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Abstract. In the present series of two papers we solve exactly Wilson's
equations for a long-range effective hamiltonian. These equations arise when
one seeks a fixed point of the Wilson's renormalization group transformations
in the formulation of perturbation theory. The first paper has a general
character. Wilson's renormalization transformation and its modifications are
defined and the group property for them is established. Some topological
aspects of the renormalization transformations are discussed. A space of
"projection hamiltonians" is introduced and a theorem on the invariance of
this space with respect to the renormalization transformations is proved.

1. Introduction

In the present work consisting of two papers we shall solve exactly the Wilson's
renormalization group equations for an effective hamiltonian whose free part is

defined by long-range potential U(x)~ Π ~̂> M"*00- This hamiltonian is

written as a formal series H = H0 + εHί+ ε2H2 + ..., where z = a—\ά and d is the
dimensiality. Each of the if r is an usual (not formal) finite-particle hamiltonian. Ho

is a free long-range quadratic hamiltonian. Under the Wilson's renormalization
group transformation the hamiltonian H transforms into another one
H' = Hr

0-\-εH\ +82H'2+ ... (which is also a formal series) every coefficient H[ of
which is computed via the coefficients HO,HV ...Mi of the original hamiltonian:

The operators R. have a rather complicated structure and are nonlinear in
HO,HV ...,Hi_1. By definition the effective hamiltonian is a fixed point of the
renormalization group transformation and its coefficients satisfy the chain of
equations

ff ! , . . . ,# , ) . (1)
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The main results of our work is an exact construction of a non-trivial solution
of this chain of equations. In particular the hamiltonians H0,H1 have in
momentum space the form

#o= ί i|fcM
\k\<Λ

\k1\,...,\k4\<Λ

where uί>0 and : : is the Wick ordering with respect to free field with the
hamiltonian Ho. The following hamiltonians Ht, ΐ = 2,3,..., have a more com-
plicated structure and are defined in the main part of the work.

The problem of finding solutions for the coefficients of the effective hamil-
tonian was first formulated and discussed in [1] (see also [2-4]).

Actually in [1] short range hamiltonians were considered and the expansion
was carried out in the dimensiality parameter ε '^4 — d. Undoubtedly there are
many general features in the expansions in ε = a — \d and ε' = 4 — d. The authors
intend to consider ε'-expansion and the connection between ε- and ε'-expansions in
subsequent papers. Moreover it is noteworthy that in the present work we deal
only with the case when the dimensiality d is not divisible by 4. This restriction is
essential and if J is a multiple of 4 or is close to such a number, the ε-expansion has
a more complicated nature.

In [1] an iteration procedure was suggested for solving the chain of Eq. (1).
The point is that the operator R( can be written as

where D is a linear operator and Tt does not depend on H . So one can rewrite the
Eq. (1) in the form

{l-D)Hi=Ti{H0,Hv...,Hi_1)

and "solve" it:

Some details of the inversion of the operator (1 — D) were analyzed in [1], but
procedure described there seems too formal and in essence useless because it does
not permit to investigate any property of the hamiltonians Hi (see also [2,4]).

The above formulae for the coefficients Ho, H1 are standard and well-known.
An explicit expression for the coefficient H2 was obtained in [3]. In this paper
another renormalization group was used (Kadanoffs block RG), but this is
unessential and an analogous expression can be obtained also for Wilson's
renormalization group. The present work arises from the attempt to generalize the
procedure used there in order to construct the hamiltonians H3, ί ί 4 , . . . . But direct
generalization proved to be impossible in view of the fast increasing complexity of
computations. All we could do in this way was to construct H3. Therefore we went
by another way and tried to guess the answer on the base of the explicit
expressions for Hv H2, and H3. After several unsuccessful attempts we managed
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to do it. In the meantime however we went so far from the paper [3] that in essence
the methods used in present work have little in common with those of [3].

When one solves the chain of Eq. (1) a very important question is which are the
properties of the hamiltonians Ht. Namely the solution of this chain of equations is
not unique it no smoothness condition is required (see [3]). The smoothness
condition is one of the three "analyticity postulates" formulated in [6] (other two
postulates are connected with the absence in the effective hamiltonian of nonin-
teger powers of the field σ(k) and with the transversality of the intersection of the
initial family of hamiltonians with the stable separatrix of the renormalization
group transformation the last condition is needed in the calculation of the critical
exponents and does not concern us now). The essence of the smoothness condition
is that any hamiltonian Hr ί = l , 2 , . . . , is written as

where h$(kv ...5/cm) are smooth functions of the arguments kv ...,/cmeIRίi. This
question is discussed in detail below.

The procedure used by us for the effective hamiltonian construction is closely
related with analytic renormalization (see [7-10]). Namely the main formula for H
which is proved in the present work is

H = A.R. :exp(-w(ε)φ4):c_/1(i_χ),

where by φA we denote briefly the hamiltonian

φ± = J σ\χ)ddx =

and : :c_Δ(1_χ) is the operation of connected Wick ordering with respect to the
propagator

where χR(k) is the characteristic function of the ball {|fe|<jR} w(ε)= £ ujβj *s a

formal numerical series and A.R. is a variant of analytic renormalization. The
expression

oo / u(pX\n

n= 1 n

to which the operation A.R. is applied is written as a series of Feynman integrals
with the propagator — A(l — χ)(k). When ε > 0 the theory with this propagator is
super-renormalizable and only a finite number of Feynman diagrams with two
external legs diverge. However when ε = 0 the theory is not super-renormalizable
but only renormalizable and an infinite number of divergent diagrams with two
and four external legs arises. For ε->0, ε>0, these diagrams (more precisely the
corresponding Feynman amplitudes) are expanded in Laurent series in ε. The
analytic renormalization A.R. is roughly speaking the substitution of negative
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terms of the Laurent series in the Feynman amplitudes. The precise definition of
the A.R. is followed by a very important condition of additivity of this operation
(see [7, 9] and below).

At first glance it is unexpected that, when solving the renormalization group
equations in a finite region of momentum space, diagrams with ultraviolet
divergencies appear. This fact becomes not so surprising if one takes the point of
view that a scaling field in a finite region can be obtained by projection of a scaling
field in the whole momentum space. The above formula for the effective
hamiltonian realizes in some sense such projection.

For the coefficients uvu2,... of the formal series u(ε) we obtain a chain of
numerical equations which permits us to find all these coefficients uniquely. Their
concrete computation and the subsequent calculation of the critical exponents is a
rather tedious work whose volume increases fast with the number of coefficients.
In the present time there are many original papers and reviews devoted to
computational problems of the ε-expansions (see, e.g. [11-16]). Long-range
potentials were considered in [17-19]. Practically in all these works the critical
exponents are sought avoiding the question of the existence of the effective
hamiltonian, by means of the Callan-Symanzik equations. In this procedure the
original dynamical Kadanoff-Wilson's picture of critical phenomena is put aside.
Here we return to this original picture and as a first step of its realization we
construct explicitly the effective hamiltonian (for long-range models). The second
step is the construction of eigenvectors and eigenvalues of the linearized transfor-
mation. In a paper in preparation one of us (M.D.M.) constructs the so-called
relevant eigenvector and eigenfunction.

We want to emphasize that the effective hamiltonian which we construct here
is a formal series in ε. Apparently this series diverges. A very attracting but
apparently very difficult problem is the construction of a scaling translation
invariant random field with a hamiltonian H = H(ε) such that the hamiltonians
Ho, HVH2,... found by us, are the coefficients of the expansion of the hamiltonian
H(ε) in asymptotique series in ε. A similar problem has been solved in essence for
hierarchical models (see [20, 21]).

The set-up of the paper is the following. First we give definitions and some
general results for scaling random fields. Next, in Sect. 3, we define the main object
of our paper, the space of formal hamiltonians, and introduce Wilson's re-
normalization transformation as a map in this space. For convenience standard
"physical" (non-rigorous) arguments are given which elucidate the definition of this
transformation. After that, in Sect. 4 we define some generalizations of Wilson's
renormalization transformation and in particular we introduce a smoothed
transformation which preserves the smoothness properties of the hamilto-
nians. In Sect. 5 the fact that the renormalization transformations form a one-
parameter group is proved. The infinitesimal operator and some topological
aspects of the renormalization transformations are considered briefly in Sect. 6. At
last in Sect. 7 we introduce a space of so-called "projection hamiltonians" and
derive a surprisingly simple formula for renormalization transformation in this
space. It is noteworthy that the effective hamiltonian, which will be constructed in
the second part of the work, is obtained by the procedure of analytic continuation
of an projection hamiltonian.
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2. The Wilson's Renormalization Group for Random Fields

Let a generalized random field P(σ) in the d-dimensional ball Ω = {k\\k\<R} be
given, i.e. a system of probability distributions P{(σ, φ^),..., (σ, φm)} with the usual
conditions of accordance (see [22]). Here φί = φx(k)9 ...,φm = φm(k) are arbitrary
test functions in the space CQ{Ω) of infinitely differentiable finite functions.

Let us introduce the following operations on random fields. If P(σ) is a
generalized random field in the ball λΩ = {k\\k\<λR}9 λ^l, we denote by SΩλ the
operator of restriction on the ball Ω,

sΩ,χP=P\Ω- (i.i)

If P(σ) is a random field in Ω and a > 0 is a positive real number we define the
scaling operator

P{λΊσλ-ί)9 (1.2)

where (σλ-1,φ) = (σ(A-1fc),φ(fe)) = 2d(σ(fe)Jφ(>Lfc)) and P(A-(a/2VA-0 is a generalized
random field with probability distributions

It is clear that jR(

λ

α)P(σ) is a generalized random field in the ball λΩ.

Definition 1.1. The Wilson's renormalization transformation R{

Ωλ, λ^.1, is a

composition of the transformations R{"] and SΩ λ,

Ό(a) o n(α) /-j α\

It is easy to see that

where λ" 1 Ω = {fc||fe|<λ"1

JR}. Moreover

so that the transformations {Rfg^ λ^l} form a one-parameter commutative
semigroup of transformations. This semigroup was considered first by Wilson (see
[1]). For λ<l the transformations SΩ λ and R^λ are not defined. But for R = co,
i.e. when Ω = IRd, one can consider also λ<l. In this case SΩ λ is the identity
operator and the transformations RΩ

ι)

λ = Ri") form a group (see [23] where
rigorous definitions are given and some limit distributions for /l->oo and λ->0 are
investigated).

Definition 1.2. A generalized random field is scaling invariant in Ω if R{

Ω\P(σ)
= P(σ)forall A^l .

Proposition 1.1. a) // P is scaling invariant in Rd then P\Ω is scaling invariant in Ω.
b) // P is scaling invariant in Ω then R^P is scaling invariant in λΩ and its

restriction on Ω coincides with P (if λ^.1).

c) // P is scaling invariant in Ω then lim R("]P is scaling invariant in IRd (over
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All these statements are easily verified. Thus there is a natural one-to-one
correspondence between scaling invariant fields in lRd and in any finite ball Ω.

Let us introduce the Fourier transform of the translation operator,

ta\σ{k)-+eiakσ{k),

the orthogonal transformation operator

uβ:σ(k)-+σ(βk), βeθ(d),

and the parity operator

Denote the conjugated operators in the space of generalized random field by Tα,
Uβ, and / respectively. A random field P(σ) is called translation invariant if TaP(σ)
= P(σ) for any αeIRd, isotropic if UβP(σ) = P(σ) for any βeθ{d) and even if IP(σ)
= P(σ). In this paper we are interested in translation invariant, isotropic, even,
scaling invariant random fields.

If is easy to describe all Gaussian fields possessing such properties.

Proposition 1.2 [1, 23]. A generalized Gaussian random field with zero mean and
binary correlation function (σ(k)σ(kf)} = Cδ{k + k')\k\~a+dχΩ(k), where χΩ(k) is the
characteristic function of the ball Ω, is the unique translation invariant, isotropic,
even, scaling invariant Gaussian field.

3. The Wilson's Renormalization Group for Formal Hamiltonians

Now we give another definition of the renormalization transformation. In this new
"diagram" definition the renormalization transformation will be defined not on
the space of random fields but on the space of formal hamiltonians. As a matter of
fact this definition is always used in physical words (see [1, 4, 6] and others).

A hamiltonian in the ball Ω = {k\\k\<R} is an expression of the form

+ ... + km)σ(k1)...σ(km)d "dk. (2.1)
m=l Ωm

To give a hamiltonian is the same as to give the sequence of its coefficient functions

m

on the subspaces ^ kt = 0, i.e. two sequences (hi{Xkί\hf(k1,k2\ ...), i = l,2, define

the same hamiltonian if

If all ht = 0 for i Φ m, the hamiltonian H(σ) is called m-particle. If for some n, ht = 0,
when i>n, the hamiltonian H(σ) is called finite-particle.

By 3tfn, n = 0,1,2,..., oo, we denote the space of finite-particle hamiltonians
with coefficient functions hjkv ...,/cm)eCM(Ωm). A formal hamiltonian is a formal
series in ε,

H = H0 + εHί+ε2H2+ ... (2.2)
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whose coefficients are finite-particle hamiltonians (see [3]). In what follows the
coefficient Ho will be fixed,

#o= ί ϊ\kΓd\Φ)\2<Fk. (2.3)
|fc|<Λ

The hamiltonian Ho corresponds to the Gaussian scaling invariant field with the
propagator

k\~a+dXR{k) (2.4)

(see Proposition 1.1).
The space of formal hamiltonians

with Hf63tfn will be denoted by

grj#"=όF° x̂) jf"? (2.5)

where J^° is the space of the complex-valued formal series with zero free term.
Wilson's renormalization transformation in the form in which we consider it,

acts in the space of formal hamiltonians. As before it is a composition of two
transformations, the scaling ^(

A

α) and the restriction ίfΩ λ. Let us introduce first the
operator M^ (otherwise named the operator of multiplicative renormalization, see
[24]).

Definition 2.1. Let a m-particle hamiltonian

H= J h(kv ...,km)δ(k ί + ..
| *<I<Λ

be given. Then

®fH= j h{kv...,km)δ(k1

\ki\<λR

In other words, @f changes h(kv ...,/cJ into λiam/2)-md + dh(λ'%, . . . ^ " ^ J . To
the whole space of hamiltonians and to the space of formal hamiltonians the
operator ^ f l ) is extended by linearity.

In contrast to M^ the restriction operator ίfn λ has a rather complicated
structure and is defined with the help of a summation on Feynman graphs. Before
giving a rigorous definition we represent a "physical" deduction of the formulae
which are used in this definition (see [1, 4]).

Suppose P is a random Gibbsian field in the ball λΩ with hamiltonian Ho + W
and let P o be a free field defined by the hamiltonian Ho. The restriction operation
consists in the computation of unconditional probability distributions in a
subvolume. In other words we fix a configuration σo(k) in the subvolume and
compute the density of the probability distribution for this configuration given by
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the Gibbsian measure in the whole volume. The density of the distribution "is
represented" as the ratio of two partition functions, the conventional one with the
fixed configuration σo(k) and the unconventional one:

Writing the density in Gibbsian form, p(σo) = exp(H'λ(σo)), we have

H'λ(σ0) = l n Z ( σ 0 ) - l n 3 .

For computation of the quantity lnZ(σ0) one can use the well known formulae of
the expansion in cumulants:

where the cumulants are taken with respect to the conditional free measure
Po( \σ0) with the fixed configuration σo(k) in the subvolume. The quantity lnΞ
does not depend on σo(k) and can be excluded from the hamiltonian H'λ. Thus

oo I

H'λ = Σ ΓT <#'> "-> #'>cond. measure ( 2 6 )
n = 1 n

This formula is taken as a definition of the restriction operator in the space of
formal hamiltonians. Remark that in a somewhat different but close situation
(lattice spin models) this formula is proved rigorously in the high-temperature
region (see [25]).

In the particular case under consideration a Gaussian scaling invariant field
with the hamiltonian Ho is taken as a free field and all the cumulants
(H\ ...,H'}c

conά m e a s u r e can be represented as sums on connected Feynman graphs
00

with the propagators \k\~a+d(χλR(k)-χR(k)) (see [1, 4]). For H'= £ εmHm we set
m = l

by definition (for sake of brevity in this and in the subsequent formulae the words
"cond. measure" are omitted)

= Σ «" Σ <Hmi,.-,Hmny, (2.7)

) Π °(Pι)dv, (2.8)
G leE(G)

where the summation goes over connected Feynman graphs G and έFG{p) is the
Feynman amplitude corresponding the graph G. In the present work we adhere to
the system of notations of the Feynman diagram theory adopted at the school on
renormalization theory (see [8]). For a more precise definition of the Feynman
amplitudes #"G(p) let us expand Hm in a sum of homogeneous hamiltonians:

Hmr = ί hjkl9..., kr
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Then

(Hmi,...,Hmny= Σ <Hmirι,...,Hmnrny, (2.9)
ri,...,rn

where

<Hmiri, .-.,Hmnrny = Σc S&β(P) Π (Φι))dp, (2.10)
G leE(G)

the sum Y^ going over the set Ψ(rv ...,rn) of all connected graphs G with n
G

vertices such that exactly r. lines come from the j-th vertex1. The Feynman
amplitude of a graph G is defined by the integral

j=ί \i=i

• Π W(XxR-X*)(kιWki + IQ<Pkιd
dlQ, (2.11)

leUG)

where the propagator

Δ(xλR-χR)(k) = \k\-"+\χλR(k)-χR(k)) (2.12)

and each of the variables k\j) is redenoted as pt if it corresponds to an external line
leE(G) of the graph G and as kx (or fej) if it corresponds to an end (an origin) of an
internal line leL(G). Performing the integration on the variables k\ in (2.11) we
come to the usual expression

Π «5( Σ Pι+ Σ
υeV(G) \leStEv leStLv

where ]~| hmr (k{(\ ..., /cj.j)) means the identification of the variables (— k[) and kt,
[j=i J J J

 \G

IEL(G\ in the product f[ hnjrj(k^). The multiplier f l &( Σ Pι+ Σ ε ,
j l F(G) \/S i S\ ieSt

assures the equality to zero of the full momentum at any vertex v of the graph G.
The quantities εvl, veV(G), leL(G), define the incidence matrix of the graph G;
εvι= + 1 if a line / comes in (from) a vertex v, εvl = 0 otherwise. Finally St^ί; and
StLι; are the external and internal parts of the star Sti; of a vertex υeV(G).
St£ι;(StLί;) is the set of external (internal) lines which are incident to a given vertex
v.

The quantity ίFG(p) is not defined for vacuum graphs G i.e. those with no
external lines, due to redundant number of (5-functions in the diagram integral. For

1 In order to avoid writing combinatorial multipliers we consider Feynman graphs with enumerated
vertices and ends of lines
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Fig. 1

example the graph shown in Fig. 1 leads to the integral

i +k2)δ(k1 +k2)dk1dk2

having no sense. To avoid such graphs we introduce a rule of "vacuum
forbidding". It consists in the fact that vacuum graphs are excluded from the
expansion (2.8). Note that this rule is very natural because vacuum diagrams give
only constant inputs in the hamiltonian H'λ. For a nonvacuum connected graph G
we have

&G(P) = 8( Σ Pι)FG{p),
\leE(G) I

where FG(p) is a piecewise continuous function. Let C*(Rmd) be the smallest
extension of the space of continuous functions C(lRmd) with the same topology
which contains all the piecewise continuous functions and J f * be the correspond-
ing space of hamiltonians. Then the Feynman amplitude ^G{p) of any connected
nonvacuum Feynman graph G defines a hamiltonian

leE(G)

Now we can introduce the restriction operator SfΩtλ.

Definition 2.2. The action of the restriction operator y Ω A o n a formal hamiltonian
H' = εH1 + ε2H2 + ... is defined by the formula

where (H\ ...,/jr/)c is a formal hamiltonian which is computed by the formulae
n

(2.7)—(2.13), the summation in (2.8) and (2.10) going over nonvacuum connected
graphs G. The operator S?Ω λ maps # \ # " into

For the following calculations we need a proposition which in quantum field
theory is named "theorem on exponent".

Proposition 2.1. ("Theorem on exponent", see e.g. [4].)

ln<exp#> = <exp#>c

or in diagram writing,

ώ Π
leEiG)

(p) Π
leE(G)
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where in the LHS the summation goes over the set of all Feynman graphs with no
vacuum connectivity components, including empty graph, whereas in the RHS the
summation goes only over the set of connected nonvacuum graphs (the empty graph
does not enter in this sum). Remark that \V(G)\ is the number of vertices of the graph
G.

Now we give the main definition of this section.

Definition 2.3. The Wilson's renormalization transformation in the space of formal
hamiltonians is a composition of the scaling and restriction operators,

(Jβiμ) — O> ύft{a) (*) 1 A\
^Ω λ — ̂ Ω^λ \ΔΛV

Remark. It is easy to see that

Moreover let us introduce the operators ^~a, tf/β, J'. Let h(kί, ...,km) be the
coefficient function of an m-particle hamiltonian. Then

%:h(ki,...,km)^h(β-1k1,...,β-1km), βeθ(d),

J:h(k1,...,km)-*(-irh(k1,...,kJ.

is a translation operator. Due to

^~a coincides with the indentity operator. <%β is an operator of orthogonal
transformation in the space of hamiltonians and «/ is the parity operator. To the
spaces of hamiltonians Jtf"1 and to the spaces of formal hamiltonians 3F ffln the
operators ^ , °U^ J are extended by linearity.

Accordingly a (formal) hamiltonian H is called isotropic if %βH = H for any
βe O(d) and even ΊIJ>H = H. The last condition is equivalent to hm(kv ..., fcm) = 0 for
odd m.

4. Modifications of the Renormalization Transformation

Now we should like to make three essential remarks to the definition of the
Wilson's renormalization transformations. The first one is concerned with the
domain of definition of the coefficient functions of the hamiltonians under
consideration. It is assumed usually that the arguments of the coefficient functions
of an initial hamiltonian Hf vary in the ball Ω — {k\ |fc|<jR}. However in the
construction of the effective hamiltonian it is convenient to think the whole space
Rd as the domain of the coefficient functions. It is noteworthy that both
approaches agree. Namely, if one restricts first the domain of definition of the
coefficient functions from the whole space Rd to the ball Ω and applies then the
renormalization transformation or, the other way round, applies first the re-
normalization transformation and restricts then the domain of definition, the
result will be the same. Indeed, in the process of computing the diagram integrals
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(2.11), the integration goes in fact over such a domain that each variable kt varies
in the ring R<kt<λR due to the fact that the propagator A(χλR — χR) (k) is equal to
zero outside of this ring. Therefore the values of the coefficient functions outside of
the ball Ω = {k\ \k\ <R} have no influence on the values of the diagram integrals.

The second remark is connected with the introduction of a smoothed
renormalization transformation. The point is that the propagator A(χλR — χR)(k)
contains the characteristic functions χλR(k), χR(k) and is not a smooth function. As
a result the image of a smooth hamiltonian H'e^jή?°° under the renormalization
transformation is not a smooth hamiltonian. This leads in the process of
construction of the effective hamiltonian to the rise of irrelevant singularities
which destroy the Wilson's analyticity postulate (see [6] and the Introduction). To
get rid of these singularities we introduce a smoothed renormalization
transformation.

Consider a test function χ(k)eCg(Kd) depending only on \k\, χ(k) = χo{\k\), such
that

=1, R0*\k\,

where R1>Ro>0 are some real numbers, with the additional requirement that
χo(\k\) is a nonincreasing function. Denote

A(χλ-χ)(k) = \kΓa+d(χ(k/λ)-χ(k)). (3.1)

This function is a smoothing of the propagator Δ(χλR — χR). When Rv Ro-+R,
A(χλ-χ)(k)-+A(χλR-χR)(k) (in various senses).

For convenience of notations we introduce an operator Sfψ which is a
generalization of the operator in Definition 2.2:

where <ίΓ, ...,H')c

ψ is defined by the formulae (2.7)-(2.13) with the only difference
that instead of the propagator A(χλR — χR)(k) a given function ψ(k) is used.

It is noteworthy that the formulae (2.7)—(2.11) have sense for non-positive
functions ψ(k) too so the operator ^w is defined for an arbitrary function

Definition 3. ί. A smoothed renormalization transformation is defined by the
formula

^χ,λ~^Δ(χΛ-χ)^λ '

where the propagator A(χλ — χ) is given in (3.1).
The smoothed renormalization transformation maps a hamiltonian H' into

another one H'λ = 0t^£H'\ The coefficient functions of the hamiltonian H'λ are
computed in terms of the coefficient functions of the hamiltonian H' with the help
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of the diagram integrals (2.13) with the smoothed propagator A(χλ — χ)(k). So the
smoothed renormalization transformation 0t^\ preserves the smoothness of the
coefficient functions. Thus

(3.3)

In the following we shall construct a smooth formal hamiltonian
which is a fixed point of the smoothed renormalization transformation (see the
Paper II). From the exact formulae for H* it will be seen that one can go to the
limit χ(k)^>χR(k) and obtain a fixed point of the nonsmoothed renormalization
transformation 01^. λ. However the limit hamiltonian will be only piecewise
continuous and its coefficient functions will have singularities. These singularities
are connected only with the jump of the characteristic function χR(k) and have no
special meaning.

Another smoothed renormalization transformation was considered in [26]. In
this paper Gaussian fixed points of the smoothed transformation were
investigated.

The third remark we want to make is about the group character of the
renormalization transformations. The fact, that the renormalization transfor-
mations of random fields form a one-parameter semi-group, follows almost
immediately from the definition. Since we do not yet have relations between the
renormalization transformations of random fields and those of formal hamil-
tonians the fact, that the renormalization transformations satisfy the group
property, needs a proof.

Theorem 3.1. St^λ M{£μ = 0ί^λμ.

We shall give the proof of the theorem in the next section. Remark that as we
have pointed out above the operator <7ψ is defined for arbitrary (in general not
positive) function ψ. So the renormalization transformation 0t^λ= =&?

Δ{χλ_χ)^χ)

is defined for both λ^.1 and λ<l. Thus in contrast to the renormalization
transformations of random fields, the ^ \ , 0 < λ < oo, form a one-parameter group
(and not only semi-group) of transformations.

5. The Wick Operation : : and the Renormalization Transformation

Let a Gaussian field be given with zero mean and a binary correlation function
G(k,k'). The Wick operation with respect to this Gaussian field transfers a
monomial σ(k1)...σ(km) into the Wick polynomial

S π(S) r ieS

where Σ means summation over all subsets 5C{1, ...,m} and Σ m eans
S π(S)

summation over all partitions π of the set 5 = {1, ...,m}\S into pairs ( ^ J Ί ) ,

( Z 2 J 2 ) , .... Instead of £ Σ o n e c a n w r i t e a s usual the sum Σ o v e r a ^ diagrams
S π(S) G

with single vertex. It is convenient for us to modify a little the Wick operation.
Namely in what follows we shall assume that in the Σ t n e summation goes over all

s
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non-empty subsets S C {1,..., m}. In other words we throw away the free term from
the Wick polynomial.

For an m-particle hamiltonian

and an integrable propagator Δ(k) we set by definition

Σ Σ Π(-A(
S π(S) r

..,km)lGδ( Σ P,
leS G \leE(G)

• Π {-ΔikμX) Π (σ(Pι)d"Pι),
leL(G) leE(G)

where in £ the summation goes over all nonvacuum graphs G with single vertex.
G

As a result :H(σ):Δ is a finite-particle hamiltonian. Similarly for a finite product of
hamiltonians

we define the Wick operation

G G

• Π δ( Σ h+ Σ εΛ
veV(G) \leStEv leStLv

• Π (-Λ(/c,)) Π σ(Pι)dkdp (4.2)
lsL(G) leE(G)

and the connected Wick operation

G j=i JG

• Π δi Σ P,+ Σ ^ A
veV(G) \leStEV leStLv

(4.3)
ZeL(G) Ze£(G)

Here the same notations as in (2.13) are used. The difference between : \Δ and : \C

Δ

lies in the sets over which the summations ^ and Σ° go. The first set ̂ (mv ..., mn)
G G

contains all the graphs G with no vacuum connectivity components such that
exactly m lines come from the j-th vertex, 7 = 1,..., n, the second one Ψ(mv ..., mn)
contains all the graphs from ^(m1 ? ...,mj which have a single connectivity
component.

The connected Wick polynomial :H\(σ)...Hn(σ):c

A is a finite-particle hamil-
tonian, the Wick polynomial \H1(σ)...Hn(σ)\Δ is a sum of products of finite-particle
polynomials corresponding to the connectivity components of the graphs G. By
linearity (with respect to each multiplier) the Wick operations are extended to
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products of finite-particle and formal hamiltonians and, moreover, to finite sums

of the form £ if.^..if^ where all HteJfn or all i f . e J ^ 1 1 .
r

For the Wick operation a simple formula of composition takes place (see e.g.
[27,28]):

Άί ' Δ2 ' 'Δι+ Δ2' (4.4)

A propagator Δ(k) of a Gaussian field has to satisfy the positivity property, but the
formulae (4.1)-(4.3) have sense also for Δ(k) not satisfying this property. The rule of
composition of Wick operations remains the same. Indeed one can consider two
families

of propagators such that Δ/

i,i=l, 2, are strictly positive as well A •, i = 1,2, for small
ί > 0 (one can put zjj==|zl.|4-l, i = l,2). Then the composition rule (4.4) is valid for
small t and by analyticity it is continued to ί = 1, i.e. to Δb i= 1,2, which was to be
shown.

For A(k)= ~xp(k) the RHSs of (4.2), (4.3) are nothing else than < >J,, < > v :

:H1(σ)..ΉJtσ):% = <H1(σ),...,HJLσ)yφ, (4.5)

:Hί(σ)...Hn(σ):_ψ = (H1(σl...,Hn(σ)}φ. (4.6)

These equalities permit to write the renormalization transformation &(£λ with the
help of Wick operations:

: ^ ^ , (4.7)

) : _ , ( ^ _ χ ) (4.8)

(Proposition 2.1 is used).
Let us compute ^λ&

(£μ. We have

so that

i.e.

Moreover we have the equalities

Λ ^ β ) = ̂ , (4.10)

^ , ^ > = ̂ i f l ) ^ α - d ^ (Ψλ(k) = xp{λk)), (4.11)

which follow directly from the definitions of the operators 5^ and &{"\ Hence

<yi/χ,λ<yιχ,μ — <:7A(χ;i-χ)<yι'λ σA(χμ-χ)^μ

— ^ Δ(χΛ- χ)^ Δ(χλμ- XA)^ λ V 2 μ ~ ^ Δ(χ λμ-χ)^ λμ ~ ^χ,λμ '
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Thus the renormalization transformations ${^λ form a one-parameter group. The
Theorem 3.1 is proved.

6. The Infinitesimal Operator of the Renormalization Group

In this section we shall consider briefly some topological questions connected with
the renormalization group {^^}. Let us introduce a notion of convergence in the
space of hamiltonίans Jf °°. As Jf00 is a linear space it is enough to define the
convergence to zero. Namely we put hin) = (h{?\ hf, ...)-»0 = (0,0,...), if

(i) there exists N>0 such that h^ = 0 for m^N;
(ii) Λ^->0 in the C°°-topology.
The notion of convergence in jtf °° implies that in

Proposition 5.1. For any λ>0 the operator 0t^λ is a (nonlinear) continuous
infinitely differentiable in the sense of Gateaux (differentiability along any
direction) mapping from ϊFJ/f00 to ^ J f °°. Moreover the operator ^ \ is an entire
function of the parameter a.

Proof We have

The operator SfΔ{χ _χ) is determined by a chain of finite-dimensional nonlinear
integral operators with kernels, acting on the coefficient functions hn(k1,...,kn) so
^Λ(χ -χ) *s a continuous infinitely differentiable in the sense of Gateaux mapping
from #\^f °° to J^Jf00. The operator 0tf is linear,

where

kv...,λ-1kn) (5.2)

is a homothety operator and

Jt[a):h(k1,...9kJ-+λmh(kt9...9kn) (5.3)

is an operator of renormalization of spin variables. Both operators, JfA, J^[a) are
continuous and infinitely differentiable in the sense of Gateaux in ̂ J ' f °°. Thus the
operator

is continuous and infinitely differentiable in J^Jf00. Next the propagator
Λ(χλ — χ)(k) = \k\~a+d(χ(k/λ) — χ(k)) is defined for all complex values αe(C and is an
entire function of a. Differentiation by a of £fΔ{χ -χ)(H) is reduced to sums of
differentiations of propagators on the lines of Feynman graphs. Hence 9^Δ{χ _χ) is
differentiable in a in the whole complex plane, so that the operator <fΔ{χλ_χ)

depends analytically on αe(C. The operator 2tfλ does not depend on a and Ji^ is
evidently analytic in a. So 0£(^λ is analytic in a. The proposition is proved.
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The infinitesimal operator W of the renormalization group {${£λ} is defined as

>(«) _ T

*±— (5.5)

where I is the identity operator. It follows easily from (5.4), that the limit (5.5)
exists in the space J^Jf °° and the operator Ψ" is the sum of infinitesimal operators
of the transformations SfA{χ _χ)9 Jί("] and Jdfλ,

where < YAχ, is defined by a summation on connected Feyman graphs with only
one internal line to which the propagator zlχ/(k) = |/c|"α+d+1χ/

0(|fe|) corresponds.
The infinitesimal operator Ψ* was considered before in [29,1] and in other papers.
In force of the explicit formula (5.6) the operator Hi is continuous and infinitely
differentiable in the sense of Gateaux in

Let H{0) = εH{?)+ε2Hψ+ . . . e ^ f °°. By Proposition 5.1 the operator St™ is
infinitely differentiable in #"Jf °°. Denote its differential at the point H{°] by
DH(0)&{^λ. The operator DHiO)0t^x is computed easily from the definition of the
transformation &{"\:

where

( P H < ^ ( * Λ - * ) ) ^ (5 8 )

For sake of brevity denote DH(0)^λ with H{0) = 0 by &£λ. Then

~/Jχ,λΓL~\ίΛλri/Δ{χλ-χ) \ J y)

Similarly one can compute the differential of the infinitesimal operator:

In the general case the operators DH{0)&
(£\ do not satisfy a group property (in this

connection see [30]). But if i7 ( 0 ) is a fixed point of the renormalization transfor-
mations then the operators DH(0)&

{^λ form a group of linear operators with
infinitesimal operator DHi0)W. In particular this takes place for H{0) = 0: the
operators 3){^λ form a group with the infinitesimal operator DoiΓ.

7. The Renormalization Transformation for Projection Hamiltonians

The renormalization transformation is defined by rather complicated formulae.
These formulae are considerably simplified for a class of hamiltonians which we
call "projection hamiltonians". The essence of the matter is clarified in the theorem
stated below. This theorem enables us to introduce the following definition.
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Let

sup
xεiRd

be the space of the functions which are bounded at infinity together with all their
derivatives. Let

oo . f rj ___ .

<C

be the corresponding spaces of finite-particle and formal hamiltonians.

Definition 6.1. A hamiltonian He^J^b

M of the form

Λ Σc f*b(p) Π
[ G:\V(G)\=n leE(G)

where Δ(l~χ)(k) = \k\~a+d(l~χ(k)) and 5£^^^ is called a projection hamil-
tonian with generating hamiltonian <£.

Remark that by Theorem 6.1 the projection hamiltonian is defined when
Reα>2<£ In Paper II we shall extend the domain of allowed values of a with the
help of analytic continuation in a.

Theorem 6.1. Lei Reα>2d. Then
(i) all diagram integrals in

are finite :

(ϋ)
(iii) H depends analytically on the parameters a (which appears in the prop-

agator A(l~χ));

(iv) @{?λ(H) = :exp01^£\C^MX yλ

Remark. This theorem shows that in terms of i f the renormalization transforma-
tion for projection hamiltonians is reduced to the application of the operator &(£\

00

Proof. Let i f = £ ε"Ln, Ln = (LnVLn2,...); consider a diagram integral in
n = 1

H== :expJS?:c_4(1_χ). It has the form

Π ^mJ J f c O

m = 1

ΓΊ t(ΣPι+Σε»ιk>) Π
eF(G) leL(G)
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where n = (nv ...,πM), j = (j1, -"JM), G is a connected nonvacuum graph. The
functions Lnrnjm(kUm))eC£, so that they are bounded. Therefore we have to verify
the convergence of the integral only in the case when LnmjJk{im)) = const. By the
"power counting theorem" (see [31]) for the convergence of the digram integral it
suffices that the index

= (RGa-d)\L(H)\-d(\L(H)\-\V(H)\ + l)

of any subgraph HcG be positive. But for Reα>2d,

so the positivity condition is valid and the digram integral converges. Moreover
with the help of the α-representation it is easy to show that the digram integral is
uniformly bounded in p (see [7]). More precisely due to the inequality

\k\-a+d(l-χ{k))<C(\k\2 + lf

for some C>0, we can estimate ^njG{p) by the corresponding Feynman amplitude
with massive propagators (|/c|2 + l ) ( " f l + d ) / 2 and after that estimate the latter
amplitude with the help of the oc-representation.

Under differentiation by k the functions Lnmjjk{jrn)) remain bounded and the
propagator A(ί — χ)(k) decreases at infinity somewhat faster. Thus the diagram
integral remains finite after the differentiation by the variables pι and <FnjG(p)eC^
which was to be proved in (i), (ii).

Now the differentiation by a of an amplitude ^njG(p) is reduced to that of the
propagators on the lines of the graph G. Under differentiation, the propagator
A(l — χ)(k) = \k\~a+d(l — χ(k)) changes only for a logarithmic multiplier, so by the
same "power counting theorem" the Feynman amplitude remains finite for
Rea>2d after differentiation by a. Hence in this domain it is an analytic function
of α, which was to be shown in (iii).

We prove now (iv). We have

which was to be shown. Here we have used the commutation relation (4.11) and
the composition formula (4.9).
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