZ(y2+y3), β 2 = x ( y 2 - y 3 ) - 2 y 1 , δ3 =
 :(^-V)(^+^) Then,
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the Eq. (A.2) is

^=^te*χ-V)χ + /ι(x^ (A.5)

Note that the Painleve equation can be found by either taking /i =0 and looking
ί / x \

for the solution q(x91) = 1/3 q 1/3 or by simply setting /x = 1 and ignoring

the ί-dependence altogether. In fact, all the self-similar solutions of evolution
equations with F = Q can be obtained by taking appropriate functions F and
ignoring the ^-dependence. Moreover, there are many equations which are
solvable by the method introduced in this paper and which are not the result of a
self-similar transformation on a solvable evolution equation. Ignoring the in-
dependence, the ζ and x equations for V are precisely (3.2) and (3.3) respectively.
Note that the term Q3 + 5'1 vanishes by virtue of (3.1).

Example 2. We present an equation solvable by our method which is not obtained
as a self-similar limit of an evolution equation. Let R0 = C= — iY l 5 P = gY 2 + rY3,
F=\, Ω = Dχ, r=—q*; we obtain qxx + 2q2q* — xq = Q. When our method is
applied to this equation, the details are similar to those introduced in Sect. 3.

Example 3. We show that (4.1) is the integrability condition for (4.1), (4.2). Take

n = 2, Ω=l, G = 0, F=-D2

R, R = C = - i Y l 5 P-<?(Y2 + Y3) and g=-—. Then

Eq. (A.2) reads

(xux)x =-4 sinh M . (A. 5)

v ii

We also find that Q=-iYί9 S = -^-C^ - -^(Y2+ Y3)-ίsinhu(Y2- Y3)

+ z(l —coshw) Y t . Therefore, (A.I) is

(A.6)

and (A.4) is

(i ! \
1^1 + ho" smh w — — xw γ ι;9i \ζ2 2ζ x; 2

(A.7)

— ' 1 Ί ί' - l \
^2-Sm M-—XM^^ + ^X-^-COS M j ϋ 2 .

Appendix II: The Painleve II Family

It is well known [23] that the MKdV equation is only one of an infinite family of
equations, all of which are solvable by the scattering problem (2.12). The equations
of this family can be derived from Hamiltonians [24],

g f=A^±i. (A.8)
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It is easily shown that a self-similar solution of the form

t u+1f\pt 2J+ί! (A.9)

exists. The resulting ordinary differential equation for / is again the condition
that a deformation of a system like (3.2) be monodromy preserving; this
time, the asymptotic expansion of Ψ will, of course, involve e±θ with

θ = i i ω2j+1 ——- + ζx . The general autonomous equation of the MKdV family,

_^£H

where

N

H=ΣcjH2i+1 (A.11)
0

with constant cp does not have self-similar solutions, since the H2j+l scale
differently. If the c are time-dependent, however,

then a self-similar solution exists, and is associated with the monodromy for a
system Ψ^ = QΨ which gives rise to expansions involving e±θ,

This is the Painleve II family of nonlinear ordinary differential equations. It is
apparent that all these equations can be reduced to a system of linear singular
integral equations according to the pattern described earlier. Although the
solution method parallels that of Sect. 3, the details are too cumbersome to
reproduce here. It is possible, however, to give compact formulae for the rational
solutions of all these equations (Stokes multipliers zero, and an π-th order pole at
( = 0). This was done in Sect. 3F.

We note that the equations of the Painleve II family, which we designate as
(PII, ri) can be generated very quickly by the formalism described in Appendix I.
We take R0 = C= — zT1? P = q(Y2 + 73). Then the first few equations are:

(A.13a)

this integrates to

(ωί+x)q = v (A.13b)

and

(A.13c)

[Λ0,P]=0, (A.14a)

which integrates to

(A.14b)
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with
,, -a

+ iζx. (A.14c)

Λx[Rθ JP]=0 J (A.15a)

which integrates to

v, (A.15b)
t

with

x. (A.15c)

The general equation

N

r=0

has Θ(ζ) given by (A. 12).

Appendix III

Here we give the explicit connection between the formulae of Sato et al. and
Eqs. (4.2), (4.3). In [7, III] it is shown that the basis W, to which we have already
referred in the introduction, satisfies a holonomic system of differential equations.
Applying a formal Laplace transform (transform variable M), Sato et al. obtain a
system of ordinary differential equations in u,

d
UΎ~an

The dependence of w on the parameters (a^a^ 7'=!, . . . , fc , at which points the
solutions of the underlying Dirac equation have multivalued behavior, is provided
by an auxiliary set of equations. We now write down this system when n = 2 and

teίθ - f
a^ — a2 = —. Then using G, G, Fas given in [7, III] and taking /1 = /2 = / = 0,—=ry-

2JίYl GK

,
2 2

C εκ~lS\ 1/0 /+

θ W '

uίί 0\ I / C εfc^ 1/0 /+

-C ~ϊ θ
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where C = cosh2φ, S = sinh2t/λ By scaling the components w1 and w2 by J/£k and

y&κ~1, respectively, and using εε = l, we can eliminate the factors ε/c"1 and εk.

Then, introducing the transformation x — — —- ί2, w = —— ζt, in which case

f = tιpt = xvx (where v = 2ψ), we find

/I 0\ xvγ /O 1\ / / coshi; sιnhιΛ\ Λ
W r = | - i X :rL +^ - 1 ι W

ζ \ \0 -I/ 2ζ \1 O/ C2 \-smhi; -coshi;//

with q=-^±m These are our Eqs. (A.6), (A.7), and (4.2) and (4.3).

Appendix IV. The Inversion Equations for PΠ When v φ n

Following the ideas outlined in 3E, we can find the equations analogous to (3.33),
(3.35) when vφn. For ζeS^ they are:

b w(1)e

(A 20)

In (A.20) and (A.21), C is a contour originating at ξ = oo, travelling on top of the
branch cut along the positive real ξ axis, circling the origin and returning to
ξ = GO exp2πi along the lower edge of the branch cut. The parameters s = 2ί sinvπ
and ψ(2\ tp(32) are defined in terms of ιp(1\ ψ(2} by (3.12). Note that the terms

w(j)e±θ

involving the contour C simply become — Res — — —, j = 1, 2, when v = n as in this
*= 0 ς-ί

case ιp(j) is single valued.
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