Existence of a Homoclinic Point for the Hénon Map

Michał Misiurewicz ${ }^{1}$ and Bolesław Szewc ${ }^{2}$
${ }^{1}$ Institute of Mathematics, Warsaw University, PL-00-901 Warsaw,
${ }^{2}$ Institute of Applied Mathematics and Statistics, SGGW-Agricultural University, PL-02-975 Warsaw, Poland

Abstract

We prove analytically that for the Hénon map of the plane into itself $(s, t) \mapsto\left(t+1-1.4 a^{2}, 0.3 s\right)$, there exists a transversal homoclinic point.

Curry in his paper [1] investigates numerically the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$:

$$
T(s, t)=\left(t+1-a s^{2}, b s\right), \quad a=1.4, \quad b=0.3
$$

(defined first by Hénon [2]). His results suggest the existence of a transversal homoclinic point. However, he writes that his arguments cannot be considered as a rigorous proof. Moreover, he is sceptical about the possibility of obtaining such a proof with a computer.

For some values of a and b, the existence of a transversal homoclinic point was proved analytically by Marotto [3], but it seems impossible that his methods could be applied to the case $a=1.4, b=0.3$.

In the present paper we show that the problem (for $a=1.4, b=0.3$) is less complicated than it looks. We obtain an analytical proof just by making appropriate estimates. The most complicated computations are of the type $1.42 \times 0.626=0.88892$, therefore a reader who wants to check all of them needs only a pen and paper (although a pocket calculator is of course better). We omit some computations in Step 1, but they are standard, and besides, they were already done by Hénon.

We introduce the new coordinates : $x=\frac{t}{0.3}, y=s$. In these coordinates the map has the form

$$
f(x, y)=\left(y, 1-1.4 y^{2}+0.3 x\right) .
$$

It has one (minor) advantage: when we take an image, or an inverse image of a point then we introduce only one new number.

The map f has a hyperbolic fixed point $P=\left(x_{0}, x_{0}\right)$, where

$$
x_{0}=\frac{-0.7+\sqrt{6.09}}{2.8}
$$

Theorem. There exists a transversal homoclinic point for P.
We divide the proof into 9 steps.
Step 1 (see [2]). Denote by Ω the quadrilateral $A B C D$, where $A=(1.4,-1.33)$, $B=\left(\frac{1.33}{3}, 1.32\right), C=\left(\frac{-1.4}{3}, 1.245\right), D=\left(\frac{-5}{3},-1.06\right)$. We show that $f(\Omega) \subset \Omega$.

The line $A B$ is given by the equation

$$
\begin{array}{rlrl}
2.87 y+7.95 x & =7.3129 \\
B C-\text { by } & 2.73 y-0.225 x & =3.50385 \\
C D-\text { by } & 3.6 y-6.915 x & =7.709 \\
D A-\text { by } & 9.2 y+0.81 x & =-11.102
\end{array}
$$

The images of the points A, B, C, D are:

$$
\begin{array}{ll}
f(A)=(-1.33,-1.05646), & f(B)=(1.32,-1.30636) \\
f(C)=(1.245,-1.310035), & f(D)=(-1.06,-1.07304)
\end{array}
$$

The image of the line $A B$ is a parabola, given by the equation

$$
7.95 y=-1.4 x^{2}-0.861 x+10.14387
$$

It is easy to check that this parabola lies below the lines $A B, B C$, and $C D$, and that $f(A), f(B), f(C)$, and $f(D)$ lie above the line $D A$. To complete the proof, it is enough to notice that the images of the sides $\overline{B C}, \overline{C D}$, and $\overline{D A}$ of Ω are contained in parabolas "pointing upwards" and they lie below the parabola $f(A B)$ (this follows from the fact that the horizontal lines are mapped onto vertical ones).
Step 2. We make estimates for the fixed point and its eigenvectors.
We have

$$
0.631<x_{0}<0.632
$$

It is easy to check that $P \in \operatorname{Int} \Omega$. From this it follows that the whole unstable manifold of P is contained in Ω.

The derivative of f at a point (x, y) is $D f(x, y)=\left(\begin{array}{cc}0 & 1 \\ 0.3 & -2.8 y\end{array}\right)$. The characteristic polynomial of $D f(P)$ is $\lambda^{2}+2.8 x_{0} \lambda-0.3$. We have $1.76<2.8 x_{0}<1.77$. Thus $2.07<\sqrt{\left(2.8 x_{0}\right)^{2}+4 \cdot 0.3}<2.1$, and we get the estimates for the eigenvalues of $D f(P)$:

$$
\lambda_{1}<-1.915<-1.12, \quad \frac{1}{8}<0.15<\lambda_{2}<0.17<\frac{1}{2}
$$

The corresponding eigenvectors are $\binom{1}{\lambda_{1}}$ and $\binom{1}{\lambda_{2}}$ respectively. We denote the stable and unstable manifolds of P by W^{s} and W^{u} respectively.
Step 3. We investigate the unstable manifold W^{u}.

Denote: $\quad \Phi=\{(x, y): y \geqq 0.4\}, \quad \Gamma=\left\{\binom{a}{b}:-\frac{b}{a} \geqq 1.12\right\}$. Let $\quad(x, y) \in \Phi, \quad\binom{a}{b} \in \Gamma$, $\binom{a_{1}}{b_{1}}=D f(x, y)\binom{a}{b}$. We have $a_{1}=b, b_{1}=0.3 a-2.8 b y$. Hence, $-\frac{b_{1}}{a_{1}}=-0.3 \frac{a}{b}+2.8 y$ $\geqq 2.8 y \geqq 1.12$, and therefore $\binom{a_{1}}{b_{1}}$ belongs also to Γ. Besides, we get $\left|a_{1}\right| \geqq 1.12|a|$.

Notice that $P \in \operatorname{Int} \Phi$ and $\binom{1}{\lambda_{1}} \in \operatorname{Int} \Gamma$. Therefore a small piece of W^{u}, containing P, is contained in Φ and vectors tangent to it belong to Γ. Look at the images of this piece. As long as they are contained in Φ, vectors tangent to them belong to Γ and the absolute value of the difference of the first coordinates of their endpoints grows at least by a factor 1.12 at each step. Since the whole W^{u} is contained in Ω, this cannot continue forever. Hence, there exists a point $(c, 0.4)$ belonging to W^{u}. We take such a point closest (along $\left.W^{u}\right)$ to P. The point $\left(d_{1}, d_{2}\right)=f^{2}(c, 0.4)$ also belongs to W^{u}. We get

$$
\begin{aligned}
d_{2} & =1-1.4\left(1-1.4 \cdot 0.4^{2}+0.3 c\right)^{2}+0.3 \cdot 0.4 \\
& =1.12-1.4(0.776+0.3 c)^{2}<1.4(1.676+0.3 c)(0.124-0.3 c)
\end{aligned}
$$

Since $\binom{x_{0}-c}{x_{0}-0.4} \in \Gamma$, we have $c>x_{0}>0.6$, and consequently $d_{2}<0$. Moreover, since $\lambda_{1}<0$, for all points (x, y) lying on W^{u} between P and $\left(d_{1}, d_{2}\right)$ we have $\binom{x_{0}-x}{x_{0}-y} \in \Gamma$ and $y \leqq x_{0}$. Hence $x \geqq x_{0}$. Since $d_{2}<0$, among those points there is one with the second coordinate equal to 0 . We denote it by $Q=(q, 0)$, and the piece of W^{u} between Q and P by Σ^{u}.
Step 4. We investigate the stable manifold W^{s}.
The mapping f^{-1} is given by the formula

$$
f^{-1}(x, y)=\left(\frac{y-1+1.4 x^{2}}{0.3}, x\right) .
$$

We have

$$
D f^{-1}(x, y)=\left(\begin{array}{cc}
\frac{2.8}{0.3} x & \frac{1}{0.3} \\
1 & 0
\end{array}\right)
$$

Denote:

$$
\Psi=\{(x, y): 0.475 \leqq 2.8 x \leqq 1.9\}, \quad \Delta=\left\{\binom{a}{b}: 2 \leqq \frac{a}{b} \leqq 8\right\}
$$

Let $(x, y) \in \Phi,\binom{a}{b} \in \Delta,\binom{a_{1}}{b_{1}}=D f^{-1}(x, y)\binom{a}{b}$. We have

$$
\frac{a_{1}}{b_{1}}=\frac{2.8}{0.3} x+\frac{1}{0.3} \frac{b}{a}
$$

and therefore

$$
2=\frac{0.475}{0.3}+\frac{1}{8 \cdot 0.3} \leqq \frac{a_{1}}{b_{1}} \leqq \frac{1.9}{0.3}+\frac{1}{2 \cdot 0.3}=8
$$

Thus, $\binom{a_{1}}{b_{1}} \in \Delta$. Besides, we get $\left|b_{1}\right| \geqq 2|b|$.
Notice that $P \in \operatorname{Int} \Psi$ and $\binom{1}{\lambda_{2}} \in \operatorname{Int} \Delta$. Therefore a small piece of W^{s}, containing P, is contained in Ψ and vectors tangent to it belong to Δ. Look at the images of this piece (under $f^{-n}, n=1,2, \ldots$). As long as they are contained in Ψ, vectors tangent to them belong to Δ and the absolute values of the differences between the first coordinates of their endpoints and x_{0} grow at least by the factor 2 at each step. This time $\lambda_{2}>0$ and we may look separately at what happens to the right and to the left of P.

Hence, we get the points $R=\left(\frac{1.9}{2.8}, r\right)$ and $S=\left(\frac{0.475}{2.8}, s\right)$ on W^{s}, closest to P (along W^{s}) to the right and to the left of P, respectively. We denote the pieces of W^{s} between S and P and between P and R by Σ_{1}^{s} and Σ_{2}^{s} respectively. We denote also $\Sigma^{s}=\Sigma_{1}^{s} \cup \Sigma_{2}^{s}$. For all $(x, y) \in \Sigma^{s}$ we have $\binom{x-x_{0}}{y-x_{0}} \in \Delta$. In particular it follows that $x-x_{0}$ and $y-x_{0}$ have the same sign.
Step 5. We show that Σ^{s} divides $f(\Omega)$ into two parts and one of them is contained in the half-plane

$$
\Pi=\{(x, y): 2.8 x \geqq 0.475\}
$$

The parabola $f(C D)$ is given by the equation $y=-1.4 x^{2}+\frac{1.08}{6.915} x+\frac{4.6023}{6.915}$. If $x=\frac{0.475}{2.8}$ then, using the estimates $0.1<x<0.17$, we get

$$
y>-1.4 \cdot 0.17^{2}+\frac{0.108+4.6023}{6.915}>-0.04046+0.68>x_{0}
$$

Therefore Σ_{1}^{s} intersects $f(C D)$.
The parabola $f(A B)$ is given by the equation

$$
y=-1.4 x^{2}-\frac{0.861}{7.95} x+\frac{10.14387}{7.95}
$$

If $x=\frac{1.9}{2.8}$ then, using the estimate $x>0.65$, we get

$$
y<-1.4 \cdot 0.65^{2}+\frac{-0.861 \cdot 0.65+10.14387}{7.95}<-0.5915+1.21<x_{0}
$$

Therefore Σ_{2}^{s} intersects $f(A B)$.

Those points of intersection are unique, because vectors tangent to Σ^{s} lie in the first and the third quadrants and the tops of the parabolas $f(C D)$ and $f(A B)$ lie to the left of the line $x=\frac{0.475}{2.8}$. Hence, Σ^{s} divides $f(\Omega)$ into two parts. Since Σ^{s} is contained in Π, one of the parts also must be contained in Π. We denote this part by Λ_{1} and the other one by Λ_{2}.

Step 6. We show that $f^{4}\left(\Sigma^{u}\right)$ intersects Σ^{s} at some point different from P.
Suppose that $f^{4}\left(\Sigma^{u}\right)$ intersects Σ^{s} only at P. Then $f^{i}\left(\Sigma^{u}\right)$ for $i=0,1,2,3$ also intersects Σ^{s} only at P. Since $\lambda_{1}<0$ and $W^{u} \subset \Lambda_{1} \cup \Lambda_{2}$, we get $f^{i}\left(\Sigma^{u}\right) \subset \Lambda_{1}$ for $i=0,2,4$ and $f^{i}\left(\Sigma^{u}\right) \subset \Lambda_{2}$ for $i=1,3$. In particular it follows that $f^{4}(Q) \in \Lambda_{1} \subset \Pi$.

The line $A B$ intersects the x-axis at the point with the first coordinate $\frac{7.3129}{7.95}<0.92$ and consequently we get $0.63<x_{0}<q<0.92$. For the points $f(Q)$ $=\left(0, q_{1}\right), f^{2}(Q)=\left(q_{1}, q_{2}\right), f^{3}(Q)=\left(q_{2}, q_{3}\right)$ and $f^{4}(Q)=\left(q_{3}, q_{4}\right)$ we obtain consecutively the following estimates:

$$
1.18<q_{1}<1.28, \quad q_{2}<-0.94, \quad q_{3}<0.15
$$

Since $2.8 \cdot 0.15<0.475$, we get $f^{4}(Q) \notin \Pi$ - a contradiction.
Hence, $f^{4}\left(\Sigma^{u}\right)$ intersects Σ^{s} at some point different from P. Therefore also $f^{2}\left(\Sigma^{u}\right)$ intersects $f^{-2}\left(\Sigma^{s}\right)$ at some point different from P. We denote this point by H.

Step 7. We estimate the vector tangent to W^{u} at H.
By Step 3, $\Sigma^{u} \subset\left\{(x, y): x \geqq x_{0}, 0 \leqq y \leqq x_{0}\right\}$, and the vectors tangent to Σ^{u} belong to Γ. Let $(x, y) \in \Sigma^{u},\binom{a}{b} \in \Gamma$. Denote $\binom{a_{1}}{b_{1}}=D f(x, y)\binom{a}{b},\binom{a_{2}}{b_{2}}=D f^{2}(x, y)\binom{a}{b}$. We have $a_{1}=b, b_{1}=0.3 a-2.8 y b, a_{2}=b_{1}, b_{2}=0.3 a_{1}-2.8\left(1-1.4 y^{2}+0.3 x\right) b_{1}$. Hence,

$$
\begin{aligned}
-\frac{b_{1}}{a_{1}} & =2.8 y-0.3 \frac{a}{b} \\
& -\frac{b_{2}}{a_{2}}=2.8\left(1-1.4 y^{2}+0.3 x\right)-0.3 \frac{a_{1}}{b_{1}}
\end{aligned}
$$

We get

$$
\begin{aligned}
0 & <-\frac{b_{1}}{a_{1}} \leqq 2.8 x_{0}-\frac{0.3}{1.12}<1.8-0.2=1.6, \\
-\frac{b_{2}}{a_{2}} & >2.8\left(1-1.4 x_{0}^{2}+0.3 x_{0}\right)+\frac{0.3}{1.6}>2.8 x_{0}+0.18>1.9 .
\end{aligned}
$$

Thus, for the vector $\binom{a_{u}}{b_{u}}$ tangent to W^{u} at H, we get $-\frac{b_{u}}{a_{u}}>1.9$. Step 8. We estimate the vector $\binom{a_{s}}{b_{s}}$ tangent to W^{s} at H.

By Step $4, \Sigma^{s} C \Psi$ and vectors tangent to Σ^{s} belong to Δ. Therefore also vectors tangent to $f^{-1}\left(\Sigma^{s}\right)$ belong to Δ. Denote $H=\left(x_{2}, y_{2}\right), \quad f(H)=\left(x_{1}, y_{1}\right)$,
$D f(H)\binom{a_{s}}{b_{s}}=\binom{a_{1}}{b_{1}}$. The vector $\binom{a_{1}}{b_{1}}$ is tangent to $f^{-1}\left(\Sigma^{s}\right)$ and therefore it belongs to Δ. We consider two cases:

Case 1. $f(H) \in \Sigma^{s}$. Then $\binom{a_{s}}{b_{s}} \in \Delta$.
Case 2. $f(H) \notin \Sigma^{s}$. Since for $x \geqq x_{0}$ the first coordinate of the inverse images of a vector from the first quadrant grows at least by the factor $\frac{2.8}{0.3} x_{0}>5$ at each step, no point of $\Sigma_{2}^{s} \backslash\{P\}$ can belong to W^{u}. Therefore $f^{2}(H) \in \Sigma_{1}^{s}$. Hence, if $f^{2}(H)=(x, y)$ then $0<x<y \leqq x_{0}$. Using the formula for f^{-1} and the inequality $x^{2} \geqq 0.8 x-0.16$, we get (notice that $y_{1}=x$)

$$
x_{1} \geqq \frac{x-1+1.4(0.8 x-0.16)}{0.3}=\frac{2.12 y_{1}-1.224}{0.3}
$$

Consequently, $y_{1} \leqq \frac{0.3 x_{1}+1.224}{2.12}$. Therefore (notice that $y_{2}=x_{1}$):

$$
x_{2} \leqq \frac{1}{2.12} x_{1}+\frac{1.224}{2.12 \cdot 0.3}-\frac{1}{0.3}+\frac{1.4}{0.3} x_{1}^{2}=\frac{1.4}{0.3} x_{1}^{2}+\frac{1}{2.12} x_{1}-\frac{0.896}{0.626} .
$$

Since $H \in \Omega, H$ lies to the right of the line $C D$. Therefore

$$
x_{2} \geqq \frac{3.6 y_{2}-7.709}{6.915}
$$

Since $y_{2}=x_{1}$, we get

$$
1.4 x_{1}^{2}+\left(\frac{0.3}{2.12}-\frac{0.3 \cdot 3.6}{6.915}\right) x_{1}+\left(-\frac{0.896}{0.626}+\frac{7.709}{6.915}\right) \cdot 0.3 \geqq 0
$$

The second coordinate of the point of intersection of the y-axis and $f(C D)$ is $\frac{4.6023}{6.915}>0.66>x_{0}$. Along with the estimates from Step 5 , this proves that the set

$$
\left\{(x, y): 0 \leqq x \leqq \frac{0.475}{2.8}, y \leqq x_{0}\right\}
$$

is disjoint from $f(\Omega)$. Thus, $x_{1}<0$. Hence we get

$$
\begin{aligned}
0 & \leqq 1.4 x_{1}^{2}+(0.14-0.16) x_{1}+(-1.42+1.12) \cdot 0.3 \\
& =1.4 x_{1}^{2}-0.02 x_{1}-0.09 .
\end{aligned}
$$

Since $0.02^{2}+4 \cdot 1.4 \cdot 0.09>0.5$, we have

$$
x_{1} \leqq \frac{0.02-0.7}{2.8}=-\frac{0.68}{2.8}
$$

Since $a_{s}=\frac{2.8}{0.3} x_{1} a_{1}+\frac{1}{0.3} b_{1}, b_{s}=a_{1}$ and $\frac{a_{1}}{b_{1}} \geqq 2$, we get

$$
\frac{a_{s}}{b_{s}} \leqq \frac{-0.68+0.5}{0.3}=-0.6
$$

In both cases we obtain $-\frac{1}{2} \leqq-\frac{b_{s}}{a_{s}} \leqq \frac{1}{0.6}<1.7$.
Step 9. From Steps 7 and 8 it follows that $\binom{a_{u}}{b_{u}} \neq\binom{ a_{s}}{b_{s}}$ for every (non-zero) vectors $\binom{a_{u}}{b_{u}}$ and $\binom{a_{s}}{b_{s}}$ tangent to W^{u} and W^{s} respectively at H. Consequently, W^{u} intersects W^{s} at H transversally.

Acknowledgements. Part of this paper was written by the first author (M.M.) during his visit to Institut des Hautes Études Scientifiques (Bures-sur-Yvette, France). He gratefully acknowledges the hospitality of IHES and the financial support of the Stiftung Volkswagenwerk for the visit.

References

1. Curry, J.H.: On the Hénon transformation. Commun. Math. Phys. 68, 129-140 (1979)
2. Hénon, M. : A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69-77 (1976)
3. Marotto, F.R.: Chaotic behavior in the Hénon mapping. Commun. Math. Phys. 68, 187-194 (1979)

Communicated by D. Ruelle

