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Abstract. We prove that every solution to the SU(2) Yang-Mills equations,
invariant under the lifting to the principle bundle of the action of the group, O(3),
of rotations about a fixed line in R4, with locally bounded and globally square
integrable curvature is either self-dual or anti-self dual. In other words we prove,
under the above assumptions, that every critical point of the Yang-Mills
functional is a global minimum.

We prove also that every finite extremal of the Ginzburg-Landau action
functional on (R2, with the coupling constant equal to one, is a solution to the first
order Ginzburg-Landau equations. The relationship between the
Ginzburg-Landau equations and the O(3) symmetric, SU(2) Yang-Mills
equations on U2 x S2 is established.

I. Introduction

On Euclidean four space the value of the Yang-Mills action evaluated on a
connection is bounded below by the topological invariant. Any connection whose
action achieves this minimum is a solution to the Yang-Mills equations with self (or
anti-self) dual curvature; in fact, self duality is equivalent to a set of first order
differential equations. Atiyah, Drinfeld, Hitchin, Manin [1] demonstrated a
construction for any self or anti-self dual finite action connection. An important
open question in the classical theory is whether there exist finite action solutions to
the second order equations which are not solutions to the first order equations [2].
Insight may be obtained by answering this question in simpler models. In particular,
we shall study the O(3) symmetric, SU(2) Yang-Mills equations on U4 and the
Ginzburg-Landau equations [3] with critical coupling constant in two dimensions.
The Ginzburg-Landau equations are related to the four dimensional Yang-Mills
equations because any O(3) symmetric solution to the SU(2) Yang-Mills equations
on the space U2 x S2 with the natural Riemannian metric determines a solution to
the Ginzburg-Landau equations and vice versa, c.f. Sect. V.
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We examine first the Ginzburg-Landau equations. In this case the topological
invariant is the integral over [R2 of the curvature form of a U(l) connection on the
principle bundle U2 x U(l). The space of C° connections with finite
Ginzburg-Landau action separates into disjoint path components labelled by the
first Chern number (vortex number) [4]. BogomoΓnyi [5] demonstrated that the
action on each path component is bounded below by a multiple of the topological
invariant, and that any field configuration which achieves this minimum satisfies a
set of first order equations. In a recent paper [6], the author proved that the solution
manifold of the first order equations with vortex number N is naturally isomorphic
to [R 2 ' N ' the isomorphism given by specifying the zeroes on R2 of the complex scalar
field. In this paper it is proved that there are no solutions to the second order
Ginzburg-Landau equations which are not solutions to the first order equations.

A precise statement of this result is made in Sect. II; this is the content of
Theorems I and II. Theorem I is proved in Sect. Ill and Theorem II is proved in
Sect. IV. In Sect. V we prove the equivalence of the O(3) symmetric Yang-Mills
equations on [R2 x S2 and the Ginzburg-Landau equations on [R2 with the critical
value of the coupling constant.

Our second model is the SU(2) Yang-Mills equations restricted to the space,
#0(3)5 of connections which are invariant under the lifting to the principal bundle of
the action of the group of rotations about a fixed line in [R4, the group O(3) [7,8]. The
SU(2) Yang-Mills equations when restricted to #0(3) reduce to the variational
equations of the Ginzburg-Landau functional on the hyperbolic plane, and any
solution to these variational equations is a solution to the Yang-Mills equations on
[R4, cf. Sect. VI. The O(3) symmetric instantons found by Witten are the solutions to
the first order equations. We prove in Section VII that there are no finite action
strong solutions to the SU(2) Yang-Mills equations restricted to #0(3) (henceforth
called the O(3) symmetric Yang-Mills equations) which are not either self dual or
anti-self dual, cf. Theorem III. In the final Section we prove that any weak solution in
#0(3) is 8auge equivalent to a strong solution in #0(3)> and hence Theorem III holds
for weak solutions also.

II. The Ginzburg-Landau Equations

Let E denote the vector bundle π : [R2 x C -> [R2. The Ginzburg-Landau action is a
functional on the set #(£) 0 C°°(E); #(£) is the set of C°°, U(l), connections on E and
CCG(E] is the set of C00 cross sections of E. Because E is trivial, the set of connections,
#(£), can be identified with /^([R2), the set of C00 sections of the cotangent bundle.
For the same reason, C™(E) can be identified with the set of C°° complex valued
functions on [R2. These identifications will be made implicitly in this paper.

A connection in #(£) is given by — iπ*α with αe/t1([R2) and i=^J — 1. The
curvature form of the connection will be denoted — ίπ*Ffl with Fa = daεΛ2(U2}. If
φεC°°(£) is any section, φ*(π*Fα) = Fa. The connection defines a map from C°°(E)
to Λ1(U2)®CCC(E) via the covariant derivative; for φεCco(E)

Daφ = dφ-iaφ (2.1)
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With * denoting the duality isomorphism * : Ak(U2) -> A2 ~ k ( U 2 ) as defined in the
usual way by the (flat) Riemannian structure on [R2, we define the Ginzburg-Landau
action as a functional on <#(E)® C°°(£) by

Fa Λ *Fa + Daφ Λ *D~φ+ϊ-*(φφ- 1)4. (2.2)
. 4 J

The coupling constant A will be taken to equal one in the remainder of this paper.
The variational equations of the Ginzburg-Landau action are

d*Fa -γ(φDaφ - φDaφ) = 0, (2.3a)

- Da*Daφ + *±(φφ - l}φ = 0. (2.3b)

The boundary conditions for Eqns. (2.3a, b) are specified by the Chern number

In the physics literature, the usual statement of the problem demands the stronger
pointwise conditions

Lira a = Ndθ; Lim φ = eίm. (2.5)

where θ is the polar angle in the plane.
As BogomoΓnyi [5] pointed out, a lower bound on the action results from

integrating by parts,

a(a, φ) = \ J {±(Daφ ± ί*Daφ) Λ *(Dαφ + i*D»

so

Λ ^ | N | π . (2.7)

This lower bound is realized if and if (a, φ) satisfy

Daφ-i*Daφ = 0

' -1) = 0 f o r N ^ O ; (2.8)

l) = 0 f o r N ^ O . (2.9)

In [6] the solution manifold of (2.8) and (2.9) on <#(E)®C™(E) for fixed N
(defined by (2.4)) and modulo gauge transformations (a, φ) ->(a 4- d/, φ^J/) for
/eC°°([R2) was proven to be isomorphic to 2N dimensional Euclidean space. The
main result of this paper is the proof that any solution to the second order equations
(2.3a, b) with N defined by (2.4) must be either a solution to (2.8) if N ̂  0 or a solution
to (2.9) if N ^ 0. To make this precise some preliminary definitions are necessary.

Let Ω c [R>2 be an open set with compact closure. Define [9] the space
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H1'2(Ω; T*) as the completion of the set of C°° sections of T* over Ω in the norm

| |α| | ι ? 2 = \{da Λ *da + d*a Λ *d*α + a Λ *α}. (2.10)
Ω

Let Hφ'2(Ώ; Γ*) be the space of sections of Γ* compactly supported in Ω. In a like
manner define the spaces H1' 2(Ω; E) (Hj 2(Ω; E)) as the completion of the set of C°°
sections of E over Ω (resp. C00 sections of E with compact support in Ω) in the norm

\\Φ\\2ι,2 = ${dφΛ*dφ+*ΦΦ}. (2.11)
Ω

By a weak solution of equations (2.3a) and (2.3b) we will mean a section (α, φ) of
T*©E with the following properties

1. (α, φ)εH1>2(Ω, T*}®H^2(Ω, E) for all Ω c [R2 with compact closure,
2. *(α, φ)^oo,
3. For all (b, f/)etf J 2(R 2; T*)0Hj'2(R2; C),

+ Daη Λ *D> + Dαφ Λ *Daη + *^(00 - l)(φή + ηφ» = 0. (2.12)

The precise statement of our result is

Theorem I. Let (α, φ) be a weak solution of equations (2.3d) and (2.3b) such that a is a
C3 section o/T*((R2) and φ is a C2 section ofE. If the number N defined by equation
(2.4) is nonnegative then (a, φ) is a solution to equations (2. 8). If N is nonpositive then
(a, φ) is a solution to equations (2.9).

Secondly we show if (α, φ) is a weak solution to equations (2.3a) and (2.3b), it is
related by a gauge transformation to a C°° solution:

Theorem II. Let (α, φ) be a weak solution of equations (2. 3 a) and (2.3 b). Then there
exists a pair (a, φ)eΛl(U2) © C°°(E) related to (a, φ) by (a, $) = (a + dψ, φe^) with the
function ψeH2'2 (Ω) for all open sets Ω <= R2 with compact closure.

III. Equivalence of First and Second Order Ginzburg- Landau Equations

In proving Theorem I it is convenient to introduce functions / and w in C2(R2)
defined by

(3.1)

Assume that (a, φ) satisfy (2.3a) and (2.3b) with αeC3(Γ*(IR2)) and φeC2(E).
Applying the operator *d* to both sides of equation (2.3a) and using (3.1) gives

(3.2)

where A = *ά*d is the Laplace operator on IR2. The definition of w and equation
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(2.3b) imply that w must satisfy

Aw = - *(Daφ Λ *D>) + (1 - 2w)w. (3.3)

We now use mean value theorems associated with the Laplace operator to prove
two Lemmas.

Lemma 3.1. Let (a, φ) be a weak solution of equations (2.3a, b). Then
Further, ifweC2(U2) then either w = 0 or w > 0 on R2.

Lemma 3.2. Let /, we C2(U2) satisfy (3.2) and (3.3) respectively.
Suppose further that the action is finite. Then

The behaviour of the action functional under scaling transformations will be
used to prove

Lemma 3.3. Under the conditions of Theorem I the following equality must hold for
any solution (α, φ):

J * / * = f * W 2 . (3.4)

[R2 R2

Together, Lemmas 3.1, 3.2 and 3.3 imply that |/| = w. If the number N = 0 then
f = w = 0 and the solution is trivial. If N Φ 0 then

f = w for N > 0,
J (3.5a)
/ = - w N < 0.

Using equations (3.5a) and (3.5b) in equations (3.2) and (3.3) gives

Daφ Λ *Daφ - iDaφ Λ Daφ = 0 for N > 0, (3.6a)

Daφ Λ * Daφ + iDaφ Λ Daφ =0 for N < 0. (3.6b)

Equations (3.6a) and (3.6b) may be rewritten as

(Daφ-i*Daφ)Λ*(Daφ +i*Daφ) = Q N>0, (3.7a)

(Daφ + i*Daφ)Λ*(Daφ-i*Daψ) = 0 N<0. (3.7b)

Together the pairs of equations (3.5a), (3.7a) and (3.5b), (3.7b) imply the theorem.
We now prove Lemmas 3.1, 3.2 and 3.3.
Let #(x)eCJ([R2) have the properties

For R > 0 define

= g(x/R). (3.9)
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For the function gR(x\

1

Let τ/e//J ' 2 (Ώ; £) for some bounded open set ΩetR 2 . The fact that (α, φ) is a weak
solution implies

J {Daη Λ *D> + D> Λ *Daη - *i(l - φφ)(φή + ̂ )} = 0. (3.1

Proof of Lemma 3.1. We prove that for any weak solution, (α, φ), w = 1/2(1 — </>φ) ̂  0.
Assume this inequality. It follows from equation (3.3), that for weC2([R2)

(z l- ι)w^O. (3.12)

pointwise. By the maximum principle, equation (3.12) implies that w cannot have a
nonpositive minimum unless w ΞΞ 0 (see, e.g. Gilbarg and Trudinger, [11], Theorem
3.5). We now prove that w ̂  0.

Suppose that (α, φ) is a weak solution of equations (2.3a) and (2.3b). For jR > 0
define the section ηREH^2(D2R(0)ι E) by

where gR is defined in equation (3.9). Let e = φ\φ\~ 1. From the definition, ee = 1.

(3.14)

Equation (3.11) reads

j {2gRld\φ\ Λ *d\φ\+(\φ\ - l)\φ\Dae Λ *Dαβ
Ω2R

|} = o. (3.15)

Where Ω2R = {xeR2\\φ\(x)> l}nD2R(0).

We have used

(3.16)

valid on ΩR, in deriving (3.15). Equation (3.15) implies:

| -I)2}

(3.17)
^i f T / 2 Γ Ί1/2

^^ ί * ( I Φ I - D 4 f *(02*^*)2 .2U2 R J U2 J
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The last step we use integration by parts and Holder's inequality. The function σ(x)
defined by

, ,
σ(x) lo if H<ι

is in L([R2). Since |σ(x)|2 rg |w(x)|eL2([R2) as the action is finite. Combining this
result with equation (3.17) gives the inequality

ΛI
ί)2}^—^

* R

Γ Ί1/2

where κ= J *(g2Δg)2 . (3.18)
Lre2 J

Since ΩR ^ QRt for R' ^ jR we conclude that the set Ω^ has zero measure. Hence
|| φ || oo ^ 1. Since weC2(IR2) we infer w ̂  0 to complete the proof.

Proof of Lemma 3.2. The Schwarz inequality asserts that

I - i*(Daφ A Daφ)\ ^ *(Daφ A *Daφ). (3.19)

Inequality (3.19) with equations (3.2) and (3.3) imply the two inequalities

Δ (w + /) ^ (1 - 2w) (w + /), (3.20a)

Δ (w - /) ̂  (1 - 2w)(w - /). (3.20b)

Since w :§ 1/2, neither (w + /) or (w — /) can achieve a nonpositive minimum on U2

(see, e.g. [11] Theorem 3.5). If lim w(x), /(x)->0 pointwise then there is nothing
|x|-*αo

left to prove. However, we need to prove the Lemma under the weaker hypothesis
that ^ < oo. Since Fa satisfies equation (2.3a), and \φ\ ^ 1 (Lemma 3.1),

J d*Fa A *d*Fa £ J Daφ A *Daφ (3.21)
!R2 U2

and *J*FαeL2([R2).
It follows from the definition of w and the fact that \φ\ rg 1 that also

J dw A *dw ^ j Dαφ Λ *Dαφ. (3.22)
O?2 K2

Let w = w + / From equations (3.21) and (3.22) uεH^2(U2) nC2(R2).

l f r < 0 (3-23)otherwise

and WR = g κ w _ . The function UR is in H^2(D2R(0))r^C°(U2) and uκ ^ 0. Equation
(3.29a) implies that

}^0 (3.24)
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where Ω = {xe R2\u(x) < 0}. Integrating the left side of equation (3.24) by parts gives

Ω Ω

An integration by parts again and the Schwarz inequality give

<ιr 4Ί
1 / 2^. _ Γ U 2T

/2

Ω 2\_Ω J ^ LlR2 J

The Sobolev Embedding Theorem asserts that H1'2([R2) c L4([R2)10. Let | | w | | 1 ? 2

denote the finite H1'2 norm of u. Then there exists a constant c> 0 such that

Since Ωn DΛ(0) <= Ω nDΛ,(0) for R' > R, taking liminf over R proves that the set Ω
has zero measure. Since ueC2([R2), w Ξ > 0 . The proof for u — w — / is the same.
Q.E.D.

Proof of Lemma 3.3. To prove Lemma 3.3 it is convenient to define complex
coordinates z, z on 1R2 by

Z = X! — DC2

The one forms Jz and dz form a basis for Tg([R2) and we expand the one-form a in
this basis;

a = adz + adz. (2.28)

Equation (3.28) defines αeC3([R2;C). We define functions u, ueC 2(R 2) and

w — w + /,

ϋ = w - / , (3.29)

Λ ± =(D β φ) 1 TiφαΦ)2

The functions /z+ have an equivalent definition as

= h_dϊ. (3.30)

Using the definitions (3.1) for / and w and equations (2, 3a, b), we derive a coupled
system of equations for h + , u and v:

du=-±φh + , (3.31a)

dv=-$φh_, (3.31b)

-iφw, (3.3 Ic)

-iφz;, (3.31d)
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where

d = — and d = —.
dz dz

The equations (3.31a-d) imply that

d(uv) = d(h.h + ). (3.32)

To see this, multiply both sides of (3.31a) by υ\ both sides of (3.31b) by u and add the
resulting equations to get

d(uυ)= -\φvh + -±φuh_. (3.33)

Similarly, multiply both sides of (3.3 Ic) by h_ and both sides of (3.3 Id) byh + . Adding
the resulting two equation gives

d(h_h+)= -±φvh + + %φuh-. (3.34)

Equation (3.32) follows immediately. To derive (3.4), multiply both sides of (3.32) by
zgR(x) and integrate over [R2.

J *gRzd(uv)= f *gRzd(h_h + ). (3.35)
κ2 o?2

An integration by parts in (3.35) and using the facts that dz = 1, dz = 0 gives

j *gRuv= - J *(uvzdgR-h_h + zdgR). (3.36)
K2 IK2

To estimate the right side of (3.36) we make use of (3.10), and the fact that
UQR = (1 — QRi2)dgR. These facts and equation (3.36) imply that

J ί

(3.37)

The right hand side of (3.37) is bounded by a constant times ,s/. From Lemma (3.2),
uv ^ 0. Therefore

J gRuv<* j ^ut;, for R ̂  R'. (3.38)
[R2 K2

We now take lim inf over R as R -» oo on the right hand side of (3.37). The lim inf is
zero, proving the lemma.

IV. Every Weak Solution is Gauge Equivalent to a Strong Solution

In this section we prove Theorem II. Let Ω be an open subset of (R2 if V is any vector
bundle over Ω with C°° Hermitian metric <y> defined on the fibres, define the
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spaces Hp'q(Ω'V) [9], p,q^ 1 as the completion of Cx(i2; V) in the norm

Hl;,β:fl= Σ f*<^w,δ»w>'
\β\ ^pΩ

with δ. = -^,i=l,2. (4.1)
cxl

In particular this defines the Banach spaces Hp'q(Ω\ T*) and Hp-q(Ω\ E) for p, c/ ^ 1.

Let D be the disc of radius one about the origin.

Proposition 4.1. Let (a, φ) be a weak solution of eqιιations(2.3a)and(2.3b}. Then there

exists a pair (a 1? φl)^Λi(D)@C^(D\ E) related to (a, φ)by(aί, φί) = (a + dψ1, φelψl)
with the function \ l / 1 e H 2 ' 2 ( D ) .

Proof of Proposition 4.1. It is a standard [12] result that there exists a unique
ψl€H2^2(D2(0)) such that in D

d* dψι = — d * α,

<AiU 2 «» = 0 (42)

where D2(0) is the disc of radius 2 about the origin. Define a l-forma1 and section φλ

oϊT*®E\D by

av =a + dψt, (4.3a)

φ^φe***. (4.3b)

Because (<:/, 0) is a weak solution of equations (2.3a) and (2.3b) and d * c / j = 0, for any

Λ *dal+d*bΛ *d*aΛ --b Λ *(φ 1D f l ιφ 1 - φ^D^φJ = 0, (4.4)
£>

Define a 1-form J by

i —

It follows from Lemma 3.1 that if (a, φ] is a weak solution, || φ || α5 ^ 1 therefore
2(^2; T*) - L2(ff32, T*) and

II J U O , 2 : D ̂  ί ^ β l Φl A * DαΛ g ^((fl, Φ)). (4.7)

D

Equations (4.4), (4.7) and standard regularity estimates (see e.g. Morrey [12],
Theorem 6.4.3) assert that^ eH 2 < 2(D; T*). Using the Sobolev Imbedding Theorem
9, 10, aίEC°(D; T*). The fact that aλ is continuous in D, equation (4.5), and the
regularity theorem, Theorem 6.4.3 of Morrey [12] imply φ 1 e// 2 ' 2 (D; E). The
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Banach space H2>2(D; E) imbeds in H^(D; £);9 therefore J EH^2(D; T*) and
φίφ1EH2'2(D). With these results, Theorem 6.4.3 of [12] asserts that
aίeH3'2(D; T*). Continuing this iteration proves that a1 e/L1 (D) and φ1 E C°°(D; E).
We leave out the details.

Because da = daί in D, the function / = * da is in C°°(D). Similarly the function

weC°°(D) as are the forms J,Daφ Λ *Daφ,iDaφ Λ Daφ. The choice of the origin was

completely arbitrary so in fact /, w, J, Daφ Λ *Daφ, idaφ Λ Daφ are C°° on [R2.
The two-form F = da is infinitely differentiate on [R2; therefore there exists a

1-form αe/l^fR2) such that da = F. Let DR and DΛ, be two discs of radii R > Rf

about the origin. The identical analysis as before proves the existence of a pair
(aR,φR)EA1(DRιTήί) ®CCO(DR ;£) and a function ψREH2>2(DR) such that (aR9 φR)=
(a + dψR, 0^*) in D^. Similarly there exists a pair (aR,,φRf) in /l^Z)^,
T*) ΘC00^, ;£) and a function ψR,EH2>2(DR,) such that (aR,,φR>) = (a + d^Λ,,
φeί<//R'). In DΛ, there exists a C°° function σΛ such that

α - aR + ̂  - α + d(σR + ι^Λ). (4.9)

In the intersection DRπDR, the pair σR, + ̂ ' may be chosen (it is unique up to
constant) so that

<rR' + ψR' = σR + ψR in DR^DR" (4 10)

The set of functions {σR + ψR}R > 1 have the property that on DRnDR, equation
(4.10) holds. The set {σR + ψR}R > i defines a single function ^ such that

By construction, ψEH2°2(Ω) for any bounded set Ω <= [R2. The same kind of
argument can be used to show that the section φ of E defined on each disc DR by

<i>\DR = φel(σR + I / / K ) = φe11^ DR (4.12)

is in C°°(£). This completes the proof of Theorem II.

V. Yang Mill's Equations on [R2 x S2

In this section we will show that the SU(2) Yang-Mill's equations on the four
dimensional manifold [R2 x S2 with Riemannian line element ds2 = dx\ + dx\
+ 2(dθ2 + sm2θdχ2) reduce to equations (2.3a) and (2.3b) when the connection is
required to be invariant under the lifting (unique up to conjunction), of the group of
rotations, O(3), acting on S2 to the principle bundle. Let #0(3) ̂ e ^ne set °f such
invariant C°° connections.

Let {σ7}| = ! be the 2 x 2 Pauli matrices. Define an element Q in the Lie algebra of
SU(2) by

Q = i{cosθσ3 + sin θ (cos χσ1 + sinχσ2)}. (5.1)

0(3)The matrix Q satisfies the relation Q2 = — 1. A connection in ^0(3} has the
form, [7, 8]

A =^aμdxμQ +1(0! - !)QdQ+$φ2dQ (5.2)
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withβμ = αμ(x1? x2); μ = 1, 2 and 0; = φ j ( x l 9 x2); 7 = 1> 2. Let Tα, α = 1, 2, 3 denote
the generators of the action of SU(2) in the adjoint representation; let Lα, α = 1, 2, 3
be the generators of the action of the group O (3) on T* (S2). Then the curvature of the
above connection transforms trivially under the action of T + L.

To make the relation to the Ginzburg-Landau equations on (R2 manifest, define
a two-form F and a complex scalar φ by

F = da = dvaμdxv Λ dxμ, a = aμdxμ

ψ = φ1+ίφ2. (5.3)

The curvature two-form of the connection defined by equation (5.2) is

& = 2FQ + 2 Re Daφ Λ QdQ + \ Im Daφ Λ dQ + $(φφ - 1)dQ Λ dβ. (5.4)

The duality relations on [R2 x S2 are

* (dxμ Λ dxv) - 2sin Θdθ A dχεμ\

* (dxμ Λdθ)= - εμvdxv Λ sin θdχ,

*(dxμ Λ sin θdχ) = εμvdxv Λ dθ,

* (sin Θdθ Λ dχ) - ^εμvdxμ Λ dxv. (5.5)

Using these relations and the fact that

dQ Λ dQ = - 2Q sin Θdθ Λ dχ (5.6)

one can compute the Yang-Mills equations.
The four dimensional equations

d*.3f + A Λ *J£--*j£- Λ ^ - 0 (5.7)

are

d*F-^*(φDaφ - φDaφ) Λ sin^d^ Λ dχQ

- \ Re (- Da*Daφ + *i(φφ - l)φ) Λ dQ

- ί)φ) Λ Qdβ - 0. (5.8)

Where in equation (5.8) the symbol * denotes the Hodge duality operator on the two
dimensional subspaces spanned by (x1 ?x2). The SU(2) action for the invariant
connection defined by (5.2) is a constant times the Ginzburg- Landau action defined
by equation (2.2). The second Chern number of 2F is exactly the first Chern number
for Fa defined in (2.4). In fact the integration over the variables on the two spheres is
trivial.

The equations for the O(3) symmetric instanton solutions are equivalent to
equations (2.8) and (2.9). These facts, along with Theorems I and II of this paper,
imply that there are no O(3) invariant solutions to the SU(2) Yang- Mills equations
on U2 x S2 which are not either self dual or anti-self dual. Combined with our
previous results [6] there is a 2|N| parameter family of O(3) symmetric instanton
solutions on [R2 x S2 with topological charge N. The 2\N\ parameters describing a
solution are the positions of the zeroes of the field φ in the (x1? x2) plane.
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VI. The O(3) Symmetric, SU(2) Yang-Mills Equations

If we fix a line in [R4, then the group of rotations about that line, O(3), lifts to an
action on the bundle [R4 x SU(2) in a unique way (up to conjugation) [8]. Let ̂ 0(3)

denote the set of C°° connections invariant under this action. We prove that all
solutions to the SU(2) Yang- Mills equations in ̂ 0(3) are either self dual or anti-self
dual, cf. Theorem III. Before stating the theorem, some preliminary definitions are
necessary.

We take coordinates (ί, r, $, χ) on [R4 with line element ds2 = dt2 -f dr2 +
r2(dθ2 + sin2 θdχ2). The fixed line in [R4 we take to be the line r — 0. A connection in

^oo) can be Pu* m tne following canonical form:

A = $aμdx"Q + £«>! - l)QdQ + ±φ2dQ (6.1)

withdx 0 = dt,dxl = dr;aμ=aμ(r, ί),μ = 0, l φj = φj(r, t\ j = 1, 2 and Q defined in
(5.1). Define a two-form Fa and a complex scalar φ by

Fa = da = (dtar — drat)dt Λ dr

Φ=Φ, + iΦ2

 (6 2)

The curvature two-form of the connection defined by (6. 1 ) is

A QdQ+^(dφ2 -aφj Λ dQ +±(φφ- l)dQ Λ dQ.
(6.3)

The Yang- Mills action density is the scalar invariant — *fr(J5Γ Λ * J )̂. For the
connection in (6.1)

- 1) (6.4)

where the index μ runs from 0 to 1 and 50 = d/dt, d^ = d/dr.
The action is the integral of (6.4) over [R4 the angular integration is trivial,

leaving

jtf = -tr j 3F Λ * ̂  = d (α, φ)
[R4

and

2Fa Λ *Ffl + 2Dβφ Λ *D> + *((/>φ - 1) (6.5)

The * operation in (6.5) is defined by *dt = dr, *dr= —at, *l=dt/\dr. The
Yang-Mills equations are the variational equations of the reduced action, j/,
defined in (6.5);

d*r2F-i*(φD^φ - φDaφ) = 0, (6.6a)

- Da*Daφ + *-^(φφ - l)φ = 0. (6.6b)

The second Chern number of the SU(2) connection A in (6.1) can be expressed in
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terms of the first Chern number of the U(l) connection on R + as

^\Fa = N=-^-2tr\ ^Λ^. (6.7)2π U2 oπ K4

The SU(2) action, .̂ (α, φ\ is bounded below by a multiple of | Λ Γ | and achieves its
minimum for fixed N if and only if

f Λ^O, (6.8a)

if N*0. (6.8b)

Equations (6.8a) and (6.8b) are the O(3) symmetric instanton equations for which
Witten [7] found a 2\N\ parameter family of solutions.

Define the (open) subset R2

+ <= [R2 as

U2

+ = {(r, f ) e ( R 2 | r > 0}. (6.9)

We now state

Theorem III. Let the SU(2) connection AE^0(3}; A is given by (6.1). Assume that the
one-form a e C3 (R\, T*) and φ e C2 (R + C) wif ft (a, φ) a sίrcwgi solution to (6.6a, b) in
(R + . Suppose further that j/(a, φ) < oo and ί/iaί ί/iβre exists ε > 0 swcft ί/iaί

tr J

L satisfies (6.8).
Two Remarks: First K. Uhlenbeck [13], proved that if j/ < oo and /I is a strong
solution to the Yang-Mills equations, then A defines a connection on a principal
SU(2) bundle on S4 and hence has integer second Chern number. Secondly, if the
curvature is L4([R4) then condition (6.10) is superfluous. If ̂  is locally bounded, then
we may also dispense with (6.10). This is the case for any strong solution.

We strengthen Theorem III by proving that the hypothesis on the differentia-
bility of (α, φ) may be relaxed to allow for weak solutions.

Define a weak solution to the O(3) symmetric Yang-Mills equations as a
connection A^^0(3} given by (6.1) such that

1. The one-form αe// 1 > 2(Ω; T*) for all open sets ί2e(R+ with compact closure.
2. The function φeH 1>2(ί2; C) for all open sets ΩeU2

+ with compact closure.
3. -5/(α, φ) < oc .
4. For all pairs (b, η) e H^2 (U2

+ T*) © HJ 2 (R2

+ C)

J \r2db Λ * F α - ib Λ *((/>£>> - </>£>» + Daη Λ *De

1
> Λ *Daη + *(φφ - l)(0ij + ̂ φ) ^ = 0. (6.11)
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Theorem IV states that every weak solution is gauge equivalent to a strong
solution.

Theorem IV. Let the connection A in (6.1) be a weak solution to the O(3) symmetric
SU(2) Yang-Mills equations. Then there exists a pair
(α, φ)eC^(U2

+; T*) 0 C°° ([R2

+ C) related to (α, φ) by (α, φ) = (a + dψ; φj*\ The
function ψeH2'2(Ω) for all open £2e(R + with compact closure.

VII. The Equivalence of the First and Second Order O(3) Symmetric SU(2)
Yang Mills Equations

The proof of Theorem III is conceptually similar to the proof of Theorem I. Certain
estimates will differ. Define functions/, weC 2((R + ) and h + , h_eC1(R2

+ C) by

h+=Dtφ-iDrφ,

h_ = Dtφ + ίDrφ,

where

DμΦ = dμφ-iaμφμ (7.1)

In U + , the function w pointwise satisfies

_ 2
Δw= -2*(Dαφ Λ *Daφ) + -^(l-w)w,

where

£2 d2

(7.2)

Equation (7.2) follows from (6.6b) and the definition of w. From equation (6.6a) we
derive an equation for /,

Δf = - 2ί*(Daφ Λ D>) + ~(1 - w)/. (7.3)

Equation (6.10) is equivalent to the statement that

2 -
<oo. (7.4)

In the proofs that follow, gR(r, t)eC$(R2) (for R > 0) is defined in (3.8). For
λ > 0, we define a function jg^eC00^) by

(1.5)

0

o ̂  βλ ^
 1

1

if r^λ

if λ < r < 2λ,

if 2λ ̂  r.
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Lemma 7.1. The function w is either identically zero on R+ or w > 0.

Proof of Lemma 7.1. Define a function w_ e#iόc(^+) by

— w if w < 0, , ^
W- n f ^π0 if w^O.

Define the set Ω c U2+ by

& = {;cE^ 2 lw(x)<0}. (7.7)

From (7.2) we have

1 w - w w
ί βλgR-w_d*dw = - \ 2βλgR~Daφ Λ *Daφ + 2 j *βλgR~(l - w).
Ω r Ω r Ω Γ

(7.8)
Using the definition of w _ in (7.8),

(7.9)
Ω r Ω

The left side of (7.9) can be integrated by parts to give

®R Λ

Integration by parts on the last term on the right side of (7.10) yields

1 1 w2

Ω r Ω r Ω 2r

, w2 „ w2 ,, w2

Ω r Ω r Ω 2r

Together, equations (7.11) and (7.9) imply

3 A < - d w Λ *dw + 2 —D.φ A *ϊ^+*2~(l/2 + | w | ) > =
I 1/« V V J \

Ω

2 w2

+ J βλ -ϊ (rd * dgR - 2dgR Λ *^r) + J gR —^ (rd * dβλ - 2dβλ Λ * dr)
Ω ZΓ Ω LΎ

w2

+ ί—(dβλΛ*dgR). (7.12)
Ω r

The three terms on the right side of (7.12) are effectively boundary terms since the
integrands are nonzero only near the boundary of the supports of βλ and gR. To
estimate them, define a constant K1 by

), (7.13)
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with g = gR = ±. Using the definition of K1 and equation (3.10),

Ω

wz

λ2r~2

Define a constant K2 by

K2 = max(2| |d*dj8 1 | | 0 0 ,2 | |d j8 1 | | J .

Using the definition of K2 and equations (7.4) and (7.5),

w"

For the final term on the right side of (7.12), we have

w" w"

r2

Equations (7.12), (7.14), (7.16) and (7.17) imply the inequality

Γ l ^ Λ * d w + 2^D(/)Λ*D7 + *-w2(l/2 + |w|

i 1 ί 1 L θ J < ^ \ Γ ^ J _ θ l + ε 2 ε f c ^H 11+2A-,) i *—^- -\- Δ λ A7
Ώ J γ^

The finite action assumption implies that

I *~2~ < °°

From (7.4),
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(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

< 00.

B?2 ^

Taking lim inf over (R, λ) as R -» oc and as λ -> 0 on the right side of (7.18) proves
that the set Ω has zero measure. As weC 2([R+) we conclude that w^O. The
maximum principle (see, e.g. [11], Theorem 3.5) asserts that w cannot have a
nonpositive minimum on IR + , thus proving Lemma 7.2.

It is convenient to introduce complex coordinates on U2

+ by

z = t + ir, z = t — z>, (7.19)

The one-forms dz and dz form a basis for 7^?([R + ) and we can expand the one-
form a in this basis as

a — udz + adz. (7.20)

Equation (7.20) defines αeC3(iR+ C). The functions h + , h- defined in (7.1) have an
equivalent definition,

= Daφ±i*Daφ. (7.21)
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Let u = w + / and v = w — / From equations (6.6a, b), (7.2) and (7.3),

ddu = ̂ u(l - w) --Λ + Λ + , (7.22a)

2r2 2

and

on = — h + φ, (7.23a)

3v = - h_ φ, (7.23b)

(β _ jα)/|+ — uφ^ (7.23c)

(5 4- iα)/Γ_ = 2 ϋ(? (7.23d)

Lemma 7.2. The functions u, v are either identically zero on R + or u, v > 0.

Proo/ o/ Lemma 7.2. The proof of Lemma 7.2 is essentially the same as that of
Lemma 7.1, except that instead of Eq. (7.2), equation (7.22a) is used for w, (7.22b) is
used for υ.

Equations (7.23) can be used to derive the equality

2d(h_h+) = ̂  d(uv). (7.24)
r

To derive (7.24), multiply (7.23a) by v and (7.23b) by u and add the resulting
equations. Multiply (7.23c) by /ϊ"_ and (7.23d) by h+ and add these two equations.
The results are:

d(uv)= —υh + φ — uίϊ_φ,

1

2r2

Equation (7.24) follows directly.

Lemma 7.3. With u, v defined above,

, uv

r
(7.26)

Proof of Lemma 7.3. Multiply both sides of (7.26) by qRβλ and integrate. We have

* =* (7.27)
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Integrating both sides of (7.27) by parts and multiplying by i gives

-2i j *h-h + d(gRβλ)= + j *j8A0Λ™ -ί J *™S(0KJ8A). (7.28)
K^ R* " R* r

To estimate the derivatives of βλ and gR in (7.28), we note that

l 0 0 2 1 + e . (7.29)1 0 0

Inequality (7.29) and (7.28) imply the inequality

(7.30)

The right hand side of (7.30) exists, this from the fact that j/(α, φ) < oo and (7.4).
Taking lim inf over (R, λ)asR-+co and λ -> 0 on the left side of (7.30) gives the result.

Theorem III is essentially proved. Lemmas 7.2 and 7.3 imply the either u = 0 on
IR + or v = 0 on IR +. If u = 0 then / = — w is negative from Lemma 7.1 and the second
Chern class is negative. From (7.23a), h+=Q. Therefore (a, φ) satisfies equation
(6.8a). If v = 0 then likewise (a, φ) satisfies (6.8b).

VIII. Regularity of Weak Solutions

The proof of Theorem IV is only slightly more difficult than the proof of Theorem II.
The techniques are the same. Define Dp c [R2 by

Dp = {(r,t)eR2

+\(r2 + t2)ll2^p9 r^l/p}. (8.1)

Note that Dp^Dp + ί and U"= ίDp = U2

+.

Lemma 8.1. Let A be a weak solution to the O(3) symmetric SU(2) Yang-Mills
equations. With (α, φ) defined by (6.1), and (6.2)

I I Φ LSI- (8.2)

We shall postpone proving Lemma 8.1. Assume for the moment that it is true. We
use it to prove a local regularity result

Proposition 8.2. Let A be a weak solution to the O(3) symmetric SU(2) Yang-Mills
equations. Then there exists a pair (ap, φp)eC°°(Dp; T^}®Cco(Dp; C) related to

fa Φ) by (ap9 φβ) - (a + d\l/p, el+"). The function ψpeH2>2(Dp).

Proof of Proposition 8.2. The proof is essentially the same as the proof of
Proposition 4.1. The function ψp is the unique solution [12] to the equation

d*dψp= -d*a,

ΨP\ 80^ = 0. (8.3)
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The argument used in proving Proposition 4.1 is valid because l/p ^ r ̂  p in Dp.
The construction used in the proof of the global existence of functions (α, φ) in

Theorem II, on [R2, works word for word on R2

+. Only the simply connected
topology of [R2 was necessary in the proof. (R + is simply connected.

Therefore, we have reduced the proof of Theorem IV to that of Lemma 8.1

Proof of Lemma 8.1. The assumption that A be a weak solution means that for all

0. (8.4)
r

Substitute in (8.4) the function η defined by

- 9 R β ι ( \ Φ \ - l ) Φ / \ Φ \ i f | Φ I > l ,

i n T I Λ J 1 (8 5>(0 if |φ| < 1.

The function gR,R>Q was defined in (3.9) and the function βλ9λ>0 was defined in
(7.5). Lete = φ/\φ\ and

Ω = { ( r , t ) e U 2

+ \ \ φ \ > l } . (8.6)

The function βλgReeHfr2(U2

+ C). We compute

^\ (8.7)
r /

The substitution of (8.7) into (8.4) gives

1
H —

r2

(8.8)

To evaluate the second term in (8.8), expand d((gRβλ)/r) and integrate by parts. The
result is

2 f
Ω

Q Γ3 o r2 j Λ Γ

+ gR(rd*dβλ - 2dβλ /\*dr) + 2rdgR /\*dβλ\. (8.9)

We note that in Ω, | φ\ (\φ\ + 1) ̂ 2 and (| φ\- I)2 ^(φφ- I)2. Using these facts, (8.9)
and (8.8) give the inequality
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2 f ̂ \d\φ\ Λ *d\φ\ + (\φ\ - l}\φ\Dβ Λ *D^ + *l(|φ| - 1)4 £
ί2 Γ I Γ J

\2

- {rd*dgR - 2dgR Λ * dr}
Ω

2r1+εdβλΛ*dr}
Λφφ-tf

(8.10)

The terms on the right side of (8.10) contain derivatives of gR and βλ\ they were
evaluated in equations (7.14), (7.16) and (7.17). With the constants K1 defined in
(7.13) and K2 defined in (7.15) we have

Λ *d\φ\ +(\φ\ - l)\φ\Dae Λ *D + *

2K2) f . + 2 * « M « K 2 J *-£,. (8.11)

By assumption, the integrals on the right hand side of (8. 1 1) exist. Taking lim inf over
(JR, λ) as R -» oo and λ -> 0 on the right hand side of (8.1 1) proves that the set Ω has
zero measure, which proves Lemma 8.1.
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