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Abstract. Let F be a closed face of the weak* compact convex state space of a
unital C*-algebra A. The class of jp-abelian states, introduced earlier by the
author, is studied further. It is shown (without any restriction on A or F) that F
is a Choquet simplex if and only if every state in F is F-abelian, and that it is
sufficient for this that every pure state in F is F-abelian. As a corollary, it is
deduced that an arbitrary C*-dynamical system (A, G, α) is G-abelian if and
only if every ergodic state is weakly clustering. Nevertheless the set of all
F-abelian (or even G-abelian) states is not necessarily weak* compact.

1. Introduction

In the algebraic model of quantum statistical mechanics, decompositions of the
invariant states of a C*-dynamical system (A9 G, α) into ergodic states have become
important [5]. Particular interest has centered on the question of whether the
weak* compact convex set SG(A) of invariant states forms a Choquet simplex.
Lanford and Ruelle [11] showed that this is the case if every invariant state φ is
G-abelian in the sense that the restriction of πφ(A)" to the subspace J>fφ of uφ(G)-
invariant vectors in J^φ is an abelian von Neumann algebra [where (J^, πφ, uφ) is
the covariant representation of (A, G,α) associated with φ]. (This fact was already
implicit in [10].) The converse of this result was subsequently obtained by Dang-
Ngoc and Ledrappier [7]. Meanwhile it had also been established that for an
ergodic state φ, G-abelianness is equivalent to the "weak cluster property", namely

inϊ{\φ(a'b)-φ(a)φ(b)\}=0

for all a and b in A, where the infimum is taken over all d in the convex hull of the
G-orbit of a. This raised the question whether every invariant state is G-abelian if
every ergodic state is weakly clustering. Dang-Ngoc [6] used direct integral theory
to establish this when A is separable.

Recently the present author [4], interested in the class S0(A, α) of ground states
associated with a (strongly continuous) one-parameter C*-dynamical system
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(A, IR, α), has introduced the class Fab of "F-abelian" states in an arbitrary weak*
closed face F of the state space S(A). Amongst others, the following conditions on
F were considered:

(Fa) Fab = F,

(Fb) F is a simplex,

(Fc) FabnP(A) = FnP(A),

where P(A) denotes the set of all pure states in S(A). The implications
(Fa)=>(Fb)=>(Fc) were proved in general, and (Fc)=>(Fa) was proved under certain
conditions on A and F, automatically satisfied if A is separable or F = S0(A, α).
Although SG(A) is not in general a face of S(A), it can be canonically identified with
a face FG(A) of S(G x A), where G x A is the C*-crossed product of (A, G, α), so the
results of Dang-Ngoc and Ledrappier could be recovered from [4]. However this
left unanswered the following conjecture, even for F = FG(A):

Conjecture ί. Conditions (Fa), (Fb), and (Fc) are equivalent.
Since Fab is convex, an affirmative answer to Conjecture 1 would have followed

from the Krein-Milman Theorem and an affirmative answer to the following:

Conjecture 2. Fab is weak* compact.
In the case when F = FG(A), Conjecture 2 was originally suggested to the

author by O. Bratteli (private communication).
Here Conjecture 1 will be answered affirmatively, and Conjecture 2 negatively.

The former is established by developing an idea originally used in [3] in a study of
ground states of a uniformly continuous system (A, IR, α). In that case, S0(A, a) is
the set of states annihilating the spectral projection of the minimal positive
generator in ,4** of α corresponding to the interval (0, oo). For general F, the ideal
structure theory of C*-algebras [9,16] shows that there is some open projection qF

in yl** such that

F = {φeS(A):φ(qF) = Q}.

As in [3], Pedersen's non-commutative integration theory [13] now enables it to
be shown that (Fa) and (Fc), and hence (Fb), are equivalent to each other and to:

(Fd) 1 — qF is an abelian projection in ,4**.

Alternatively it can be shown directly that (Fd) is equivalent to (Fb), and this gives
a proof of the equivalence of (Fa) and (Fb) which differs essentially from previous
ones even in the case when F = FG(A).

Conjecture 2 is shown to be false by extending some results from [4] to find
subsets of P(A) whose closed convex hulls are faces F for which Fabr\P(A) is not
weak* closed in P(A). These examples also show that Conjecture 2 is false even if F
is assumed to be of the form S0(A, α) or FG(A).

Finally an affirmative answer will be given to the following conjecture
originally made in [4] :

Conjecture 3. Every metrisable Choquet simplex is affinely homeomorphic to a
face of the state space of some separable C*-algebra.
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2. Abelian Faces

Let A be a unital C*-algebra with state space S{A), which will be assumed to have
the weak* topology. Let F be a closed face of S(A), and put

JF = {aeA: φ(a*a) = 0 for all φ in F}.

Then JF is a closed left ideal of A, so any increasing approximate unit for JF

converges weakly to a projection qF in the enveloping von Neumann algebra ^4**
of A. It is well-known [9,14,16] that

where S(A) is identified with the normal state space of ,4**. Furthermore F may be
identified with the normal state space of pFA**pF, where pF = 1 — qF.

Let (3^φ,πφ,ξφ) be the Hubert space, normal representation of A** and cyclic
vector associated with a state </> in F. Following [4], we shall let Jfφ be the linear
subspace of J^φ spanned by unit vectors η such that the vector state a-*ωη

φ{a)
= (πφ(a)η,η} belongs to F, and pF

φ be the projection of 2tfφ onto J^ F . We shall say
that φ is F-abelian if the von Neumann algebra Pφπφ(A)"pζ is abelian, and that F is
abelian if every state in F is F-abelian, i.e. if (Fa) is satisfied.

Proposition 1. Let F be a closed face of S(A), and UF be the set of all unitarίes u in A
with φ(u) = 1 for all φ in F. For a in A, let C(a, UF) be the convex hull of
{u*au : ue UF}. Let φ be any state in F. Then

(i) ^l = πφ(pF)^φ = {ηeJfφ:πφ(u)η = η for all u in UF}.
(ii) φ is F-abelian if and only if for any a and b in A and η in J^φ,

M{\ωl(a'b-baf)\ :a'eC(a, UF)}=0.

(iii) φ is pure and F-abelian if and only if 3^φ is one-dimensional, or equivalently
if and only if, for any a and b in A,

inϊ{\φ(a'b)-φ(a)φ{b)\:afeC(a, UF)}=0.

Proof. For any unit vector η in j ^ φ 9

η e ^Foω%qF) = Ooη e %φ(pF)^φ.

If η does belong to J4?φ, then for any u in UF,

so πφ(u)η = η. Conversely if η is outside Jtfφ, there is some a in JF such that
ωη

φ(a)Φθ, so ω^(α*α)>0. Spectral theory shows that there is a unitary u such that
1 — u lies in the C*-algebra generated by α*α, and hence in JF, but ωη

φ(u) φ 1. Then u
belongs to UF, but πψ(u)η Φ η. This completes the proof of (i).

Since UF consists of those unitaries u for which ψ(au) = ψ(a) (aeA, ψeF), it is a
subgroup of the unitary group of A and acts on A via inner automorphisms. Now
the result of (i) shows that 3*fφ = Jfφ

F. Thus (ii) and (iii) follow immediately from
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corresponding results about G-abelian states [5, Proposition 4.3.7, Theorems
4.3.17, 4.3.22].

Parts (ii) and (iii) of Proposition 1 can alternatively be proved by simply
rewording the proofs in [5].

Theorem 2. The following conditions on a closed face F of S(A) are equivalent :
(a) F is abelίan.
(b) Every pure state in F is F-abelian.
(c) pFA**pF is abelian.

Proof. The implication (a)=>(b) is trivial, and (c)=>(a) follows immediately from the
fact that pF

φπφ{A)"pF

φ = πφ{pFA**pF) by Proposition l(i).
Suppose that (b) is satisfied, and let π be an irreducible representation of A on a

Hubert space ffl. For any unit vector η in π(pF)Jf, the corresponding vector state
ω\ of A is a pure state in i7, and is therefore F-abelian. Identifying πφ with π,
Proposition l(i) shows that π{pFA**pF) is abelian. Thus π(pF) is of rank 0 or 1 for
each irreducible representation π. Since pF is the weak limit of a decreasing net in
A, it now follows as in [3, Proposition 2.5(ii)] that pFA**pF is abelian.

Corollary 3. The seven conditions of [4, Theorem 2.5] are equivalent for any closed
face F of S{A).

Proof. This is immediate from Theorem 2 and the partial result obtained in [4,
Theorem 2.5].

Corollary 3 gives an affirmative answer to Conjecture 1, and Theorem 2 shows
that (Fd) is also equivalent to (Fb). It may be of independent interest to note that
there is an alternative proof of this. For the self-adjoint part of pFA**pF is order-
isomorphic to the Banach dual of the real linear span of F, and is therefore lattice-
ordered if and only if F is a simplex [1, Sect. II.3]. But it is well-known [17] that
the self-adjoint part of a C*-algebra B is lattice-ordered if and only if B is
commutative.

Corollary 4. The seven conditions of [4, Corollary 4.4] are equivalent for any
C*-dynamical system (A, G,α).

Proof. This follows on applying Corollary 3 to the face FG(A) of S(G x A) defined
in [4, Theorem 4.2].

In [4], the crossed product G x A considered was that arising when G is taken
to be discrete, and this is sufficient to prove Corollary 4. However if G has a locally
compact topology in which α is strongly continuous, and the crossed product is
taken for this topology, [4, Theorem 4.2] remains valid provided the repre-
sentations σ of A and θ of G are interpreted as taking values in the multiplier
algebra of G x A. Although G x A may be non-unital, the existence of a unit is
merely a convenient convention in [4] and Theorem 2 above. Thus any crossed
product could have been used in the proof of Corollary 4.

The method of lifting invariant states to a C*-crossed product IR" x A (with the
Euclidean topology on Rn) and considering the corresponding projection in
(IR^x^)** was used by Kastler and Robinson [10] to show that the invariant
states of an asymptotically abelian system (A, R", α) form a simplex.
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3. Compactness of the F-Abelian States

Let {φi'.ίel} be a family of states of A, and ψ be a state in the σ-convex
hull of {0.}, so that ψ = Yuλiφi for some real numbers λ^O with £Af = l.
Put j f = 0 ^ . ? π = 0 π 0 ι , ξ = @λ}l2ξφieJ^. Then φ = ω|, so π φ is unitarily
equivalent to the restriction of π to the cyclic subspace [τφ4)ξ] of ffl. Furthermore
if i// is any state in the face of S(A) generated by ψ, then there is an operator x in
π(A)' such that ψ' = ω*ξ [8, Proposition 2.5.1], so πψ, is unitarily equivalent to the
restriction of π to [τφ4)xξ].

These remarks lead immediately to the following result.

Proposition 5. Let π be any representation of A, and Sπ(A) (resp. S'π(A)) be the
σ-convex (resp. convex) hull of the vector states ωη

π of A in the representation π.
Then Sπ{A) (resp. S'π{A)) is a face of S{A) consisting of the states whose GNS-
representatίons are contained in an arbitrary (resp. finite) direct sum of copies of π.

The next result shows how new faces of S(A) may be constructed out of given
ones, and is an extension of [4, Proposition 3.1].

Proposition 6. Let {Ft: iel} be a collection of faces of S(A), and suppose that

φeFi9 ψeFj, iφj^>πφ and πψ are disjoint.

Then the convex hull of {FJ is a face of S(A). If each F is σ-convex, then the
σ-convex hull of {FJ is also a face of S(A).

Proof. Consider the σ-convex case (the other is similar). Any state ψ in the
σ-convex hull is of the form Yuλiφi where A ^O and φ. belongs to F . If π = ®πφι,
then π(A)f = ®πφί(A)' since the representations πφi are disjoint [8, Proposition
5.2.4]. If ψ' belongs to the face generated by ψ, then by the remarks at the
beginning of this section, ψ' = ω*ξ for some x in π(A)r. If x=φxt where x. belongs
to πφi(A)f and φ[ = ω ^ e F , where ξi = xiξφi, then \p'= Yjλiφ'i. This completes the
proof.

Let A be the spectrum of A. We shall not distinguish notationally between an
irreducible representation π of A and its unitary equivalence class in A.

Corollary 7. For each π in A, let F π be a face of Sπ(A). The convex hull of {Fπ} is a
face of S(A). If each Fπ is σ-convex, the σ-convex hull of {Fπ} is also a face of S(A).

Proof. Proposition 5 shows that {Fπ : πeΆ} is a family of faces of S(A) satisfying
the condition of Proposition 6.

Theorem 8. Let φi (iel) be a net of mutually inequivalent pure states of A which
converge to a pure state ψ, and suppose that ψ is not multiplicative and is not
equivalent to φt for any i. Then there is a closed face F of S(A) such that φ. is
F-abelian (iel), but ψ is not F-abelian.

Proof. Since ψ is not multiplicative, there is a pure state ψ' equivalent to, but
distinct from, ψ. Let F' be the face of S(A) generated by ψ and ψ'. Then F' is
contained in Sπ (A) and is affinely homeomorphic to a 3-dimensional Euclidean
ball [2, Corollary 3.4]. In particular F' is compact and σ-convex. Let F be the
σ-convex hull of F and {φ.: iel}. By Corollary 7, F is a face of S(A). Also the
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closure F of F is the convex hull of F' and the closed convex hull C of {φ^. But [4,
Theorem 3.2] shows that C is the σ-convex hull of {φt} and ψ. Hence F is
contained in the σ-convex hull of F', {φ.} and ψ, so F is closed.

The extreme points of F are the inequivalent states φt and the extreme points of
F', all of which are equivalent to φ. It follows immediately from [4, Lemma 2.3]
that φt is F-abelian, but ψ is not F-abelian.

Corollary 9. Let A be a simple, separable, infinite-dimensional, unital C*-algebra.
There is a uniformly continuous one-parameter C*-dynamical system (A, IR, α) on A
such that S0(A, oc)abr\P(A) is not closed in P{A). Furthermore the set of all IR-abelian
ergodic states is not closed in the set of all ergodic states.

Proof. There is a sequence of mutually inequivalent pure states φn oϊA converging
to another inequivalent pure state ψ (see the proofs of [4, Corollaries 3.3, 3.4]).
Since ψ is not multiplicative, Theorem 8 shows the existence of a closed face F such
that φn is F-abelian but ψ is not F-abelian, so FabnP(A) is not closed in P(A). Since
A is simple and separable, [4, Theorem 5.2] shows that F = S0(A,a) for some
uniformly continuous one-parameter system (A, IR, α).

The final statement follows from the fact that for a ground state φ, 34?£° = tff,
so φ is S0(A, α)-abelian if and only if φ is IR-abelian (cf. [4, §5]).

Corollary 9 gives a negative answer to Conjecture 2.

4. The CAR Algebra

In this final section, we shall consider some C*-dynamical systems on the algebra
of canonical anticommutation relations to show specific examples of systems with
the properties given by Corollary 9, and also to answer Conjecture 3.

For each integer j , let A- be a copy of the C* -algebra of 2 x 2 complex matrices,
and Dj be the subalgebra of diagonal matrices in Ay The infinite C*-tensor
product A of {Aj'.jeZ} is the CAR algebra (or Fermion algebra) [5, 14], and is
simple. The C*-tensor product D of {Dj :jeΈ) is a commutative C*-subalgebra of
A, whose spectrum may be identified with {0, Xf in the product topology. Here

ε :Έ-+{0,1} corresponds to the restriction to D of the pure state φε= (X)φε j where
j

1 ^22/ 1^22 1 J 8\J)=1-

Note that any state coinciding with φε on D is φε itself, since the finite subproducts
of {Aj :jeΈ} have the same property. Also φε and φε, are equivalent if and only if ε
and ε' are equivalent in the sense that ε(j) = εf(j) for all except finitely many; [14,
Proposition 6.5.6].

Let $ be a closed subset of {0, l}π. There is a positive operator x in D such that

For example one might take

χ=Σ2-π{i- Πίd
n— 1 εe<f I j = — n )
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where pεj is the projection in Dj (regarded as a subalgebra of D) given by

9
If F = {φe S(Λ): φ(x) = 0}, then F = S0(A, αx), where

αx(ί)(<z) = exp(zίx)α exp( — itx) (aeA).

If <f contains two equivalent functions ε and ε', then 0 ε is not F-abelian. If ε in $ is
not equivalent to any ε' in the closure of <?\{ε}, then for n*zl, there is an operator
xn of norm 1 in the tensor product of {Dj: \j\ > n} (regarded as a subalgebra of D)
such that

0β,(xB) = O (e 'e ί e'Φe).

For 0 in F, the restriction of φ to D, regarded as a probability measure on {0,1}^ is
carried by S. Thus if (f is countable, there are non-negative real numbers λε, (s'eS)
with Y^λ^ = 1 such that ψ coincides with Σλε,φε, on D. Now φ(xn) = λε, so if 0 is
equivalent to φε, then for some unitary u in A (independent of n\

\l-λε\ = \φε(xn) - φ(xn)\ = \φ(u*xnu - xn)\ ̂  2δn,

where δn is the least distance of u from the C*-tensor product of {Aj: |/| ̂  n}. Since
<5M->0 as n-^oo, Afi = l, so φ coincides with φε on D and hence on A. Thus φ ε is
F-abelian.

This discussion shows that in order to exhibit the effects described in Corollary
9, it suffices to choose $ to consist of two equivalent functions ε0 and ε'o and a
sequence of mutually inequivalent functions εn converging in {0,1}Z to ε0.

There is a natural C*-dynamical system (A, Z, β) on the CAR algebra in which
β(n) restricts to the identity mapping of Aj onto Aj+n. This system is Z-abelian, and
the ergodic states are dense in SZ(A) [5, Example 4.3.26]. Hence SΈ(A) is (affinely
homeomorphic to ) the Poulsen simplex K [12,15]. Thus K is realized as the face
Fτ (A) of S(Z x A). An arbitrary metrizable simplex is a face of K and hence of
S(Z x A), so Conjecture 3 is established. It is worth noting that Z x A is simple [14,
Theorem 8.11.12].
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