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Remarks on the Global Markov Property
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Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Abstract. The global Markov property is established for the + state and the —
state of attractive lattice systems (e.g., the ferromagnetic Ising model and most
other systems for which the FKG inequalities are satisfied) and of the
(continuum) Widom Rowlinson model.

1. Introduction

Consider the Gibbs states for a nearest neighbor interaction Φ on the lattice F = Zd

with finite state space S. These are the probability measures μ on Ω = SΓ whose
conditional probabilities satisfy the DLR equations [1, 2 ] :

e-h%(y,χ)

μ{σΛ = y\xΓ-Λ}= Σ e _ A > , ^ ( U )

y'eΩΛ

Here A is a finite subset of Γ, Ώ^ = 5^ is the set of configurations on A, yeΩΛ, xeΩ,
xΓ_Λ is the configuration in ΩΓ^Λ obtained by restricting x to Γ — A, σΛ{x) = xΛ,
and h^(y, x) is the energy in A produced by the interaction (Φ) of the spins in A
(described by y) with themselves and with the spins outside of A (described by
xΓ-Λ). In particular the state μ satisfies the local Markov property: For any
bounded / e J ^ ,

E(f\^Γ-F) = E(f\^dF), (1.2)

where F = A is a finite subset, dF s the set of sites in Γ — F which are nearest
neighbors to at least one site in F, # p is the sub-σ-algebra generated by σD, DcΓ,
E('\έFD) denotes the conditional expectation given <FD, and fe^F means / is
bounded and #p measurable. We write J^ for 3FΓ

Markov chains by definition satisfy (1.2) (d=ί) for F={n,n+ l,n + 2,...} and,
in fact, satisfy (1.2) for any F whatsoever. A state μ satisfying (1.2) for any (not
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necessarily bounded) set FcΓ is said to satisfy the global Markov property.
Albeverio and Hoegh-Krohn [3] have shown that if Φ satisfies Dobrushin's
uniqueness condition then the Gibbs state satisfies the global Markov property.
Dobrushin's condition, which of course cannot be satisfied if there is a phase
transition, is very strong and may also fail to be satisfied even where there is a
unique Gibbs state. On the other hand, it appears reasonable to conjecture that
every extremal Gibbs state satisfies the global Markov property. In Sect. 2 we give
an example of a Gibbs state for the Ising model (with d = 3) which does not satisfy
the global Markov property. In Sect. 3 we indicate why we believe it likely that
every extremal Gibbs state satisfies the global Markov property. In Sect. 4 we
show that the + state and the — state for attractive systems satisfy the global
Markov property, and in Sect. 5 we extend the results to the Widom Rowlinson
Model - a continuum system which exhibits a phase transition.

The results of Sect. 4 are similar to those of FoUmer [4], of which we became
aware after our results were obtained.

A bit more notation: We will denote by μΛ( \x) the measure on ΩΛ described
by the RHS of (1.1). Λn will always denote an increasing sequence of cubes centered
at the origin with \jAn = Γ.

n

2. An Example

Let d = 3, S={±1}, Φa n.n. ferromagnetic Ising interaction:

hϊ(y,x)=- ^ί
\i,jeΛ

Let the Gibbs state μ ί be the limit n-»oo of the measures μΛn{ \x\ where for
ί = (ί1J2J3)eΈ3, χ f = + l for ί 3 ^ 0 and χ . = —1 for z 3 <0. Dobrushin [5] has
shown that μ i is not translation invariant, looking more and more like the +
state (which arises from the boundary condition χ . = +1) as i3-*oo and more and
more like the — state as i3-> — oo. Let μ+ be the Gibbs states obtained from μΐ by
the reflection (iί,i2,i3)->(ivi29 ~~h) Note that since this reflection is the identity
on {i 3=0}, μ ί agrees with μ~ on # j 3 = 0 }. Let μ = ̂ (μt + μ+). Then μ is a Gibbs
state failing to satisfy the global Markov property. In fact, (1.2) fails for
F— {i3 >0}, since μt and μ+, which agree on #^F, are mutually singular on ^r_F,
so that specifying xΓ_F determines whether xeΩ is a configuration of the μt phase
or of the μ+ phase. Note that μ is not extremal.

3. A Sufficient Condition

Suppose μ is a Gibbs state, x°eΩ, FcΓ. We denote by μΛiF(
m\x°) the probability

measure on ΩΛ which on !FA_F agrees with μ and for which the conditional

probability given &A_F is given by μΛnF('\xΛ-FxΓ-(Λ-F)l w h e r e XΛ-FXΓ-U-F) i s

the configuration which agrees with x on A — F and with x° elsewhere. In other
words, for
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We will say that the Gibbs state μ satisfies condition (C) if there exists x°eΩ
such that

(i) μ=\imμΛn( \x0) (3.2)

and

(ii) for every F c Γ , Jim μAntF('\x°) = μ. (3.3)

Proposition 3.1. Suppose the Gibbs state μ satisfies condition (C). Then μ satisfies
the global Markov property.

Proof. Fix FcΓ. Showing that

E{f\&Γ-F)e&dF (3.4)

for every function fe (J έFFnΛn, i.e., that for every function f^^FnΛn, there exists a
n

function f^e$FdF such that

μ(gf) = μ(gfj (3.5)

for every function ge (J ̂ Λm-F, will suffice to establish (1.2).
m

Fix an x° such that condition (C) is satisfied. Let fε^FnΛrn and let

for n^m. It follows from (3.1) and (3.3) that (3.5) will be satisfied by

/^lim/„(*), (3.6)

and f^e^dF since fn€&(dF)nΛn, provided this limit exists. In many models, e.g.,
those described in Sect. 4, the existence of the limit (3.6) may be easily established.
However, this is not necessary, since (3.1) and (3.3) imply in any case that

Jim μ(gfn) = μ(gf) = μ(gE(f\^Γ_F)) (3.7)Jim

for all ge (J # ^ m _ F , i.e., that fn converges weakly to E(f\^FΓ_F) in
m

Since subspaces are weakly closed, (3.4) follows. Π
Note that

for fe^ΛnF and ge^Λ_F. Comparing (3.8) with (3.1), we see that μΛ>F( \x°) differs
from μΛ( \x°) only in that part of the system, ΩΛ_F, is distributed according to μ
rather than μ( \x°). Thus μΛ F( |x°) should be closer to μ than μΛ( \x°\ so that if
(3.2) holds so should (3.3). We thus conjecture that every Gibbs state μ of the form
(3.2) for some fixed boundary condition x°eΩ, and in particular every extremal
Gibbs state, satisfied the global Markov property.
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4. Attractive Interactions

Let S be partially ordered with minimal element — and maximal element +. The
partial order on S induces a partial order on Ω (or on ΩA):

y. all i.

A function / on Ω (or on ΩA) is called increasing if

We denote by #JJ the increasing functions e^D. Let μ and v be probability
measures on Ω (or on ΩΛ). Then we define a relation " ̂  " on probability measures
by

μ g v<t>μ(/) ̂  v(/) for all fe

[" ^ " is a partial order on probability measures on Ω(ΩΛ) since two measures on
Ω(ΩΛ) which agree on ^(^}) coincide.]

An interaction Φ is called attractive if

\y) (4.1)

for all bounded ΛcΓ.
For an attractive interaction μΛ(-\+)*^μΛ>( \ + ) when Λ'cΛ and hence the +

state

/ i

+ = l i m J u Λ i ( | + ) , (4.2)

and similarly the — state μ~, is well defined. (We use + to denote the
configuration x. = + , all i.)

Theorem 4.1. 77ιe + sίαίβ and the — state for a system with n.n. attractive
interaction satisfy the global Markov property.

Proof. We need only show that (3.3) is satisfied by μ = μ+ and x° = + . But this
follows immediately by passing to the limit rc->oo in

onΩΛn- ( 4 3 )

The first inequality follows, using (3.1), from the facts that μΛn( \ + )^.μ+ on
and that for fe^}n, the function

Since

VAnnF('\X)^AnnF(-\XAn-F +

and

μ(gf)=lμ(dχ)g(χ)μΛnnF(f\χ)

for g£^Γ-(ΛnnF) a n d fe^ΆnnF> comparison with (3.1) yields the second
inequality. Π

Regarded as a measure on ΩΛ,
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Examples. The best known examples of attractive interactions are those for which
the FKG inequalities [6] are satisfied. These inequalities say that

<Λ>^</Xflf> (4.5)

where (-y=μΛ( \x) and / and g are e # ^ . Note that for gfϊ O, (g}+0, (4.5) says
that

where

It therefore follows from (1.1) that if the FKG inequalities are satisfied, and iϊx^x'
implies that h%(y, x) — h®(y, xr) is increasing in y, then Φ is attractive this is because
if μΛ( |x) = < > then μΛ( • \x') = < }g, where g = exp(ft$G>, x)- h*(y, x')). Moreover if
the "FKG condition" [6], μ(a v b)μ(a A b)^μ(a)μ(b), is satisfied by all the μΛ( |x)'s,
then Φ is attractive since we then have (I) x ̂  x'=>h®(y, x) — h®(y, x') is increasing in
y. In fact, the satisfaction of (I) for all A is equivalent to the "FKG condition" and
hence implies the attractiveness of Φ. In particular, if SeIR, and if

d φ

is increasing in y, Φ is attractive. We are assuming here that h%y, x) makes sense
(and is C1) for all values of the xt , not just those in S.

Suppose SClR, and h%{y,x) is defined and is C2 as a function of x., .y7 e]R, all ij.
It follows from the above that Φ is attractive if

dypxi

(See also [7].)

Example 4.1. Suppose SC[0, oo), and let

K(y,χ)=- Σ JΛQΛ,
AcΓ

AnΛ Φ0

where the sum is over finite subsets A of Γ,

QA(y>*)= Π yt Π *j>
ίeAnΛ jeAn(Γ — Λ)

and JA^0 for sets A containing two or more points. Since (*) is satisfied Φ is
attractive.

Example 42. Suppose S = { — p, — p + 2, ...,p — 2,p} for some positive integer p. It
is shown in [8] that the FKG inequalities are satisfied if

Σ
ifj

ι,jeA

Σ {J(hJ)ypcj + y{i,j)yfχjh (4-6)
is A

JGΓ-A
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where

J(ίJ)^4(p-l)2\γ(ίJ)\ (4.7)

for all ίjeλ. Since

0 ^ ( - hφ

Λ(y, x)) = J(ίJ) + 4y (ΐ 9 fly &

^J(iJ)-4\y(ίJ)\p2

we see that Φ is attractive provided J(ίJ)^4\γ(ίj')\p2 for all iJeΓ. A more detailed
calculation shows that Φ is attractive as long as (4.7) is satisfied for all iJeΓ:
Suppose x' differs from x only in that xJ = χ. + 2. Note that — p^x.^p — 2. Then
h®(y, x) — h^(y, x') is a sum of terms of the form

2f{yp Xi) = 2(J(iJ)yj + 2y(i, j)y*{χt +1)).

Since f{y^ x^j is quadratic in y. with

for — p+1 ^j/j^/?— 1, it follows that f{ypX^) is an increasing function of j ^ eS.
(The vertex of the parabola occurs for |^.|^p—1.)

The above result also follows from the fact that the model (4.6, 7) satisfies the
"FKG condition", as shown in [8]. The preceding calculation also provides a
simple proof of this fact.

5. The Widom Rowlinson Model

The proof in Sects. 3 and 4 of the global Markov property depended upon the
attractiveness of Φ and the existence of a maximal measure μΛ(-\+)9 but not
essentially on the lattice structure Γ = Zd. We here prove the global Markov
property for the + (A) state and the — (B) state of the Widom Rowlinson model, a
continuum model for a system of two kinds of particles, A and B, which (for d^.2)
has been shown [9] to have a phase transition at low temperatures.

Our setup is now the following: Γ = WLd

9 S= {-2,0,2}, and Ω = the set of
functions x :Γ-+S which are locally finite in this sense: For every set DcΓ let
Na D(x), α = ± 2 , be the number of points reD such that x(r) = α. Let ND = N2iD

+ N_2 D x is locally finite if ND(x) is finite for all bounded sets DcΓ. We interpret
xeΩ as a configuration of A and B particles: x(r) = 2, —2, or 0 according to
whether there is an A particle, B particle, or no particle at r. We denote by Ω the set
of all functions x:Γ^>S.

Let D be a Borel subset of Γ. We denote by xD the restriction to D of xeΩ, and
by # 0 the smallest σ-algebra (on Ω) with respect to which the functions Na κ ,
α = ± 2 , K a Borel subset of D, are all measurable. Let Ωn = {xD\xeΩ}. If ylClR^ is a
bounded Borel set, (ΩΛ, ^Λ) may be identified with (J Ω{^m\

) = ( An

symm X 7 1symm/ Φ >
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equipped with the Borel sets, where the first factor inside the parentheses refers to
the A particles, the second factor to the B particles, Q{%'0) contains the single
element 0Λ, the vacuum in /L, and coincident configurations, in which two or more
particles are at the same position, are not allowed. When we refer to continuous
functions and to Lebesgue measure on ΩΛ we have this identification in mind. We
define a measure dyΛ on ΩΛ by

d d d d J

on Ω^m\ where y = (y 1 ?..., yπ, y 1 ?..., yjeΩ (2'm ) (and dyΛ gives unit mass to Ω{°>0)).
A will always refer to bounded Borel sets ClRd.

In the Widom Rowlinson model, the only interaction is a hard core exclusion
between A and B particles: an A particle cannot be closer than a distance R > 0 to
a B particle. Thus, for F a Borel set CΓ, we let

dF= jreΓ-Finϊ |r-r'|^
I

A Gibbs state for this model may be defined as a probability measure on Ω
whose conditional probability given !FA is defined by the probability measure
μΛ(-\x) on ΩΛ given by

\i,k i,j k,l

where j ; = (y1,...,y λ J,y1,...,ym)eΩ^m ), and XGΩ, xdΛ = (xy ...,xn,,xl9 ...,xm,), and
V(t)= oo for t <R and = 0 otherwise. In particular, (1.2) is satisfied for F = A, and
as before we say that a Gibbs μ satisfies the global Markov property if (1.2) is
satisfied for all Borel sets F C Γ.

Note that μ( |x) makes sense for all functions xeΩ, not just for xeΩ. We
denote by + the function eΩ which everywhere has the value +2 (A particles
everywhere) and similarly for —. The + state (or the A state), the limit of the
measure μΛn( \ + ), will be denoted by μ+. Similarly for the — state, μ~. Here, as
before, An denotes an increasing sequence of cubes C Γ centered at the origin, with
(J An = Γ. We show first that the limit defining μ+ exists, in the sense of defining a

n

probability measure on Ω. (It then follows from the argument in [9] that for
sufficiently large z the Gibbs states μ+ and μ~ are distinct.) Then we establish the
global Markov property for μ+ (and μ~).

The natural order on S={ — 2,0,2} induces a partial order on the set Ω of
5-valued functions, and in particular on Ω. In this partial order x ̂  x' if x' may be
obtained from x by first removing some B particles and then adding some A
particles. Similarly we have a partial order on ΩΛ. Let 3F\ (#"τ) denote the set of
bounding increasing measurable functions on ΩΛ(Ω). Let ^\c^l consist of
increasing functions on ΩΛ which are either continuous or are of the form
f({Na.>Aι}"=1), A(CF a bounded set whose indicator function is Riemann inte-
grable, ί = l 5 ...,n. Let μ and v be probability measures on ΩΛ. Then we define

for all fe&}. (5.3)



230 S. Goldstein

The key ingredient in our results is the following :

Theorem 5.1. The Widom Rowlinson interaction is attractive in the sense that

for all functions x, x'eΩ.

Proof. It is shown in [10] by a direct computation that

^ ' , (5.4)

where the LHS is the correlation function giving the probability density of finding
k A particles at y l 5 . . . , yfe and / B particles at y l 9 . . . , yt for the measure μΛ( \x). It
follows that

(z\Λ\)n

{±-^, (5.5)

where \Λ\ is the Lebesgue measure of A.
Let Γ{δ) = δΈd, δ>0, and for ΛcΓ{δ\ let Ω{δ) be defined in the natural way. For

weΩ, let h%]w be of the form (4.6) (on Γ(δ)) with p = 2,

Άhj) = j(i-j) Kή = hΛ(i\w)

y(U) = y(i -j) u(ί) = β~' \ogz^δd + uji\w)

iJeΓ{δ\ in the limit defined by

j(r) = y(r) = 0 for \r\^

J(r)-4γ(r)=ooJ f°Γ

Here

ΐ = J - c o if τeBWκ._Λ

0 otherwise

and

2uΛ(x\ w) — hΛ(r\w) =
0 otherwise,

where AX(BX) denotes the union of open spheres of radius R centered on the A
particles (B particles) of xeΩ.

Let μ5?w t>e the probability measure on Ω^ with density

(5.7)

Here 0 denotes the configuration containing no particles. Let xeΩ. As noted in
[8], if IΛ is Riemann integrable, μΛ( \x) may be approximated by the lattice
measures μ%)fX, where A{δ) = AnΓ(δ\ in the following sense: Points yeΩ%) may
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be regarded as points in ΩΛ by extending the function y : Λiδ)->S to A by setting it
= 0 on A — Λ(δ\ Thus a function / on ΩΛ defines a function f{δ) on Ω{^{δ).

Moreover, for / e # ^ ,

Σ fiδ\y)e~h^'x^-^0)

is essentially a Riemann sum for the numerator of μΛ(f\x). Moreover, it is easy to
see, by either a direct computation or the FKG inequalities, that (5.5) also holds
for the lattice approximations, except A on the RHS of (5.5) may have to be
replaced by an appropriate bounded Borel set ΆDA which may be chosen
independent of δ. It follows that for / e ^ j ,

μΛ(f\x)=fmμ%^_Λ(f^). (5.8)

Therefore the FKG inequalities are satisfied by the measures μΛ( \x) for / and
ge^\. It is shown in the Appendix that the FKG inequalities are in fact satisfied,
in μΛ( \x), for all f,ge^\, where A is any bounded Borel set.

Now suppose xrgx'. Then x ^ / ^ x ' , where x'ΈΩ differs from x(x') only in
that some B(A) particles have been removed. Let < ) = μΛ( |x"). Then

where

(and x' — x" is the difference of the functions x and x'). Similarly

where

and — ge J ^ It follows from the FKG inequalities that

and the interaction is attractive. •
That the limit (4.2) exists in the continuum now follows easily: On functions in

(J ^ln the limit exists monotonically. Hence if the limiting values on such
n

functions come from a probability measure on Ω at all, this measure is unique. To
see that the limit comes from a probability measure, note that it follows from (5.4)
that the density of μΛn{dy\ +), regarded as a measure on ΩΛm, m^n, w.r.t. dyΛm is
^ zk+1 on Ω^K Thus, if dzyΛm is the measure on ΩΛm given by zk+ιdyΛrn on Ω^\ we
see that these densities are all eLco(ΩΛm,dzy). Therefore, by the Banach Alaoglu
Theorem and a diagonalization, there exists a subsequence nk such that the
measures μΛn ( | + ) converge to a probability measure on Ω on functions
e [j L1(ΩΛm, dzyΛm), and in particular on functions e [j # ^ m . (We use here the fact

that probability measures on Ω are in 1 — 1 correspondence with consistent
families of measures on the Ω^'s. This follows, for example, by regarding Ω as a
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countable product space in the natural way and applying Kolmogorov's theorem.)
This proves the existence of the Gibbs state μ+.

That μ+ satisfies the global Markov property may be seen by repeating,
essentially verbatim, the argument in Sects. 3 and 4. Unlike the lattice case,
boundary conditions which do not correspond to configurations xeΩ must be
considered, but this makes no differences.

Theorem 5.2. The + state and the — state for the Widom-Rowlinson model satisfy
the global Markov property.

Remark. The results and arguments of this section apply with minor modifications
to the more general A — B models described in [10] : VAA(r)=VBB(r) = 09 VAB(r)^.O
(where VAA, VBB, and VAB are respectively the pair potential between two A
particles, two B particles, and an A particle and a B particle), with external fields
for the A and B particles which are bounded below [reflected in bounded activities
zjr) and zB(r)]. The main differences are the following:

(a) The RHS of (5.4) should be replaced by zA(y}) ...zjyjzjyj ...zB(yz).
(b) The lattice approximation should be carried through for continuous

potentials and fields and the results extended to Borel potentials and fields by a
density argument.

(c) μΛ{-\x) will now make sense for Borel measurable x:IRd-»S, but not
necessarily for all x :lRd->5. Theorem 5.1 will hold for Borel measurable x and x'.

Appendix

The following result is proven in [11].

Theorem Al. Let T be a finite partially ordered set, and let μγ and μ2 be probability
measures on T. Then the following are equivalent:

(i) μi(f)^μ2(f) for all increasing functions f: T->IR.
(ii) There exists a probability measure v on TxT such that

(a) v(-xT) = μl9

(b) v{Tx ) = μ2,

and

(c) v{(x,y)eTxT\x^y} = l.

We wish to extend this result to infinite partially ordered sets. What we can
prove is the following:

Theorem A2. Let (B, £$) be a partially ordered (standard) Borel space [12, 13]. Let
fn be a sequence of increasing, $-measurable {0,1} valued functions on B which (1)
separates points and (2) determines the partial order [i.e., x^yofn(x)^fn(y) for all
nj. Let ffi be the set of bounded, increasing &-measurable functions and let ^ be
the set of increasing functions of the form ψ(fv ••.,/„) far some n. Let μx and μ2 be
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probability measures on B. Then the following are equivalent:
(i) μi(f)^μ2(f)forallfef.

(ϋ) μiU)£μ2(f)forallfe&.
(iii) There exists a probability measure v on Bx B such that

(a) v(.χB) = μ i ,

(b) v(Bχ.) = μ29

and

(c) v{{x,y)eBxB\x^y} = l.

Proof. (i)->(ϋ) is trivial. To see that (ii)-*(iii) consider the function f :B-+{0,1}00,
f(χ) = (fι(χ\f2(χ)> •••)> χεB. f is a measurable injection from the (standard) Borel
space (B,£$) to the standard Borel space {0,1}00 with the product σ-algebra.
Therefore f takes Borel sets into Borel sets [13], and in particular f(B) = B is Borel.
f is thus an isomorphism (B, (M, ύ)-*Φ> ύ) a n d we may thus assume without loss
of generality, that B is a Borel subset of {0,1}00 and that the functions fn are the
coordinates. Let Bn = {0,1}", n = l , 2 , . . . , be the set of values of the first n
coordinates. Then by Theorem Al, there exists a probability vn on Bn satisfying

(a) vn('XBn) = μί on Bn9

(b) vn(Bnx ) = μ2 onBn,

and

(c) vn{(x,y)eBnxBn\x£y} = l.

There exists a subsequence n. such that v converges weakly to a probability
measure v on B x B. It is easy to see that v must satisfy (a)-(c) of the theorem.

(iϋ)-»(i) because for f

μx(f) = f v{dx9 dy)f[x) φ{dx, dy)f{y) = μ2(f). D

(Ω, 3F) and (ΩΛ, έFΛ) are standard Borel spaces. This follows, for example, from
the product structure of these spaces and the stability properties of standard Borel
spaces [13], or from the fact that # X # Λ ) is the set of Borel sets for a Polish space
topology on Ω{ΩA) [14, 13]. Suppose (B, SS) = {ΩA, SFA\ A a bounded Borel set. It is
easy to find a sequence of {0, l}-valued functions e^\ satisfying (1) and (2) of
Theorem A 2. (For example, the collection of functions which are either of the form
I{N2 D>0} or of the form I{N_2 D = 0}> where D ranges over open spheres of rational
radius whose center has rational coordinates, will do.) Let < >=μ y l ( |x) for the
Widom-Rowlinson model, and let ge^\, g^O, <g>=#0. Suppose first that A, i.e.,
IA, is Riemann integrable. It was shown in Sect. 5 that the FKG inequalities are
satisfied for functions e^A, and therefore (ii) of Theorem A2 is satisfied by
μγ = < > and μ2 = < }g. It follows by an application of the theorem that the FKG
inequalities are satisfied for all functions / e f ] , # e ^ j , and by another, similar,
application of the theorem, for all functions f,ge^A. Finally, any bounded Borel
set may be approximated by Riemann integrable sets A'. It follows, using (5.5) for
n = l, that μA(-\x) is approximated by μA.{-\x') for appropriately chosen x'.
Therefore, the restriction that A be Riemann integrable can be removed.



234 S. Goldstein

Theorem A3. In the Wίdom-Rowlinson model

where { ) = μΛ( \x), xeΩ, A a bounded Borel set, and f.
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