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1/n Expansion for a Quantum Field Model*

Antti J. Kupiainen

Lyman Laboratory of Physics, Harvard University, MA 02138, USA

Abstract. A nonperturbative study of the ί/n expansion in Euclidean Quantum
Field Theory is started. The expansion is shown to be asymptotic to the
vacuum energy of the (φ2)?, model, for arbitrary coupling constant.

1. Introduction

The 1/n expansion has recently aroused a great deal of interest among field
theorists (for references see [1]). A rigorous, nonperturbative study of this
expansion was started in [1], where the lattice nonlinear σ-model was considered.
The techniques of [1] can also be applied to the l (φ 2 ) 2 lattice field theory (in fact
this theory is much easier to control one can prove the estimates uniformly in λ as
Λ,->oo). However, it is not possible to pass to the continuum limit using these
methods. The reason for this is that the random walk expansions which played a
central role in the estimates produce a divergence as ε, the lattice spacing, tends to
zero. The source for the divergence lies in the fact that we perturbed in the off-
diagonal part of A (the lattice Laplacean), which perturbation becomes singular as
ε->0.

In the present paper we develop a different method to examine the 1/n
expansion for the two dimensional (continuum) (φ 2 ) 2 quantum field theory. In
particular we will show that the expansion is asymptotic to the pressure (vacuum
energy) for arbitrary large coupling constant. The idea is to derive a closed form
expression for the remainder in terms of Schwinger functions of suitable type.
These can then be bounded using chessboard estimates and Holder's inequality.
We present two ways to generate the expansion with a remainder, one using a
"dual" representation of the model in terms of a complex nonlocal measure, the
other using the ^-representation.

The techniques of this paper can be used to derive the expansion for Schwinger
functions with the remainder given again in terms of Schwinger functions. The
existing cluster expansions can be applied to construct these for small coupling λ
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for large λ they don't converge because of large pressure contributions. However,
the 1/n expansion predicts that the theory is close to gaussian for any λ as n
becomes large enough. To construct the theory for arbitrary λ, and thus also to get
the expansion for correlations and mass gap, one needs a new cluster expansion
which explicitly cancels the diverging pressure factors. This will be discussed in a
forthcoming publication.

The contents of the paper are as follows. In Sect. 2 we briefly recall some facts
about the model and state the main result. In Sect. 3 the expansion is generated in
the ^-representation by successively integrating by parts and obtaining linear
integral equations for various correlations, the solution of which constitutes an
elementary expansion step. However, the general remainder is quite inexplicit
when derived in this fashion and, for example, we only get an eaλn~ι type bound
for the first order remainder. In Sect. 4 we introduce the dual representation,
generate the expansion there and prove the main result.

2. Description of the Model and Main Results

Let A be the (flat) torus obtained from [ —L,L] 2 , LeN, by identifying opposite
sides, and ΔΛ the Laplacean on lί{A). Let dμ{}] be the gaussian measure on 3)\λ)

with covariance CΛ = (-AΛ + 1)~1 and dμΛ(φ) = (g) dμ^\φ^ on 3>\Λ)n. The

partition function Z(A9 λ, ή) is

Z(Λ,λ,n)=μv^λ^dμΛ(φ), (1)

where

V(Λ, λ, φ) = - j - J : (φ(x) φ{x)f : d2x
m Λ

n

and : : denotes Wick-ordering with respect to dμΛ, φ φ= ^ φ{a)φ{a\ We will be
α = l

using the following properties of this model the proofs are analogous to those in
the n = 1 case, only the differences are indicated below. (For general information
on Euclidean field theory see [2].)

A. Conditioning [3,4]

Let A = AxuA2 where A{ are open and disjoint. Let C\. be the covariance on !?(/!.)
with Neumann boundary conditions on dA{ [4] and let V(A^j have Wick ordering

n

with respect to dμN

Λ., which has covariance φ {CΉ

Λ)
U) where (C^.)0) are n copies of

C£. Then [4]

lev^dμ»Λι\ev^dμ% (2)

[\RMM\«dμMΛ
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n

and Λ i l i / l2-has Wick ordering with respect to ® ( C ^ θ CJ3[2)
(O, the covariance of

dμN

ΛiΛi (here P are polynomials).

J3. Semίboundedness

This states that K / e L p ( ® W » W f o r all p<oo and

g c o ( 2 ( l o g A ) 2 + 1 } (4)

where c0 is independent on A and λ (and w).
The proof of (4) is exactly as in [2], Chap.V.2, note that for

φh(x) = \h(x-y)φ{y)dy where heC°°{A)

:(φh φh)
2 :=(φ2~nb)2-4bφ2

h+2nb2 (5)

and b{x)=$φ2(x)dμΛ. Thus inf( :(φ2)2 : ) = -2b2{n + 2) and hence

sup F = / U - + -If b(x)2d2x. One can now proceed as in [2] to prove (4) for \A\ = i

and using (2) for arbitrary A.

C. Chessboard Estimates [5]

Let F^φ) be a function of φ(x) localized at Λh the unit cube centered at ίe Z2, such
that F is invariant under reflections about the lines xa = iΛ, α = l,2. Define the
expectation

Then

/ Π FAφ)\ * Π / Π t;
\ΛiCΛ I ΔiCΛ \ΔJCΛ

where τ Fi is the translate of Ft to the square Aί+j (addition modulo A).

D. Integration by Parts [6]

The integration by parts formula we use is

Using (D) and (C) one can prove the local regularity of the correlation
functions

i.e. that Fe Lp

log(Ak) ϊor p<co and \\F\\Lp(JlX/i2...X/ifc) is uniformly bounded in \A\. In
other words, i7 has the same local singularities as in the free (λ = 0) theory. (See e.g.
[7], who use weaker φ-bounds.)
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Fig. 1

Fig. 2

Fig. 3

Since one easily gets

$ v v ^ sup \\etV

(B) implies that Z(Λ, λ) is differentiable in λ.
Finally, using conditioning one can prove that the infinite volume pressure

(vacuum energy)

p(λ)= lim p(Λ,λ)= lim log(Z(ΛU)1/|y11)

exists [4].
The perturbation expansion in powers of λ for p is easily shown to be

asymptotic since it can be generated by integration by parts and the remainder can
be bounded using chessboard estimates. Namely, the remainder consists of terms
of the form

$dxί...dxkF(xί,...,xk;oL9ni)Y\C(zι-zj)9

where z's are x's and one fixed point (e.g. the origin) and C's form a connected tree.
One now localizes C's and uses chessboard estimates (see Sect. 3 for similar
computations).

The (formal) ί/n expansion is obtained by formally resuming this asymptotic
perturbation expansion. In the graphical representation of the ordinary per-
turbation expansion, each line carries an index i which is summed from 1 to n and
each vertex has a factor δiιi2δi3i4. Thus all graphs of Fig. 1 are O(n°), whereas those
of Fig. 2 are O(n~1). Such graphs can be formally summed, e.g. the sum of graphs

λ2

of Fig. 3 is —(C*C)(ί+λC*C)~ ί (here Λ denotes Fourier transform and *
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convolution). The leading term in l/n for p is the sum of the graphs in Fig. 2. (It
should be noted that these sums only converge for small λ, but the "sum" has a
well-defined meaning for large λ too; the situation is as that of

00

(l+λx)~1 = Σ ( — λx)n. We note that a systematic formal way to derive the
n = 0

expansion is to introduce a "dual" field a(x) as in the σ-model [1] and then
"integrate out" the ^-fields. We will return to this approach in the fourth section.

We now state the main result, whose proof will be given in Sect. 4.

Theorem 1. Let p be the coefficients of the l/n expansion for the vacuum energy p.
Then there exist constants α, β>0, such that for all m, n ^ 2 m and λ^2

m- 1

P= Σ ^
j=o

where

Remark 1. β can be chosen arbitrarily close to 10, see (53). Also for small m the
bound for β will be better (see Sect. 3).

Remark 2. Since we are interested in large λ, λ^2 is assumed (the 2 is quite
arbitrary).

Remark 3. By a little extra work, one should be able to show that the (3m)! can be
replaced by ml

3. Non-Perturbative Derivation of the Expansion

In this section we will generate the l/n expansion for the pressure by using
integration by parts and solving a simple integral equation. Before describing the
general case, let us first consider the lowest order. By translation invariance we get
(suppressing the /L-dependence of p)

where A is a unit square. Thus integrating by parts

% = A j dx\dzC{x-z)< :0(1 ψ(x): :φ(1 ψ(z):>
uA 4n

λ
2

f-A
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where we used in the second step O(n) invariance of V and dμΛ. Note that
perturbatively the second term is Oin"1) whereas the first is O(n°). Also, the first
term generates among other things the graphs of Fig. 1. Thus let us consider

G(x-z) = (:φ2(x)::φ2(z):}

and denote

:φ(a)φ2(x):=va(x) and :φ2(x): = q(x).

We integrate by parts twice

G(x -z) = 2nC(x - z)2 - 2λ\dyC(x - y) C{x - z)

λ2

+ ~$dyίdy2C(x-y1)C(x-y2Kv1(y1)v1(y2)q(z)}. (8)

(7) and (8) thus lead to the equations

(9)

G(x- z) = 2nC{x- z)2 - λ\dyC{x- y)2 G(y- z) + Q(x- z), (10)

where

Q(x)=-2λC(xKvι(C)φ^(x))+λ^φ1(C))2q(x)y. (12)

Since C is the kernel of a positive operator and C(x)eLp(Λ) for all p<oo,
C(x — z)2 is the kernel of a positive operator C ( 2 ) and we can thus define
K = \A+λC{2)~]~1 for λ^O. In p-space K is just the multiplication operator
K(p) = [i +A(C*C)(p)]~1 where * denotes convolution. We can formally solve
(10)

G = 2nKCi2) + KQ. (13)

To give (13) a well defined meaning, we need the following Lemma:

Lemma 2. The x space kernel of K can be written as

K{x-y) = δ{x-y)-λUx-y),

where LeLP(Λ) for all p<oo, uniformly in \Λ\. Moreover, for all ε>0, pe(l, oo)

where b(p,ε) is independent on λ and \Λ\, and \i—j\ is the distance on torus.

We will prove Lemma 2 at the end of this section.
By local regularity and Lemma 2 \K(x — y)Q{y — z)dy is well defined and we
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can combine (9), (10), and (13) to obtain

where we also used C{2)*K = L.
Note that J £ C ( 2 ) is exactly what one calls the sum of the graphs of Fig. 1. We

thus have to show, that R and - 0 are 0 - 1 We define
n \nj

λ

PoW = 4 ί dg J^P^((C*C)(p))2(l + ^ ( C * C ) ( J P ) ) ~ 1 (15)
o

i.e. p 0 is the leading term to pressure in the expansion. Most of this chapter is
devoted to the proof of

Theorem 3. Let po(λ) be defined by (15). Then there exists a constant y>0 so that
for λ>\

Remark. As will be evident from what follows, given Eq. (14) it is rather
straightforward to bound R and Q so that

\p{λ)-po{λ)\^y1e
Άλ^λ)2n-1'2. (16)

We just use chessboard estimates and semi-boundedness of ev. Also, as will be
explained below (Theorem 3'), a bound

\p(λ)-Po(λ)\Sy2e
aλilo*λ)2n-1 (17)

follows by integrating R and Q further by parts and following ideas that lead to (14).
The λ10 factor however needs much harder work; we will obtain it by bounding
the general order remainder of the expansion in Sect. 4. Finally we note that
perturbation theory suggests λ6n~ι behavior instead of the λ10^1 behavior we
get.

We shall now study the terms R and Q of Eqs. (11) and (12). Let us consider e.g.
the first term in Q

Q1(x)=-2λC(xKvί(C)φ(1\x)>. (18)

We will estimate Q1 using chessboard estimates. Before this we have to integrate
by parts and repeat the ideas that lead to (14) for the following reason. Consider
e.g. the expectation (q(A)}. We expect this to be 0(n°). However, a chessboard
estimate only gives

which at least in perturbation theory is 0{n1/2). [Combined with what follows this
leads to (16)]. However we compute [note that
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and thus

^ . (19)

Now note, that the expectation on RHS of (19) is O(n) in perturbation theory and
this is what we will prove now. Let us first localize C; C = YjCi where Ct = Cxi9 χt

being the characteristic function of the unit square At centered at ieΈ2. We apply
chessboard estimates and Holder's inequality (q even and < >0 = j dμΛ, ί ή=j)

k /

1 / M I i/MI

^ Π

Here r~1 + q~1 = 1. Let < }Aί be j dμ^. where dμΉ

Δ. has Neumann data on dΔi (2.B).

Since τ ί̂ ^ C J is measurable with respect to the σ-algebra generated by the fields

on Aa+k we get, by conditioning to the covariance 0 C ^ [ ,

υ^CJv^Cj)}] S ktJ exp(r- (20)

We thus have to estimate the gaussian expectation (v1(Ci)
q}Δι = <(\φ{1)φ2\(C^)qs)Δ

Lemma 4. Lβί q be even and n>aq, α ^ ^ . Then

where b0 is independent on q, n, λ, \Λ\.

The proof of Lemma 4 is given at the end of this section.
We can now estimate β x of (18):

Lemma 5. \Q1{x)\^b1λ
2q2C(x)exp[_r-1p(rλ)-p{λ)'].

Proof. Integrating by parts
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where we used (19) and denoted CX = C(- —x). Thus

Q1(x)=-2^C(x)(C*C)(x)ll+λ$C(x)2dxΓ1<v1(C)2)

Since IIC j | j L 4 ( z l . ) ^^4^~ | £ | we obtain using Lemma 4 and (20)

The claim follows, since (C*C)(x) is bounded as is λ\Λ + λ\C(x)2dx]~ ι. Π

To conclude our analysis of the first order remainder, we will now estimate R
and Q2 = Q~Qι [see (11), (12), and (18)]. Both of them have the factor

(vάxMxJtiixjy. (21)

We want to express (21) as a sum of terms involving even number of φ2 factors (i 's
are included), for which chessboard estimates give the correct n dependence as we
noted above. We integrate by parts

<v1(x1)υ1(x2)q(x3)y = ί 1 -f -J <q(xί)q{x2)q(x3)>

- -{v1(CXί)υ1{x2)q(x1)q(x3)}.

[Recall that CX = C(— x.] The last two terms have even number of φ2 factors. We
thus leave them as such. We denote in the first term q(x2)q(χ3) by P, and integrate
qix^ twice by parts:

+ λ2n-\v1(CXι)v1(CXι)Py.

Let us now solve this linear integral equation

(22)

Note, that (22) holds for any 0(n) invariant P. For the case at hand

δP , _
/ | < D '
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Thus in (22) only the last term has odd number of φ2 factors. We compute

Since <g(x3)> is given by (19), we have now reduced (21) to a sum of terms
including only even number of φ2 factors. These factors are now estimated using
chessboard estimates as in the case of Qx. Using Holder's inequality with
exponent q, each φ2 brings a factor (qn)ί/2 and each φ{1)q1/2 as in Lemma 4. The
highest power of λ is λ2 and of q q512. To estimate the kernels, we apply Lemma 2.
We get 1 1

Lemma 6. (a) \Q2{x)\ύb2λ
5 q5'2

(b) \R\Sb3λ
5q5/2n-1Qxp[r-

Lemmas 5 and 6 together with (14) and (15) imply

dp dp0Proposition 7.
dλ dλ

exp[r~x

Choosing q — 2 and using (4), we immediately get the result anticipated in the
remark following Theorem 3:

Theorem 3'. Let p0 be the leading term in the ί/n expansion for the the pressure p.
Then

for some A, β independent on λ, n. •

To prove Theorem 3 we need an a priori bound for p — p0:

λ10

Lemma 8. There exists a δ > 0 such that \p(λ) — po(λ)\ ^1 as <δ.

Theorem 3 is now an easy consequence of Proposition 7 and Lemma 8 since we
can write

r~! p{rλ) - p(λ) = r~ \p{rλ) - po(rλ)) + (po(λ) - p(λ))

+ (r-1p0{rλ)-p0(λ)). (23)

By Lemma 8 we need to consider only the last term. From an explicit formula for
the convolution C(2)(p) [see e.g. [8], formula (46)]



1/n Expansion for Quantum Field 209

Thus, since λ ^ 2

dp0

dλ

Hence there is α 4 > 0 such that q>aArλ{\ogλ)2 implies \r 1po(rλ) — po(λ)\<l. This
proves Theorem 3.

We will prove Lemma 8 by estimating the general order remainder and
expansion coefficients. Let

k = 0

be the 1/n expansion with remainder. The main estimate of Sect. 4 is

Lemma9. Let2k + 2<n. Then

(a) \pk\^(3k)\λ6k+2Ck,

(b) \Rk\^ \

where CO^CV β are constants, independent on λ,n,k.

Remark, (a) is obviously not optimal.

/ C \ 1 / 3

Assuming Lemma 9 we can now prove Lemma 8. Let x = \λ6 — . Choosing

3/c = x~1 we get

(3/c)!x3 f c^yexp(-l/x).

Thus for C1λ
6n~1<(2βλ(logλ)2)-3 one obtains

For λ^n'1 small we thus get the claim since

J c - l k - ί ( ; 6 \ ί k-

1=1 1=1 \ n I 1=1

1 2 Λ - l

•-"<τ^Σ/ -1sr17. π

We will close this section by showing how the expansion and the general
remainder Rk can be obtained using the ideas we have explained. For this purpose,
we consider the expectation

where we assume P is O(n) invariant. Perturbation theory suggests that qq gives
rise to an L. This is achieved by integration by parts twice and solving the resulting



210 A. J. Kupiainen

integral equation:

+ (n + 2)jdz1dz2K(y1-zi)C(z1-y2)C(z1-z2)

-X(l + 2/n)$dz1dz2K(y1-z1)C(z1-y2)C(zl-z2)

• <ψ ( 1 ) (y 2 )« 1 (z 2 )P>

+ (n + 2)$dzιdz2C(zι-z2)K(y1-zι)

\_0(n) invariance was used in relations such as < \(φ(a))2 :P} = n *< :φ2:P>.] Let us
2k

now specialize to the case P = Y\ q(y.). Then the expectation in the fourth term of

(24) is ί = 3

2k

2 V δ(z2 — yi) /φ{1){z1)φ('1\y) ΓΊ

" 3 \ l ΨΛ
2k

i-3

+ 2 V C(z, — \\) /Φ{1\yλ Φ ( 1 )(y t) Γf
kΦ./

(25)

We see, that the first term in (25), when inserted to (24), involves

We have thus derived

fc \ 2k

q(yή =2(n + 2) Σ L ( y i - ^ ) / fl Φ Λ + T, (26)
l / j=2 \ i^2 /

\i*j /

where T can be read off from (25) and (24). Note, that in perturbation theory T is
O ^ " 1 ) compared to the first term. Recall, that in (22) we derived a similar
equation for <^(x)P). The \jn expansion is now generated by applying (22) and
(26) repeatedly to (7) as follows: A general expectation we will encounter is

E=(f[ vai(xj fί Φj) Π ΦWl<)(h)) • (27)
\i=l j=l fc=l /

We distinguish between two different cases depending whether pλ +p2 is even or
odd. In the even case, the n structure can already be seen in perturbation theory on
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the tree level, in the odd case not necessarily

r = pί+p2 is even. (A)

We integrate φ{aί) (χ.)'s and φ{βk) (z js by parts. Thus

F O + F , (28)

J

where E denotes all the other resulting terms. Note that perturbatively E' is of
lower order in 1/n. To E'o we now apply (26), obtaining a sum of terms with r — 2q-
factors and a remainder Tv We repeat this | ( r — 2) times thus obtaining a sum of
terms with no expectation and a remainder £ Tt. Hence

(29)

where Eo is the leading term in ί/n expansion for E and E1 is an explicit
remainder consisting again of terms of the form of (27)

r = Pi +P2 *s °dd. (B)

We proceed as in (A) to get (28). E' has now r even and thus by (A)

To £'o we apply (22)

The first two terms have r even and by (A)

In £ ( 3 ) r is replaced by r —2. We proceed with ^(r— 1) steps to arrive to (29) again.
The remainder Ex in (29) in general consists of terms of the form of (27) with r

odd or even. As we have noted before, to get an effective estimate for such terms r
has to be even. Thus our final step is

r is odd for a term in Ex (C)

We proceed as in (A) to get (28). E' has r even. To E'o we apply (22) repeatedly until
all terms are even.

Note, that we have already followed this procedure when we derived (14) from
(7) using (A) and applied (C) to (21).

We can now easily see the structure of pk and Rk as obtained using steps
(A)-(C). Upon expanding K = ί — λL, pk consists of connected graphs with lines C
and L and vertices CCCC and CLC. Rk involves connected graphs with lines and
vertices as in pk, but with external legs va(x^ q{y^), φiβk\zk). That is, each va comes
in the form §C(y — x)υa(x)dx etc. These terms can be now estimated using
chessboard estimates. However, the number of terms and (λ, rc)-structure is much
more transparent if we generate the expansion in a different way, which we shall do
in Sect. 4. Before this we prove the Lemmas 2 and 4.

Proof of Lemma 2. We can assume A = IR2 (if not, we use Fourier series instead of

integrals below). Now
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and

(C*C)(p)=μ2k[(k-p)2 + lΓ1lk2+lΓ1 (30)

(30) defines an analytic continuation of C*C to the region D = {pe<C2\ | | Imp| |<l} .

Since for p = p1 + ip2

 w e have

we see that Re(C*C)(p)>0 in D. (Of course C*C is analytic for | | Imp| |<2, but
positivity of the real part is not obvious there.) Hence L has an analytic
continuation to D. We write L = - C * C + M, w h e r e ^ M = - ^ ( C ^ Q ^ l + C ^ C ) " 1

belongs to ZίQR2), since C * C > 0 and | | C * C | | 2 ^ | | C | | 4 / 3 by Young's inequality.
Thus M is continuous and since (C*CY = C2 is C00 in R2\{0}, L is continuous
there. It would be now easy to conclude that L has exponential fall-off. However, to
control the Λ-dependence of the bound we have to be more careful. Let eb(x) = eb'x.
Let AinAj = 0. By the mean value theorem, for all beJR2 we can find xk(b) in Ak,
k = ij, such that

(L is continuous in IR2\{0}). By the Hausdorff-Young inequality

As we saw above Re(C*C)(p + ib)>0 for | | b | | < l . Thus we get using Young's
inequality

where r = (i — (2p)~1)~1. Hence we have shown, that

eh(xβ)-Xj(b)) \\L\\LP{ΔixΔj) £b±{p9ε)

for ||i>|| ̂  1 — ε, bx being independent on λ. The second assertion for AinAj = 0 now
follows by choosing — b parallel to (i—j) and changing b1 a bit. If i ^ n ^ Φ O , we
choose b = 0 and proceed as above. The first claim follows from the second, since
we showed, that L is continuous in IR2\{0} and has a logarithmic singularity at the
origin. •

Proof of Lemma 4. We expand φ2:

<(:φιlψ:(Q)2yΔl

= Σ (ή φW(Φlai))2:(Cd
<x\,...,aq= 1 \j= 1

= Σ

= Σ idx1...dxq(fl:(φ^r(xi):UΦil)(xk)

ftft '-(ΦΎixj)) Π C,W
1 = 2 \j = qι-ί+ 1 / Δi m-1
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In the last step we used the fact that φ (0's are independent random variables and
Σ' means that ίfyφl for j^.2 since < : φ 2 : ) z l . = 0. We now apply Wick's theorem
and get a sum of terms

Γ dx ...dx ΓT C(x) Π CN (x ~x) (31)
Λq j=l <a,β>

where same a occurs in three CΉ

Δi{xa — xβ). Using Holder's inequality repeatedly,
(31) is bounded by

Thus

where

since <φ2"> has - ^ <e0(n)n\ terms. To estimate A, let qJh+0 for /c= 1, ...,m,jk^2

n n

and other q- = 0, j ' ^ 2 . Denote ^ <2, = ̂  Then Π ^ !^e O ( β V f m ~ g Given m,
7 = 2 .7 = 2

there are choices of {α, }, and m^q'/2 since g ^ 2 . Also
\ m j Jk Jk

Hence

Let first n = uq, α ^ 1/2. Then (" ) <2«/2 and
\ m /

(33)

then we use <τ2m(ra!)~1
If w > - 5 then we use <τ2m(ra!)~1 and

2 \ m )

m = l
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to derive

q 2 * , r *
2 \2 /

(34)

(32H34) imply the Lemma. Π

4. The "Dual" Representation

In this section we bound the general remainder to the l/n expansion by making use
of the dual representation. The idea is to generate the expansion and the remainder
in the dual representation and then transform back to the ^-representation, where
the remainder is estimated.

To define the dual representation we first introduce the lattice approximation
to the model, which converges to the continuum theory ([2], Chap. VII). For
notational simplicity, let us assume the lattice spacing δ = 1. ieΛ will now denote
the integral points of Λ. The partition function can thus be written as

Z(Λ)=

ieΛ

where

V(φ) = - λ(4n)-1 £ (W>? ~nb)2 - 4bφf + 2nb2)
ieΛ

and

Writing
A M.2 M M 2 / W X 1 / 2 A (JO. »M

— ^ — \ ψ — n o ) I ft \ — • — ( . ψ — n o ) n / ±2 MJΪΛ
P 4« v ψ

 = -, 4 n w >C ιa(φi-nb)
πλj .

and carrying out the φ integrals we get

l/n expansion is thus a loop expansion about a saddle point.
After scaling a-^zλll2a, z = n~1/2

Z{A) = 2M det(l + λCi2))1/2 $e°dy9 (35)
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where dy is the gaussian measure on R | y t | with covariance ^(1-{• λC(2))~1 [recall

that C£> = (Cy)2] and

g(a)= -i(n + 2)zλ1/2btra- - trio g(l - 2izλ1/2Co) + λtr{Ca)2. (36)

The Taylor expansion of g about a = 0 is

00 (2U1/2)k

g(a)~-2ibzλll2tτa + ± £ l

 y

 ; zk~2tr(Caf. (37)2
fc=3

Wick ordering thus chooses the saddle point up to an 0(z) linear term. Note, that
as <5-»0 b = Cu-+co; hence the first term in (37) serves to perform the necessary
cancellations.

Fig. 4

Let us see how these cancellations show up in the formal expansion. The first
order graphs for the self energy are given in Fig. 4, where the dotted line is K. Each

graph is divergent as <5->0 since K=l — λL and thus £ C^K^ involves CH = b.
j

However, the sum of the divergent parts is

In general the expansion coefficients involve graphs with lines C and L and
vertices CCCC and CLC and tadpoles Cti are included. Divergences come from Cu

and the (5-parts of iCs. Note, that not all iCs in the graphs are divergent. In fact, let
G be a connected graph as above. Then we can prove

Proposition 10. // G doesn't include as a part C^K^ or C , then lim G exists.

Proof. If such terms are excluded, the claim is equivalent, after inserting K = l~ λL,
to the assertion, that all connected graphs with lines and vertices as above, have a
finite limit as δ-*0, if all tadpoles Cu are excluded. But these are just the graphs of
a :φ4: theory with some (C^ ) 2 parts replaced by Lir By Lemma 2 this replacement
doesn't change the analytical structure. Π

It is also easy to cancel b's in the general order of \jn following the ideas of [1],
Chap. 8. However, we have to cancel these divergences nonperturbatively in the
remainder. Fortunately this can be done by generating the expansion in a suitable
way, as will now be shown.

In order to generate the expansion in α-representation we start by making the
dual transformation

(38)
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where <•) is the expectation in the normalized measure e9dy and
H = ( — Δ + \ — 2izλιl2a)~ι. In the second step we used the fact that
φi<x)(φ2 — (n + 2)b)= :φ(a)φ2: together with the following transformation formula.

Lemma 11. Let I be a collection of points in A, the same point possibly occuring
several times. Then

/i

D"H) (I
/2rc\|l/

• Σ - y Σ (ΠQiΦD) Π SJJ.,
JCI \ Λ / peP(J) \ieI\J / < j ' >

|J|even

where P(J) denotes the set of pairings of J and Q(x) = x — (n + 2).

Proof. Note that

-nb)--(zλιl2a + i~ V-— (φ2-nb)
λ\ n I n

= (n/λ)k/2[d/δ(φ2-nb)+λ^j Qxp\-^(φ2-nb)2

da

Since β f c + 1 = β 1 β , + δβ l i we get dQk = kβQk_γ \β=--^\ by induction:

Again by induction it is easy to check that

\k]

If all iel are identical, the claim follows since

2; y y i=
k ι PePiJ) \ l ) 2 ι l l

\J\ = 2l

Let iί = i2= ... = ίs be different from other ieI. We can then apply (39) to (a^f and
induction to the other α's to prove the claim. Π

The expansion is generated using integration by parts. We get

<α;F> = I Σ KtJ<(dj + dβ)F>, (40a)
j

djQ = - 2ibλί/2z-4ίzλ3/2 tr PjCaHaC, (40b)
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where P. is the projection to the j: th coordinate. We will also need

djH = 2izλί/2HPjH. (40c)

Let us now cancel the divergent b's. We proceed recursively. (38) is a special
case of the expectation (F is in general a product of a?s and Hjks)

<(α jfl J-iδy)H t/> (41)

which by (40a) equals

= - *<£,/*,/> + K α ^ ί δ , + δ,*/) tf ,/> (41')

(repeated indices are summed over except i and j). Now we use (40b, c)

- 4izλ3'2 (CaHaC)kk)H^ F.

Writing now

{CaHaQn = ±CklHuClk + CklElmCmk{axam - \bj

and noting that

f i ^ [ - li

[since ( K ' ^ f ^ ^ + AίC^)2] together with

KikHikHkj= HnHίj ~ λL

we get (recall that b = Cn)

j= HnHίj ~ λLikHίkHkj

u - CU)HU ^

ikCklHlmCmk(aιam - tδJHtJF. (42)

Note that Hu-Cn = 2izλxl2(CaH)n. Thus

- i z λ 3 1 2 {LikajHikHkjFy - 2 < i ! ( ) π ^ ί / >

-2;zA3/2<(aA n-i«5 i m)ff j mF>, (43)

where i7' can be read off from (4Γ) and (42).
We use (42) and (43) now recursively, starting with F= 1 in (38). The last term

of (43) is again of the form (41), with new F. In the other terms of (43) we first
integrate the α's by parts and apply (42), getting again a term of the form (41) and
other terms. When no α's are left, we expand H = C + 2izλ1/2CaH. When no f/'s are
left, we have a term of the expansion. Note that in this way we cancelled all the b's
and the <5-parts of the troublesome iCs (Proposition 10), since no K^C^ factors
appear, only LtjCir

After expanding K=l — XL, the expansion coefficients pk consist of connected
graphs with lines and vertices as before and no tadpoles Cu appear. Since we
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always first integrate α's and only when none are left, expand H's, each α ; in the
remainder appears in the combination afl^. Moreover, there is only one afl^a^
namely in the form H^a^.— ^δ^. Thus the remainder is a sum of terms, which
can be represented by graphs as above, with external "legs" as in Fig. 5 and some
C's replaced by iϊ's, such that the graphs remain connected when the ffs are
removed. [This can easily be seen from (42) and (43) e.g. (CaH)u has CklHkl. Recall
that (38) includes a Cfj.]

Fig. 5

H k j

The terms in the remainder are thus of the form

τrir2= Σ

Ή ί l i 2 K α ; 2 - H l i 2 ) Π "iβij* Π HSβt\ , (44)
\ α = 3 β=l I

where rn1+m2 = 2m for Rm. The factors of i and 2 are included in G. We can now
apply Lemma 11 to transform (44) to the (^-representation. Since each expansion
step which brings a factor of z produces at most one new H, r 1 + r 2 ^2m. Let
n^2m. Then we can write

•Σ Σ(-2)W2(τT(T~W2) Π
JCl peP(J) W W <ϊi'>ep

π : Φ^Φf • π Φfm π Φ(ym π ̂
ieI\J jeJ α=3 0=1

where each ce[l ,2, . . . ,n] in φ ( c ) appears only twice. We denoted / = (J ίa and as
α = l

in Lemma 3, \J\ is even. Σ' means, that pairings p, for which O Ί ^ ) 6 ^ a r e

excluded [because of the — §<5fli2 term in (44)]. From (45) we see that all the fc's are
indeed cancelled in the remainder since only Wick powers occur.

Since (45) is in ^-representation, we can take the continuum limit. The
expectation in (45) is estimated as the first order term in Sect. 3. We first localize
the kernels Sa smearing the (Wick) monomials Pa (χf is the characteristic function
of 4)

p«(sa)= Σ P«(XiSa)=Σns"(ϊ))
ίeΛnZ2 ί

The Pα(S
α) are Vi(Cy), (φU)φw)(K$) (/ΦQ and φ(m)(Kffl where

K$(x) = C(y1-x)C(y2-x) or L(y-x)

and

=Πc<yι-χ) o r L{yx-x)C{y2-x).
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Thus we can write, absorbing constants to G:

J,p

• Σ ί Π d(yι)G((y,l J)/U iVW«))\ < 4 6 )
(i/) Z \ / /

Let < >Jt be the gaussian measure with covariance CN

Δι and let

Then using chessboard estimates, Holder's inequality and conditioning to

ieΛn ~

CN

Δ. as in Sect. 3 we can estimate (l/r+l/q =

' Π ^ ( S g ί l f t ) ) ) ^ Π <Qi>ϊq f-lpirλ)-*λ) (47)

{Q<f}A. is a gaussian integral, which is estimated as in Lemma 4.

Lemma 12. Lei ίf be the number of va factors in Q and dt + 3ί. ί/ie ίoία/ degree of Qt.
Then

= 4, p(2) = 2, p(3) = 4/3, β1 is a constant and mf = maxl 1,—L

Assuming Lemma 12 we now insert (47) to (46). The maximum power of λ in
(46) occurs when m1 =2m. Since

we get

Trιr2Sλ(λ4/n)mG{m, λ)H{m, q)er~Xp{rλ)~p{λ\ (48)

where

G(m, λ)= sup Σ ί Π d(yι)G((yι)> J)Yl\\ S( ί^ II Lp(«)(J ) (49)
JC/,peP(J)(iz ) z /

and

~~ / f Λ 2 ) ' ' + d ' m ' ' / 2 . (50)
J,P (iϊ) f

We will later prove the following estimates for G and H:

Lemma 13. There exists a constant β2 such that G(m,λ)^β™λ2m.

Lemma 14. Let n>2m. Then there exists a constant β3 such that



220 A. J. Kupiainen

We can now prove Lemma 9 and Theorem 1. All we have to do is to estimate
the number of Trir2 terms in Rm since Lemmas 13 and 14 and (48) give us

(51)

Let us denote terms in Rm, rri <m, with k α's and I if's by tkl. From (43) and the
discussion following it we get for an elementary expansion step

1

1

k+1

k/2

/ br mth

L~ι κ,m k

*,, + ( * - >

(ft+D/2

m = 0 K"

+ 1 2 m , i + l fe

Z - l

L ) ϋ X ί O ί _ m

t ίfe+l-2m,/+l +

fc-2
/ 2

~ 1 m = o

(k even),

fc-i ~|
7 2

/, i ZJ ®k-2,m ^fc-l+2m (fc odd),

where

Hence after 2m such steps we get less than (2m)! β^1 terms of the form

m f < 2 m .i)^ri,i w h e r e

Thus

, 2 / -

and we get

|JRw|^(3m)!/l^3 l p ( r λ ) ~ P ( Λ )

Choosing q = 2 in (52) we obtain Lemma 9 using (4).
For Theorem 1 we choose, as in the proof of Theorem 3,

r-1p{rλ)-p{λ)\^0(1). Thus

(52)

= α4/l(log/l)2 whence

(53)

which completes the proof of Theorem 1.

Remark. We note that for m= 1 our previous result (Theorem 3) is better. This is
because for general m our method to generate the expansion is not very
economical when the Holder's inequality is used in the proof of Theorem 1. If we
resolvent expanded iί's before integrating the α's by parts, we would get fewer
powers of q. However, the cancellations are harder to see and the expansion is not
as systematic.

We close this chapter by proving Lemmas 12-14.
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n

Proof of Lemma 12. As in Lemma 4 we expand each :φ2: = £ (φU))2: and use

the independence of φU)is and Wick's theorem. Since for each j φU) factor occurs at
most twice in Q. [excluding :(φU))2: factors] the combinatorics is reduced to
estimating

-4= Σ
J - 1

where a.^2, £α7- = dt and ̂  =j= i.

We get

)! Σ

We can now proceed as in Lemma 4 to bound the sum. The integrals of the kernels
are estimated using Holder's inequality repeatedly as before. •

Proof of Lemma 13. We localize each C and L in G. Since each vertex connects an
L to 2C's or 4C's to each other we get by using Holder's inequality repeatedly

(iι) I I

= ^ V™ 2 J 1 1 l | G y ) 5 | | L p ( y < 5 ) ( ^ . x Δ j ) >

(Jβ) <yδ>

where (jβ) runs through the localizations at each vertex and leg of G, (yd} through
the lines of the graphs, j γ and j δ being the localizations at the endpoints and Gγδ the
corresponding kernel. p{yδ) = 4(2) if Gγδ = C(L). β is the number of L's in G, thus
β<Ξ2m. Since

l |G y β | | L p(v^ f x^)^6iβ- 1 / 2 | ί -^ (Lemma 2)

and G is connected,

Σ Π ι i G y , ι ι ^ ,
Uβ) <yδ>

and we get the claim. •

Proof of Lemma 14. We note that

and from (45)

since each expansion step produces at most one new H and so r 1 + r 2

Thus
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Since - £ ί. ^ 1 we can replace m by q. Then

J.P

(M/2) Λ. _ 2 / '

Σ ! ( / i ( 2 Z ) ! ) - i r U

+ 3 D
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