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Abstract. Wilson's renormalization group equations are introduced and in-
vestigated in the framework of perturbation theory with respect to the
deviation of the renormalization exponent from its bifurcation value. An exact
solution of these equations is constructed using analytic renormalization of the
projection hamiltonians introduced in Paper I.

1. Introduction

This paper is a continuation of [1] hereafter referred to as I. Reference to
equations or statements in I is made as follows: Eq. (1.3.1), Proposition 1.5.1, etc.
We directly pass here to solving the renormalization group (RG) equations in the
framework of perturbation theory. The set-up of the paper is the following. First,
in Sect. 2 we define the chain of Wilson's equations and find a set of bifurcation
values of the RG parameter a. In Sect. 3 we consider the analytic continuation in a
of a class of projection hamiltonians introduced in I. In Sect. 4 theorems on the
analytic renormalization of projection hamiltonians of a special form are given
and in Sect. 5 the RG transformation for these hamiltonians is described. These
results enable us to construct in Sect. 6 a solution of the chain of Wilson's
equations. In Sect. 7 and Appendix some auxiliary results are proved.

2. Wilson's Equations

These equations arise when one seeks nontrivial fixed points of the renormali-
zation transformation near the bifurcation points. Before giving precise de-
finitions, we want to explain their meaning. We expect that, as usual in many
problems of nonlinear analysis, for certain values of the parameter a, a new branch
of non-Gaussian solutions bifurcates from the branch of Gaussian fixed points of
the RG (see Proposition 1.1.1). Typically, this new branch is unique, however
several branches may arise in degenerate cases. One can try to construct non-
Gaussian solutions on this new branch as power series in the deviation of the
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parameter a from the bifurcation value a0. Due to the in variance of the
hamiltonian under the action of the RG a chain of equations on the coefficients of
this series arises which we call Wilson's (complete) chain of equations.

So, we have two problems:
(i) Evaluation of the bifurcation values of the parameter a.
(ii) Construction of the solutions of the Wilson equations for these bifurcation

values.
In this section we discuss (i). Let us present first explicit definitions. Denote

oo oo

£ £ anmδnεm

m = l ιι = O

the space of formal power series in two variables, with no terms anOδn. Let

(1.1)
00 V '

00 00

τ: Σ Σ ^ V " - Σ ( Σ
m=ln=0 k=l\m+n=k

be the operator of restriction to the diagonal, and let

be a space of formal hamiltonians depending on two variables.
Due to Proposition 1.5.1 the renormalization operator is an entire function of

the parameter a. Hence for a = a0 + δ

oo sn in
Mifi) — Y L__Z_^>(«o) (12)

dn

where all the operators -τ-^^% are continuous in the space of formal hamil-

tonians J^Jf °° and the series converges for any δ.
Now we introduce a new operator

(1.3)

00 δn dn ! °° ^
(
\m=l

oo oo Sin

= Σ Σ Γfβ-Je (i 4)
m = i n = o ni

In order to calculate &{^δ\H) it is sufficient to calculate M{^λ

+δ)(H) and to
expand the result as a series in δ.

Definition ί.ί α o >O is a bifurcation value, if there exists a formal hamiltonian
He. fJ f 0 0 such that

τ&%>iδ)(H) = H9 (1.5)

where the operators τ and dflffl are defined by formulae (1.1)—(1.4). (1.5) is
understood as equality of formal hamiltonians. If (1.5) holds, the hamiltonian H is
called an effective hamiltonian.
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Actually the equality (1.5) is reduced to a chain of nonlinear equations.

Qj{Hv...,H) = Hj (1.6)

for the coefficients {Hj,j= 1,2,...} of the effective hamiltonian. These are named
full Wilson's equations.

The first equation of the chain (1.6) corresponding to j= 1, is as usual linear

^IH^H, (1.7)

where @χώ

λ = (^o)')A{χ -χ) [see (1.5.9)] is the differential of the renormalization
transformation at zero with a = a0. Let H1=(hl9 h2, ...,hm, 0, 0, ...)eJ^°°, fcm + 0.
Then Eq. (1.7) is reduced to a "triangular" chain of functional linear equations for
the functions hv ...,hm. For the last function hm this equation has the form

mαo

λ~-md+dhm(λ-1kv...,λ-1kj = hm(k1,...,km). (1.8)

Solutions of this equation are homogeneous functions of order l—^—md+d\.

The function hm must satisfy the following four conditions:

(i) hjkl9 ...,/em)eC°°(IRmd) (since Hei^Jf 7 0 0).
(ii) hjfllk^ ...,<9ίkm) = hm{kί, ...,fcOT) for any orthogonal transformation ^ of

the space IRd (isotropy).

(iii) hjkv ...,few) = ftm(fc«(i)J •• »fcπ(m))» w h e r e π:(l>. .,wi)->(π(l),...,π(m)) is any
permutation (symmetry).

(iv) hm(kv ...,km) = 0, if m is odd (oddness off/ in the spin variable).
Moreover hm(kv ...,km) and gj^k^ ...,km) are considered identical, if they

coincide on the subspace kx + ... + fcm = 0.
These conditions lead to the following solutions of Eq. (1.8) (modulo a constant

factor)

(i) m = 2, ao = d, h2(k1,k2)=l

(ii) m = 4, aQ=\d9 h4{kv ...,fc4) = l

\2
41

(n) m = 2 n , a o = [ 2 I d , /zm(/c1? . . . , fc j =
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Therefore the equation ^o)

λH1 =Hι has a solution only for certain values of a0.
Their general form is

(1.9)

where n^l and r^O are integer numers. Only these values may be bifurcation
values of RG (see also Appendix of the paper [2] where similar considerations are
made in a somewhat different situation).

Solutions with n= 1 (i.e. m — Ί) are not interesting. In that case the correspond-
ing hamiltonian is quadratic and coincides with Ho modulo a constant factor. The
solution with m = 4, ao=\d

hj[kl9 ...,/C4)ΞΞconst

gives the first nontrivial example. In this paper we consider only this solution. It is
easy to see from the general formula for the effective hamiltonian H (see below)
that

...σ(fc4)dfc:^, (1.10)

where Aχ(k) = \k\d~aχ(k) and u1<0 is a numerical factor.
All our results hold (with appropriate modifications) for

n = 3,4, ...9h2n(kl9 ...9k2n) = c o n s t , ao = 2dί 1 - —j

Note, that solutions with n = 2,m = 4 appear in investigations of critical phenom-
ena in systems with long range potential. Solutions with m = 6, 8,... arise in
describing a multicritical behaviour in such systems (see in this connection [3]).

3. Analytic Continuation of Projection Hamiltonians

Now we turn to the construction of a solution of Eq. (1.5) with a0 =§d. We shall
seek a solution in the class of projection hamiltonians (see I, Sect. 7) and,
moreover, in the form

H = H(σ,ε)= :expu(ε)φ4:c_Ail_χ), (2.1)

where

The only quantity which is not defined here is u(ε), which we assume to be a formal
power series in ε:

oo

u(ε)= ]Γ ufj.
. 7 = 1
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In the following we shall see that the numbers Upj= 1,2,... are uniquely defined by
Eq. (1.5). Moreover, using the "triangular" form of (1.6) one can prove the
uniqueness of the solution of Eq. (1.5) in the space ZFffl"0 (see [4], where the
uniqueness was proved for j= 1,2).

In the computation of a projection hamiltonian divergences appear. Namely,
in (^-theory with the propagator A(ί — χ)(k) = \k\~dί2(l — χ(k)) all diagrams with
four and two external lines diverge: such a theory is renormalizable, but not
superrenormalizable. In (2.1) we deal with the propagator

_d__

In this case for ε > 0 the φ^-theory is already superrenormalizable: only a finite
number of diagrams with two external lines diverge, but the number of such
diagrams increases when ε tends to zero. If ε<0, then the (/^-theory is nonre-
normalizable. In both cases (ε>0 and ε<0), the diagrams with two and four
external lines have poles when ε->0. Since we consider H(σ,ε) in (2.1) as a formal
series in ε, we are interested only in these poles, and not in the behaviour of various
diagrams for small but nonzero ε.

To analyse these poles we use the analytic renormalization of Feynman
diagrams which is based on the idea of analytic continuation of Feynman
amplitudes in the power of the propagator.

The analytic continuation of the Feynman amplitude with propagator
A(l — χ)(k) = \k\d~a(l — χ(k)) was investigated in [5]. We give the corresponding
result in a convenient form.

Theorem 2.1. The projection hamiltonian (2.1) admits an analytic continuation from
the domain Reα>2d to the whole complex plane as a meromorphic function of a. The
poles of this continuation lie at the points

, (2.2)

where m ̂  1, n ̂  0, r §: 1 are arbitrary integer numbers such that m + r^.4 and m + r is
even. Outside these points He^J^00 and

uφ4:c_Δ{1_χy (2.3)

Proof According to Theorem 4 of the paper [5] the projection hamiltonian (2.1)
can be analytically continued as a meromorphic function of a with simple poles at
the points, defined by the equation:

(a - d) \L(H)\ \L(H)\ -\V(H)\ + l d =

where H is an arbitrary 2-connected nonvacuum graph of the φ4-theory, and n is
an arbitrary natural number. \L(H)\ and \V(H)\ are the numbers of internal lines
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and of vertices of the graph H respectively. Let

r = \L(H)\, m = 2\V(H)\-\L(H)\.

A simple arithmetical calculation shows that (2.2) and (2.4) are equivalent. If H is a
graph of the φ4-theory, then we have

m, (2.5)

where \E(H)\ is the number of external lines of the graph H. Therefore for
I FΌf^l

nonvacuum graphs m= — - — ^ 1. The other restrictions on the numbers m, r are

obvious. Equality (2.2) follows from Theorem 1.6.1 due to the uniqueness of
analytic continuation.

Note that equality (2.4) for a massive propagator (\k\2 + m2)d~f l, m > 0 is known
since a long time (see, for example [6]). However, the standard proof of this fact,
which uses the α-representation, is not suitable for the propagator \k\d~a(l — χ(k)).
In [5] a special inductive reasoning is given which allows to reduce this case to the
case of massive propagators.

Let us analyse (2.2). If n = 0, m = 2 then α = f d, i.e the most interesting for us
bifurcation value ao=jd is always a pole of the analytic continuation. According
to (2.5) \E(H\ = 2m, i.e. this pole is associated with the divergence of Feynman
diagrams with four external lines. It is easy to see that a<\d, if m ^ 3 . Finally, if
m— 1, the equality a — \d is possible only if d = 4n, i.e. if d is a multiple of 4.

Assume now that

d is not a multiple of 4. (2.6)

This means, that α = f d is not among the poles (2.2) with m= 1. We note, that
requirement (2.6) is essential. If the dimension of the space is a multiple of 4, then
the situation is different. We shall consider the solvability of Eq. (1.5) with d = 4n in
another paper.

It is noteworthy that (2.6) can be also interpreted as the condition that the
point a^—\d. is a bifurcation value of multiplicity one (see Sect. 2). Indeed all
bifurcation values with m = 2 are d, d + 2,... and do not coincide with \d, if (2.6)
holds. All bifurcation values with m > 4 are obviously larger than \d. Because of
the existence of a pole at the point a — \d the hamiltonian (2.1) contains both
positive and negative powers of ε. In order to eliminate negative powers we need a
procedure of analytic renormalization.

4. Theorems on the Additivity Property of Analytic Renormalization

Now we consider the analytic renormalization in the φ4-theory with propagator
\k\d~a(l-χ(k)) in the neighbourhood of α = α o = f d .

Note, that usually the renormalized amplitudes are only considered in one
point: the pole itself (see [7]). To cover a neighbourhood of this point, we shall
consider these amplitudes as power series in ε = a — ao = a — \d.
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Let G be an arbitrary graph of the (/^-theory and let £FG be a corresponding
Feynman amplitude. As we have said in the previous section, 3FG is a meromorphic
function of ε. The renormalized amplitude is given by the formula

A.R.^G= Σ Po\lBi. H) Πθ(Hj) (3.1)
{H1,...,Hr)CG ' 7 = 1

V(Hι)nV(Hj)=@

and is an analytic function of ε in the neighbourhood of zero. Here {//1,..., Hr} is an
arbitrary family of pairwise disjoint (by vertices) subgraphs such that
V(Hί)u...uV(Hr)=V(G)

\V(H)\-1 /i\n

O(H)= Σ «(nH) [-) (3.2)

is a polynomial (without constant term) in - of degree \V(H)\ — 1, which isw
associated to every graph H. O(H) depends only on H and not on G. There is only
one exception: the trivial graph H with one vertex, for which O(H)=1. A set
{Hv ...,//|F(G)|}, which consists of trivial subgraphs Hv ...,ίf|F(G)| corresponds to
the unrenormalized amplitude $FG. All other terms can be considered as sub-
straction of singularities in ε from <FG.

Remember our supposition that d is not a multiple of 4. If d is a multiple of 4,
then formula (3.1) has a more complicated structure. Actually the equality (3.1) is
the object of a nontrivial theorem.

Theorem 3.1. (Additivity for Feynman amplitudes.) To every connected graph H of
\v(H)\-i nγ

the φ4'-theory a polynomial O(H)= ]Γ a^ -I can be associated in such a way

that the renormalized amplitude A.R. 3FG is an analytic function of & in some
neighbourhood of the origin.

Remark. This theorem is generalized to arbitrary graphs G and arbitrary (complex)
values of the dimension and the (multi-) parameter a (see [7]).

For the case of massive propagators (|fc|2 + m2)d~ f l, m > 0 the theorem has been
proved in fact in [7]. Namely one can easily obtain it, repeating the proof of
additivity of dimensional renormalization given in that paper. Reduction of the
case of the Feynman amplitudes with propagator Δ(\ — χ)(k) to the massive one is
done by the general inductive scheme introduced in [5]. We omit the details.

Here are some additional properties of the polynomials O(H). We have

O(H) = 0

if
(i) H is not one-particle irreducible or
(ii) the number of external lines of H is not equal to 4.
Moreover all the coefficients of the polynomial 0(H) except aψ} are expressed

in terms of the coefficients aψ] of the subgraphs KcH, K Φ H using the so-called
scaling relations (see [9]).
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Note, that from (i) and (ii) it follows, that in fact the summation in the basic
formula (3.1) goes over families {Hv ...,Hr} such that all if., z=l , ...,r are one-
particle irreducible and |E(if.)| = 4.

Note also that the polynomial O(H) can be defined as the principal part of the
Laurent series of the function

The prime in £ ' means that {Hv ...,Hr} is an arbitrary set of subgraphs with
only one exception {H}. This allows to calculate all polynomials O(H) with the

4

A ( ί _ χ )help of recursion relations. A.R.:(φ4)n:c_A(ί_χ) is given by the formula

( x ) X i Π (3 3)
G esE{G)

Summing in both sides of (3.1) over all connected graphs G, we come to an
additivity property for A.R. :(φ4)M: c_ z l ( 1_ χ ).

Theorem 3.2. (Formula of additivity for :(φ4)n:c_A{1_χ).) Let

m-i ny

Om = Σ 0(G) = nΣ (-) Σ €\ m*2, (3.4)

where &m is the set of all one-particle irreducible graphs of the φ4-theory with m
vertices. Let

qnr= Σ Σ — π — r ( τ f ) 1 ίτ > f) k (3 5)
ni,'..,nk^O

Then

A.R.:{φ4)n:c_Aiί_χ)= Σ <lm iφ4ϊ-c-Mi-χ)- ( 3 6 )
r=\

Remark. It is easy to see from (3.5) that qnn=\. We put qnr = 0 for r>n.

Proof Let V be a set of ft vertices and let ε \V1 u . . . u Vr = V, Vtn V. = 0 be a partition
of this set. We have

A.R.:(φ4)π:c_d(1_χ)=XjA.R.«^G(p) f ] σ(pe)φ
G eeE(G)

= Σ Σ Π W ^ ί ^Gî  HJ(P) Π σ(Pβ)*. (3.7)
G {Hi , . . . ,H r }cGj=l " ' Λ eeE(G)



Equations of Renormalization Group. II 263

Keep in £ only such collections {Hl9..., Hr} which are subordinated to ε,
{Hu...,Hr}cG

what means, that after some renumeration V(Hj) = Vij9j=ί9..., r. Let us denote the

corresponding sum by £ ε . Note, that 3FG^ H does not depend on
{H1,...,Hr}cG ι'"" r

{H1, ...,Hr] and therefore

Σ Σε t\(o{H))^GV up)
G {Hu...,Hr}cGj=l

• Π ΦJdp= Σ Σ fl(O(Hj))
eeE(G) {Hlt ...,Hr) G:{HU ...,Hr}c G j= 1

ί^ό|(Hl,....HJ(P) Π <*Pe)dp= Σ ΠO(H.)
eeE(G) {Hi,...,Hr] j= 1

•Σί^G'(P) Π <KpJdp= Π O ^ ί φ 4 ) ' : ^ ^ . (3 8)
G' eeE(G') j=ί

Here we use the fact that any graph G such that {Hι,...,Hr}cG is uniquely

determined by the reduced graph G' = G|{Hl;...)Hr} So we can replace the sum-

mation ]Γ by Σ Note, that the latter sum extends over all graphs of the
G:{Hi,...,Hr}cG G'

φ4-theory, because all the contracted subgraphs G|{Hi>_ H] have four external
lines.

From (3.7), (3.8) we have

A R. : ( < / ) " : - , ( 1 - χ ) = Σ Π °WA i<PAϊ c-A<I-xy (3.9)
ε:V1v...vVr = V j=l

VlnVj = 0

Consider now such partitions ε, which contain r sets among which there are nί

one-point sets, n2 two-point sets, ...,nk /c-point sets, ni + ... -f nk = r. The number of
such partitions is

The contribution to (3.9) of every such partition is

i.e. the total contribution is

By summing over r, fe, nv ..., nk, we obtain the desired relation (3.6). The theorem is
proved.

Now we can introduce the main object of our investigations, the renormalized
projection hamiltonian

* _ A n _ χ ) = £ ^ A . R . : ( φ * y : ' _ Δ ( 1 _ X ) . (3.10)
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Here u is a formal parameter. In the following u will be a formal series in ε.

Theorem 3.3. (Introduction of counter terms.)

A.R.:expuφ4:c_A(1_χ) = xxpω(u)φ4:c_A(1_χ), (3.11)

where

«(")= Σθ,§ (3.12)

and

The equality (3.12) is understood in the sense of formal series in u.

Remark. In the theory of K-operation analogous formulae were obtained in [8].

Proof. By the Theorem 3.2,

\ If) Ijj

Σ Π M ^

= :exp Σ /

Here we have used the formula

k

« P Σ « . = I + Σ Σ Π ^
\ j = l / fc=l w i , . . . , « k ^ 0 j = l n j

ni + ... + n k ^ 1

The theorem is proved.

5. Renormalization Group Transformations
for Renormalized Projection Hamiltonians

The formal series

00 Q

εiψ> - ; f M " = i c X (4.1)
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will play an important role in what follows. The coefficients On are polinomials in

- of degree (m— 1) [see (3.4)] except O1 = l, therefore the coefficient cn is

represented as

cn = ε Σ cj-) , (4.2)
m = 0 W

where the coefficients cnm are determined in terms of the quantities af^K
It is not difficult to see that

The following surprising result holds.

Theorem 4.1. The coefficients cnfor n^2 do not depend on ε. In other words, all the
coefficients cnm in (4.2) for n^2, m + l are equal to zero.

We shall give a proof of this theorem in Sect. 7. The proof presented there is
indirect and use some properties of the renormalization transformation. There
exists also a direct proof based on some explicit expressions for the polynomials
O(H) (see [9], where the so-called scaling relations for O(H) are discussed). As the
direct proof is longer we prefer to give here the indirect one.

In the following it will be convenient to use a new variable τ as a RG
parameter,

λ = exp(τ/2).

The importance of the introduced series ρ(u) is explained by the following result.

Theorem 4.2

&Xte*,2 A.R. expuφ4 :c_ J ( 1 _χ)

= expτρ—-I A.R.:expuφ 4: c_ J ( 1_ χ ). (4.3)

The equality has to be understood in the sense of formal series in u and τ.

Remark. As we shall see in Sect. 7 the series in τ converge and define an analytic
function of τ in the whole complex plane.

Proof From the Theorem 3.3 and equality (2.3) we have

= :exip{(expετ)ω{u)φ4):c_Aa__χ)
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We make use now of the easily verified identity

((exp ετ) ω(u))n = exp sτω —— ωn{u).
\ dω)

d 1 d
Since-—-— — ,

dω ω du

((expετ)ω(w))" = exp ετ —-— ωn(u) = exp\τρ(u)~- ωn(u).
\ ω duj \ duj

Substituting this expression in (4.4), we obtain

mχ t eτ/2 A. R. :exp (wφ4) :c-Δ{i-χ)

< " ) ^ A.R.:exp(Mφ4):c_^(1_;e).

The theorem is proved.

6. Solution of Wilson's Equations

In this section we shall establish the main result of our paper: we shall prove the
solvability of Wilson's equations.

As one can see from formula (4.3) of Theorem 4.1 the renormahzed projection
00

hamiltonian A.R. :exp(w(ε)φ4) :c_Δ{1_χ), where u(ε) = £ u^ is a formal series in ε, is

invariant under the action of the RG, if

ρ(u) = O. (5.1)
oo

This equation has to be solved in the formal series w(ε)= ^ UjSj in ε. By

Theorem 4.1

£ cnu\
n = 2

oo

where cn are real constants. Substituting w(ε)= Σ ufj m ^n^s expression and

equating to zero the coefficients of all powers in ε, we come to a chain of numerical
recursion relations for the unknown constants uy Before writing this relations, we
note that (5.1) splits into two equations:

u = 0,

ε + Σcχ-^0. (5.2)
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The solution u = 0, Uj = 0,j=l,2,... corresponds to a Gaussian fixed point. A
nontrivial non-Gaussian solution is got from the solution of (5.2). We have from
(5.2)

The general form of the recurrent equation is

c2ww = £ > ! , . . . , « „ _ ! ) , (5.3)

where Bn(ul9 ...,un_1), n = 3,4,... are polynomials, whose coefficients are defined
by c3, c 4,... .

For the solvability of these equations it is necessary and sufficient that c 2 Φ0.
In the appendix it is shown, that

ί ' +0.

i.e. Eq. (5.3) are indeed solvable. So, we can formulate the next theorem.

Theorem 5.1 (Main theorem). // d is not a multiple of 4, then the renormalized
projection hamiltonian

H = A.R.:exp(u(ε)φ4(σ)):c_Δ{l_χ),

00

where u(ε)= £ UjSj is found by solving the equation ρ(u) = O (see (5Λ)-(53)),
. 7 = 1

φ4{σ)= J <5(fc1 + ... + fc4)σ(k1)...σ(fc4)dk

and

is (with any λ>0) a fixed point of the renormalization transformation ^
Moreover, He^Jtf™.

One can prove the uniqueness of the solution in the space J^J^700 by using the
methods of the paper [4].

7. Proof of Theorem 4.1

We have
00 Q

i + Σ

1 -
0. ._, / " 0

= Σ cnu".
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-VSince O with n ̂  2 are polynomials in - without constant terms, all c with

w
n^2 are also polynomials in I- (this follows from comparison of the coefficients

w
in the last formula). Therefore, if we prove the analyticity of cn in ε, we get
immediately that all the coefficients cn, n^2 are constants.

We shall prove the analyticity of the coefficients by induction. For cί=ε the
analyticity is obvious. If we suppose now that c2, >-,cn_ί are analytical functions
of ε they are necessarily constants. Let us prove the analyticity of cn. By Theorems
3.1-3.3 the renormalized projection hamiltonian

is analytic in ε in the neighbourhood of the origin. Due to Proposition 1.5.1 the
renormgroup operator 0tψ^2

z) is also analytic in ε. Therefore, the hamiltonian
${xJ£f2

+ε)H is analytic in ε in the neighbourhood of the origin. From this fact we
shall deduce the analyticity of cn. Due to Theorem 4.2

^ (6.1)

Consider the operator

Θ=Q{u)iu ( 6 2 )

00

in the space of formal power series a(u) = £ a.uK This operator depends on ε as a

parameter. The matrix of the operator Θ has a triangular form:

lc1 0 0

, 2c x 0

; 2c2 3c, ...

Hence we have immediately the convergence of the series

exp(τ^)=l + — + ^ - + ...

for any τ e C and the analyticity in τ of all the elements of the matrix exp(τ^). Let
@n, (exp(τ^))n be the principal minors defined by the first n rows and columns of
the matrices 3) and exp(τ^) respectively. Then from the triangular form of 3) it
follows that
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We establish now how the matrix exp(τ^J depends on cn, n^.2. Let

/0 0 ... 0\

0 0 ... 0

0 0 ... 0 ,

\ l 0 ... 0/

n.

Then Q)n = cn3Fn + ££ζ, where 2)'n is a triangular matrix independent of cn. We
shall show, using induction, that the same analytic expression is true for 2){ as
well:

where the matrix EU) = (ek

J})n

k ι = 1 has a triangular form and does not depend on cn.
It is directly checked that

Moreover, if E = (ekl)lι=1, «^ = (Λ/)^ / = i, E3F = (gkι)lt ι = ί are triangular matrices,
then gnn = ennfnn. Using these relations, we have

= nc p{j)

1 nn '
(6.4)

(6.5)

So the relation (6.3) remains valid when we replace j by (/ +1), so it is valid for any
7 ^ 1 . Let us solve now the recursion Eqs. (6.4), (6.5) with initial conditions

From (6.4) we have

i.e.

Hence it follows

i.e.
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Thus

exp(τwfi) — exn(τε)
( B _ 1 ) e

 ( c i = ε ) ' ( 6 6 )

where the matrix £ 0 does not depend on cn. Moreover, exp(τ^n), and hence, Eo do
not depend on cn+1, cn + 2,.... We go back now to H' = ^/

e

2

τf2

+ε\H). According to
(6.1), (6.2)

n=ί m = l

where

As we said earlier, the quantity A.R. :{φA)n \c_ Δ{1 _ χ) is analytic in ε as well as H'.
This means the analyticity of the coefficient of un\

n n ί \

^ nm A.K.:(φ4)m:c_Λ(1_ ,. (6.7)
m = l m'

Due to (6.6) all the elements qnm(τ) except qnί(τ) are expressed in terms of the
cv ...,cn_ί and therefore are analytic in ε by the inductive assumption. Further,
due to (6.6)

exp(m ε) — exp(τε)

where q'nί(τ) also is expressed only in terms ofcv...,cn_ί and, therefore analytic in
ε. In this way, from the analyticity of the coefficient (6.7) it follows that the term

exp(nτβ)-exp(τε)
φ

is analytic. As ψ(ε)= —— is an entire function of ε and ψ(0) = 1, the
(n-l)fi

coefficient cn is analytic, which was to be shown. The theorem is proved.

Appendix

Here we compute the second coefficient c2 of the series ρ(ύ).
CO ft

, , ω(u) ntΊ n\

oAu) - J ^ - i
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We have

εOΊ
1-2- 2 ,

where

02= Σ (KG),

$2 being the set of all one-particle irreducible graphs of the φ4-theory with

|£(G)| = 4 and |F(G)| = 2. There is only one such graph, showed in Fig. 1. Taking

into account a combinatorial factor we have

O2 = 72O(G),

Fig. 1

where O(G) is a meromorphic part in ε of the Feynman amplitude of the graph G.
Now,

, + k2 + k3 + k4)δ{k5 + k6 + kΊ + fc

δ(k3 + k5)Δ(l - χ)(k3)δ(kt + k6)A(ί -

{ki + k2 + kΊ + k8) f A(ί - χ)(kx + k2 +

where

It is clear, that zl*(Jχ) and (Aχ)*(Δχ) are analytic in ε in the neighbourhood of 0.
Next, we can calculate Δ*Δ exactly:

= 2 " ε π 2

Γ •ί-ίϊ\

π , + -2

where S'k^x is the Fourier transformation (see [10]). Therefore,

O(G)=-
π2 1

mf, '
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Hence
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