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1. Introduction

Moser and Trubowitz [7] showed that the study of the Korteweg-de Vries
equation is simply the study of constrained harmonic motion. Here we show the
same is true for the nonlinear Schrodinger, sine-Gordon and Toda lattice
equations. Briefly, we have found a change of variables under which these
integrable wave equations become a system of free oscillators constrained to an
intersection of quadrics in phase space. This is in analogy with the linear case in
which the study of wave equations with constant coefficients is reduced via the
Fourier transform to the study of harmonic oscillators with linear constraints. One
wave equation differs from another only in the nature of the constraint and in each
case the constrained system is itself integrable.

In another paper we will use the constrained particle systems to analyze the
global phase space geometry of the nonlinear Schrodinger and Sine-Gordon
equations. We have no doubt that our technique can be directly applied to the
continuous Heisenberg spin chain, the generalized Sine-Gordon equation, the
classical Thirring model and any other nonlinear wave equation associated with a
second order linear problem.

2. Hamiltonian Mechanics with Constraints1

n

Let ω= Σ dxι Λdy1 be the standard symplectic form an R2n and {F, G} the
ΐ = l

corresponding Poisson bracket between smooth functions F and G. If HeCco(R2n)
we denote by VH the corresponding Hamiltonian vector field for which

0 I\
dH(-) = ω(VH, ). As usual S = I ) and ω(u,v) = (w,Sv).
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1 For a related discussion of mechanics with constraints see [2]
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Let m<n and φ1,...,φ2meC™{R2n) with dφί,...,dφ2m independent on the
variety X = {(x,y)eR2n :φ1(x,y) = φ2(x,y)= ...=φ2m(x,y) = 0}. X is a smoothly
imbedded submanifold of R2n.

Lemma 1. The restriction of ω to X, ωx, is non-degenerate if and only if the matrix
C = ({φι, φj}) is non-singular at every point p of X.

Proof If C is singular at p, then there are α 1 , . . . , α 2 m , not all zero, such that

(vφp S ̂  f a, Vφ^j = f at{φp φt} = 0 for all j .
' 2m

In other words v = S\ Y a.Vφ φ θ is tangent to X at p. But then ω(u,v)

( / 2m \\ / 2m \

u,SIs Σ aiVΦi))=z~ w ' Σ aiVΦi = 0 f o r a 1 1 vectors ueTXp. Thus ω is
degenerate on X.

Conversely if for some Oφi e Ώ ^ , ω(w, υ) = (u, Sv) — 0 for all ueΊXp, then
2m

Sv = Σ ai VΦi f° r some ab not all zero. But then

=° as

The form ωx is closed since d(ωx) = {dω)x = 0 and therefore, if C is non-singular,
ωx defines a symplectic structure on X. From now on we will always assume that
(the antisymmetric matrix) C~1=(cr.1) exists. Also, if HeCco{R2n\ V'n will denote
the Hamiltonian vector field on X for H\x with respect to ωx.

In general V^ Φ VH on X. We have

Lemma 2. F^ = FH on X if and only if{H,φj} = 0 on X for all 7 = 1,...,2m.
2m

Furthermore, if H0eC™{R2n) and α f = X c j 1 {H0,φj}, i = l , . . . , 2 m ,

2m

= H0+ Σ aiΦv

Proof First of all if {H,φj} = (SVH9 Vφj) = O on X for j=l,. . . ,2m, then
FH = 5PHG 7Xp for all peX so that F^ = 7H. Conversely if SFΉ= V^0 = V^e TXp for
all peX, then {//, 0.} = (SVH, Vφ^ = 0 for all i = 1,..., 2m.

The second part of the lemma follows from the first by noting that VB= VH = VH
o n Z .

All Poisson brackets on X can be calculated in the ambient space £ 2 " by the
following

Lemma 3. Let {F,G}X be the Poisson bracket for ωx. Then {F,G}X = {F,G}
2m

— Σ {FiΦύc^^φpG} on X where the right hand side is calculated for any

smooth extensions of F and G to an open neighborhood ofX in R2n.
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Proof. Suppose that {F,φi} = {G,φi} = 0 on X for all i. Then by Lemma 2,
{F, G}x = ωx{Vp, Vς} = ω{VF, VG) = {F, G}. For general F and G, again by Lemma 2,

{ 2m

ij=ί k,l=l

{ 2m 2m

F+ Σ cr/{F,φj}φi,G+ Σ
ί,j=l k,l=l

= {F,G}+ Σ c^{
k,l=l

2m

+ Σ cr/c-'iF^^Cφ,}^ (onX)

ij=ί

This establishes the formula.
The significance of the above lemmas is made clear in the following example of

constrained harmonic motion.
Let

i = l i = 1

n n

Φι= Σxϊ-ι> ^2= Σ X/3Ί-
i = 1 ι = l

= {01=(/)2=O} is the tangent bundle to the unit sphere.

We have Cί2 = {φvφ2} = 2(φί + 1\ {φl9H0} = 2φ2, {φ2,H0}= f yf

n

Σ σtxf and H = Ho + a1φ1+oί2φ2 where α 1 ? α 2 are determined by

onX,

«.

and

α2

so

_ 1

= 0

that

Σyf-
i = 1

1 =

n
V

1

" 2

1

1

n

Σ

i = l

n

i=ί
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Thus

i=ί i=l

n n \ I n \

V V 2 _ I V σ χ2\ V Y2_1
h y i 2 L σ i X i ]\ ZJ Xi Lj'

Now the Hamiltonian equations of motion for the system of the harmonic
oscillators forced to remain on the unit sphere are:

— xi = {xi,H0}x = {xi,H} = yi,

d

j = i j = i

d2 I n \

— x. + σ.x. ̂  |J£ (σ.xf -yf)J x..
The vector

i
is the (normal) force required to constrain the oscillators.

In this example

ft{F, φt} {φ2, G} - {F, φ2} {φlt G}].

This system was first discussed by Neumann (1859) in the case n = 3.
Remarkably, the motion is integrable by:

Theorem 1. The functions

Poίsson commute on R2n and on X. Moreover

= 1 on X,

and

i
7 = 1

= 2H0 on X.
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Proof. Let zij = xiyj-xjyi, dtj= . For jφfc,
ai- a.

= Σ djidkiAznzikzjk

+ Σ djAMj^khί
i*j,k

+ Σ djkdkl4zkjZklZjl
l±k,j

= 4 Σ zijzikzjkLdjAi+
i*j,k

= 0
as

It is enough to prove this when ab say, is zero. But then

1 11 1 1 1

a)ak-a. aΓak{-ak)

= + } Λ a k + aϊ\aflk a.ak{ak-a) J

= 0.

The identity φ x + 1 = Σ A ; follows from the antisymmetry of z]fi} and

Σ
j *jaj~ai

ΣΣf7
J i*jaj~ai

ij

J \j J
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Clearly {φί9Aj}=O,j=l,...9n9 so that

{Aj> Ak)x = {AP Ak} + \({Ap φ,} {φ2, Ak} - {Ap φ2} {φl9 Ak})

= 0.

Furthermore o n l , £ aAj = Σ ajx] + Σ yj~2H0, and the proof is finished.

3. The Korteweg de Vries Equation

Here we will show how the solution of the KdV equation on the line reduces to the
study of a continuum of constrained harmonic oscillators. This is in contrast to
the periodic case of Moser and Trubowitz which involves a countable number of
oscillators.

The results of the previous section are finite dimensional but provide a
framework for the infinite dimensional problem. We will verify the facts we need
directly.

Let q(x)eS?(K) be real and let fk{x)x_^aQeikx

9 gk{x)x_r_^e~ίkx be the Jost

solutions2 for the Schrodinger operator —d2/dx2 + q(x). The solutions fk(x), gk(x)
are analytic in the upper half fc-plane and related on the real axis by the reflection
and transmission coefficients R(k) = R(k;q)e<9p, T(k) = T(k;q) through

) = R(k)fk(x)+f_k(x).

For simplicity we will always assume that — d2/dx2 + q(x) has no bound states
or resonances so that T(k) is analytic in the upper half plane and
T(0) = 0 =

We begin by deriving an identity among the functions fk9 — oo <k< αo, from
the estimate3

T(k)fk(x)gk(x) = 1 + 0 (-V), Im k £ 0.

Multiplying by i/πk and integrating clockwise along a semicircle Cr of radius r, we
obtain

i {dk 0 / l \ i

T(k)fk(x)gk(x)

ε

= ί r

ί r T(k)fk(x)gk(x) dk ^

K\k\>ε k

2 See Deift and Trubowitz [3a], Sects. 1 and 2, for the necessary information on scattering theory
3 See Deift and Trubowitz [3a], Sect. 4
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In the second line Cauchy's theorem is used and in the third the fact that
fk(x)f-k(x)/k is odd. Letting r->oo we find

then letting εJ,0

π -oo k

where the integral is interpreted as a principal value.
Now differentiate (1) twice to obtain

q(x)=- J kR(k)fk

2(x)dk- - J -±lff(χ)dx. (2)
π -oo π -co ^

Here the differential equation for /fc is used and the principal value is easily
handled.

Also

A (i °o - c o n/7Λ ϊ

f - f kR{k)fk

2{x)dk+- ί ^Λ'2(x)rffe =0
a x l π - oo π - oo ^ J

so that

q ( x ) = - ί kR(k)fk

2(x)dk (3)
π -oo

where the constant of integration vanishes by Riemann-Lebesgue. It is also
possible to derive (3) directly by contour integration (see [3, Sect. 4]).

Fix a real p(x) in ^(R) and set

M = {real^6^:|R(k;^)| = |R(fe;p)|, -oo<fe<oo}.

M is closed in the topology it inherits from £f because R(k;q) is a continuous
function of q for each k Φ 04 and continuous in k for each q.

Lemma I.5 // R(k;p) vanishes to infinite order at some /cφO, M is not simply
connected.

Proof. For clarity and simplicity we make the proof when R(k;p) + O for
— l<fc<l, |fe|>2 and R(k;p) vanishes for |fc| between 1 and 2. Set
Rs(k)-+=e2πisn{k)R(k;p\ O^sgl, where

n(k) = O for - 1 < / C < 1

- 1 for k>2

= -1 for k<-2.

4 #(0 q) is continuous on M but not in £f
5 For more information on the phase space geometry of the KdV equation, see Deift and Trubowitz
[3b]
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By the basic result of inverse scattering theory there is a continuous, closed curve
qseM, 0 ^ 5 ^ 1, with R(k;qs) = Rs(k) and qo — q1=p. We will show that this curve
cannot be contracted to p. Suppose it is contractible with homotopy qs(x;u)eM,
O^t/^1 . The corresponding reflection coefficients Rs(k u) = R(k qs(x, u)) are jointly
continuous in s, u, and k and never vanish for |/c|^[l,2] so that O(k;s,u)
= lm(\ogRs(k;u)) can be chosen as a continuous function in {|/c|>2} x [0,1] x [0,1]
and {— 1 < fc < 1} x [0,1] x [0,1] with 0(0 ;s,u) = π. Similarly we can choose
θ(k;p) = lm(\ogR(k;p)) continuous on {|/c|>2} and { - l < f c < l } with 0(O;p) = π.

Now for |fc|>2, θ(k;s,u) must satisfy

0(fc;O,u) = 0(fc;p)(mod2π) ,

0(fc;l,w) = 0(fc;p)(mod2π),

Θ(k;s,0) = θ(k;p)(mod2π),

But one easily checks that this is inconsistent with the continuity of θ{k;s,u).
Hence M is not simply connected.

On the other hand, if |jR(fc;p)| > 0 for all fc, then M is simply connected. To see
this define

θ(k;q) = lm(\ogR(k;q))

as a continuous function of — oo<fc<oo for each fixed qeM. Because
jR(0,α)= — 1, θ(0;q) = π and it follows easily that θ(k;q) is jointly continuous in
— oo<fc<oo and qeM. An elementary argument now shows that M is simply
connected; indeed for any continuous, closed curve qseM, 0 ^ 5 ^ 1 with corre-
sponding reflection coefficients Rs(k) = \R(k;p)\emk;qs\ the required homotopy is
Rs(k u) = \R(k p)\^θih;qa) + ( 1 ~u^k^\ 0 ^ s, w g 1. For the remainder of this section
we will assume that rk~r_k = \R(k;p)\>0, — oo<fc<oo.

Before we can continue it is necessary to make a lengthy technical digression.
Define the Hubert spaces 34?2 C J&Ί of functions zι — (xt, yt)9 — oo < I < oo, as the

closures of ^ ( I R ) x #J(IR) with respect to the norms

and

dz

Tιl0

z,~z0

' -Λ.

Functions in f̂2 have one ZΛderivative at zero whereas functions in
merely continuous.

are
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If Lζwj) is a bounded linear functional on Jfl5 then by Reisz L(w1) = (wL,w1)
6

with wLeJ^v

By definition
a bounded linear functional L(w^) has property 1 if wLe^f2;
a bounded bilinear form B{wvw2) has property 2 if B(-, w2), and B(w1? •) have

property 1 for all wl9vv2;
a bounded trilinear form T>(w1,w2, w3) has property 3 if T( , ,w3), T( ,w2, •)

and T(w1? , •) have property 2 for all w1?w2,w3, and so on.
We now introduce an algebra si of complex valued functions on ^ for which

a suitable Poisson bracket can be defined. A function F(z) is in si if
(i) F(z) has Frechet derivatives on Jf\ of all orders.

F(z)(w) = (DF(z), w),

F/(z)(w1,w2) = (D2F(z)w1,w2),

D2F(z) is bounded from ^ to ^

F/'(z)(w l5w2,w3) = (D3F(z)(w1)w2,W3)?

w1-^D3F(z)(w1) maps J ^ continuously into the bounded maps from ^ to

and so on.
(ii) For all z, w1? w2 ?... in J ^ 7

F'(z)(w l9 w2) = lim F"(z)(χnwl9 w2)

F'»(z)(wl9 w2, w3) = lim F'"{z){χnwv w2 ? w3)

etc., where χ^ίl) is one on <|J|^ -> and zero otherwise.

(iii) F{n\z)(wv ...,wπ) has property n for each n ^ l , continuously in z, i.e.,
z^DF(z) maps Jf̂  continuously into Jf2

zi->D2F(z)w maps J^2 continuously into Jf2 for each w.

It is easy to check that si is an algebra.
If FGJ3/, then by (iii), D2F(z) maps j ^ t into Jf2 for each z. This map is

necessarily continuous: indeed, by the closed graph theorem it suffices to show
wπ-»w in j ^ v D

2F(z)wn-^z1 in Jf2, implies D2F(z)w==z1. But this follows from the
inequality \\D2F(z)wn — zί\\ι^const\\D2F(z)wn — zί\\2 and the boundedness of
D2F(z) from ^ to 3/ev Moreover \\D2F{z)\\#^#2 is locally bounded by the
uniform boundedness principle and the continuity of z\-*D2F(z)xv for each w.
Similar considerations apply to the higher derivatives.

6 We reserve the symbol ( , ) f o r a real inner product so that ||z||J =(z,z), etc.

7 Note that the existence of lim F'(z) (χnw), say, does not follow from the boundedness of F{z) as χn w

converges to w in J^λ if and only if wo=O
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Lemma 2. The functions

and

dl

defined as principal values, are in jtf.

Proof We only consider φ^z). The proofs for φ2(z) and H0(z) are similar.
First,

L = Jim j -±γ- dl

= lim
n~* oo

and elementary estimates show that φγ(z) is defined for all
|J. Suppose that zι = (xι,yι), w ^ ^ u j e ^ . Then

with

Similar estimates to those above show that

rxyxuxc'jyi
J /

dl

and

f l

It follows that φx{z) is differentiable with φf(z) = O for
and condition (ii) is immediate.

We now calculate Dφ^z) from the formula

^3. This verifies (i)

ΛiDφά-iDφJφWt-Wo)
dl

for all w = {uι,v,)eJ#'1. Setting M ; = 0 we find that the second component of (Dφ^ is
zero. Setting M O = 0 and then u, = u0 we find

and

(Dφ1)o=[2ί'-fdl,θ).
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Thus

II r x \ \
(Dφ^z))^ 2j-y-^d/c +2l(l + l2)rιxι,0 .

A similar calculation shows that

where D2φ1(z) is the real symmetric bounded linear operator

D2φι(z)w= ί 2 j ^ d f c +2/(l + ; 2 )r^,0j .

From these formulae it is clear that z-^Dφ^z) maps ^ continuously to Jf2 and
that Z>2φ1 maps ^ to Jf2 independently of z. This proves (iii) and the lemma.

Lemma 3. $4 is closed under the Poίsson bracket

{F9G}(z) = F(z)(Sδ(DG{z)))9

where

and

0

1
0

f. We will show that {F,G}ej/ for all F,Ged and that {F,G} is bilinear,
skew symmetric, nondegenerate and satisfies the Jacobi identity.

The space ffl2 has been chosen to place Sδ(DG(z)) in #Pγ, so the brackets exists.
The bilinearity of {F, G} is immediate and the skew symmetry follows from

) = F(z)(Sδ(DG(z)))

= lim F(z)(χnSδ(DG(z))) by (ii)

((DG^-iDOv

dl

= Um-G'(z)(χnSδ(DF(z)))

= - G'{z) (Sδ(DF(z))), again by (ii)
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In the third line we have used the fact that (χnS(δ(DG(z))))ι = o = 0. To see the
nondegeneracy, suppose that {F, G}(z) = 0 for all Gejtf. In particular this is true
for G(z) = $(hl9zjdl with fye^(R\{0})x^(IR\{0}). It is easy to show that G is
indeed in si, that (Z)G)/ = (J/ί f c^) + /2(l + /2)/zz and that Gin\z) = 0 for n^l From
{F,G}(z) = 0 we obtain

=0

and as ht is arbitrary in <^(IR\{0}) x ^(IR\{0}), we conclude that (DF\

-(2λF)0 = Q. On the other hand, if we take G{z) = f ^dl (principal value) with

fye^(IR)x^(IR), then again G is in J / , (DG)^ \\γdk\ +1{\ + I2)hι and

Gin){z) = 0 for n^2. {F, G} (z) = 0 now gives

0 = J ((DF\ - (DF)0, (SδiDG)), - (Sδ(DG))0) jij^jij

+ ((DF)0ΛSδ(DG))0)

= ((DF)0,(Sδ(DG))0)

but (Sδ(DG))0 = I _ J h0 and ft0 is arbitrary. Thus {(DF) (z))t = 0 and the form is

nondegenerate.
Now we show that $0 is closed under { , •}.

{F, G} (z + w) = F'(z + w) (S^(DG(z + w)))

= F(z) (Sδ(DGf(z + w))) -f F'(z) (w, Sδ(DGf(z + w)))
1

+ J (1 - ί)^r//(^ + tw) (w,w, ^(DG(z + w)))dί
0

= - G'(z + w) (S(5(DF(z))) + F"(z) (w, Sδ(DG(z+w)))
1

+ f (1 - i)f"(z + fw) (w, w, SδG(z + w))
0

= - G'(z) (Sδ(DF(z))) - G"(z) (w, Sδ(DF(z)))

+ F"{z){w,Sδ{DG{z+w)))

+ J (1 - t)F'"(z + tw) (w, w, Sδ(DG(z + w)))
o
1

- J (1 - ί) G'"(z + ίw) (w, w, Sδ(DF(z))).

But

F"(z) (w, ̂ (Z)G(z + w))) = JΓ(Z) (W, Sδ(DG(z))) + o(\\w\\1)
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as

|F'(z) (w, Sδ(DG(z + w))) - F'(

^const | |w| | x \\DG(z + w)-DG(z)\\2

and ZF->DG(Z) is continuous from J ^ to J^2. Also for Ww^ bounded,

|| F"\z + tw) (w, w, S<5(£G(z + w)))|| ^ const || w || 2 ||DG(z + w)|| 2

<Ξ const || w || i
and

||Gw(z + ίw)(w,w,Sδ(DF(z)))|| ^const| |w| |J | |DF(z)| |2.

Thus {F, G}'{z) exists and

{F, GY(z) (w) = F'(z) (w, Sδ(DG(z))) - G"(z) (w, Sδ(DF(z)))

= (w, D2F(z)5^(DG(z))) - (w, D 2 G

Property 2 for {F, G}'(z) follows immediately from the corresponding property for
F"{z) and G"{z). Set gf(z) = Sδ(DG(z)). As zt->DG(z) is continuous from 2tfx to f̂2?

gf(z) is continuous from ^ to Jf^. Furthermore by the discussion preceding
Lemma 2, \\D2F(z)\\^i_>^2 is locally bounded and the continuity of
D2F(z)Sδ(DG(z)) follows from the inequality

This verifies (iii) for {F, G}'{z).
Higher derivatives are treated in an entirely analogous way. Thus si is closed

under {F, G}.
Finally we verify the Jacobi identity. For F, G, H in s/,

{{F, G},H} = {F, O'ίSδίDfl)) - F"(Sδ{DH), Sδ{DG))

-G"(Sδ(DH),Sδ(DF))

{{G, H}, F} = {G, H}'(Sδ(DF)) = G"(Sδ(DF)9 Sδ(DH))

-H"{Sδ(DF\Sδ(DG))

{{H, F}5 G} = {H, F}'(Sδ(DG)) = H"(Sδ(DG)9 Sδ(DF))

-F"{Sδ{DG),Sδ(DH)).

The Jacobi identity follows from the symmetry of the second derivatives. This
completes the proof of the lemma.

The Poisson brackets between the functions φv φ2, and Ho of Lemma 2 are:

{^,02} = 2 ( ^ + 1)

{φvH0} = 2φ2
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For example,

so that

dl

= 2(φ1 + ί).

The other brackets are similar. Also, if

F=$hkxkdk and G=jgkykdk with

then

P. Deift, F. Lund, and E. Trubowitz

0

1

Letting /Ϊ and # converge to delta function, we obtain formally

{ } δ(kl)

which is useful for computations.

We now resume the discussion of M. As rk>0 we can define a smooth phase
θ(k q) and make the following definition:

for — oo</c<oo.
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Theorem 1. The map M3q-+(xk,yk)e34?1 is continuous and to one. Also, translation
q( + t) becomes

(4),

xk-k2xk

for — oo <fe<oo.

Proof. As/fc'(O; q) and fk(0; q) are smooth and fk(0; q) is bounded while /fc'(0; q)

grows at most linearly, (l/-e i θ ( k ; ί ) / 2Λ(O;^)j/-e i β ( f c ; β ) /Vfc(O,^)) is in jg* and the
\y π y π I

i d i f idcontinuous dependence on q is easily verified.
Upon translation q(-)-+q( +t)

so that

The system (4)k is now obtained by substituting (2) in the Schrodinger equation.
An elementary modification of the methods of Sect. 4, Deift and Trubowitz [3a],
shows that (4)Λ satisfies a Lipschitz condition on J^v Hence the map is one to one.

The point is that the equations (4)fc are obtained8 by constraining 34?0 to X
= {φί=0iφ2 = 0} as in the example of Sect. 2. Here it is easy to check directly that

/
0

= {F, G} + §({F, φj {φ2, G} - {F, φ2) {φv G})

for F, Gejrf, is the appropriate Poisson structure on X.
As in the finite dimensional case, the motion is integrable. Let & denote the

class of smooth, even functions on 1R which, together with their derivatives, are
polynomially bounded.

8 Strictly speaking (4)fc are obtained only in the weak sense as F{z)Ξx^i and the Poisson brackets
{xk, G} must be smeared
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Theorem 2. For all b,bfeέ%,

kl

are in s/, and

{Aβ\ Aj(b')} = {Aft), Aj(bf)}x = O, ij = 1,2.

Moreover,

^ 1 ( l ) = φ 1 + l

- 1 on X

and

k I

= 2H0 on X.

The proof of this theorem, which we omit, is a simple modification of the finite
dimensional case. The functions Aβή are defined as suitable principal values and
one easily verifies that Afb)esd. Formally

Aί(b)=\bkAkdk,

where

ψ*-
Clearly Ak is not well defined because the integral does not exist on 3tfv and
further, rkx\jk has only a distributional gradient. But these problems are
eliminated by smearing with fr's (cf. footnote 8).

Similar considerations apply to A2{b). Here ,42's are needed as well as A^s
because of an inherent symmetry. We illustrate this with a finite dimensional

example. Let Ho = ̂  £ (tyxf + yf) be a finite dimensional system with
i = ± l , . . . , ± m

n = 2m degrees of freedom. If the a?s are distinct then

fc=+l,..., ±m
i¥k ak~aι

are the conserved quantities for Ho restricted to

. Σ :
ί=±l,...,±m
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If aj = a_p 7 = 1, ...,m, the individual AΛ are no longer defined and must be
symmetrized, i.e.,

IΦ k, - k ak Ul

l + k,-k ak~ai

Of course

Alk= lim A . + A _ k

j — l , . . . , m

and

A2k= lim ^-a-^Ak
A>κ cij-+a-i

j = l , . . . , m

so that the 2m functions Ajtk, j = 1,2, fe = 1,..., m, Poisson commute. In the infinite
dimensional case k2 = l2 for fe = Z or k= —I and ^(fr) and A2(^) a r e simply the
analogs of ^41>fc and Alχ

To summarize, we now have M imbedded in ^ and have identified the flow of
translation on M with the restriction of constrained harmonic motion A(k2). We
will now show that under the imbedding KdV can be identified with the restriction
of 2A(k*).

If q(x, t) solves the KdV equation

then (see Lax [5]), H(t)= -d2/dx2 + q(x,t) solves

— H = BH-HB
dt

where B= -4d3/dx3 + 3(q(x,ή(d/dx) + (d/dx)q(x,ή). It follows that

+ 4(ife)3/fcfeί)

or

— /(x, ί) =/(x, t) (4(i/c)3 - q'(x, ί)) +/'(x, ί) (2fl[(x, ί) + 4/c2)

, ί) - 4/c4 - ^f"(x, ί))
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where second derivatives have been eliminated by fk(x, t) = (q(x, t)— k2)fk(x, t).
Also R(k;q( ,t))=e8ίk3tR(k;q0) so that

— oo <k< oo ,

satisfy

~xk(t) = - q'(0, ήxk(t) + (2q(0, ή+4k2)yk(t)

d
- yk(t) = (2q2(0, t) + 2/c2 q(0, t) - q"(0, t) - 4k*)xk(t) + q'φ, t)yk(t).

From (1) and (3)

q'(x) = -$kR(k q)fk{x q)fk'(x q)dk
n

and

- ^ J fc3A(k q)fk

2{x ;q)dk+^ kR{k q) [ffrc q)f dk.

At x = 0 this becomes

q"(0, ί) - 2<f (0, ί) = - 41 fc3 v ^ d i k + 41 krkyl{t)dk.

On the other hand,

{\krky
2

kdk)

4( J *V*.Kt) (Jir
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which reduces to

on

Choosing oc1 and α2 so that {φί9 Hί+ocίφ1+oc2φ2}=O = {φ2,H1+(χίφ1+(χ2φ2}
on X, we find

ai=2\(krky
2

k-Prkx
2

k)dk

a2=-4$krkxkyk,

and 2A(k4) constrainted to X becomes (cf. footnote 8)

jtxk={xk,H1+a1φ1+a2φ2}

= (4k1 + 4{\lrιx
2dl))yk-4{\lrιxιyιdl)xk

Ύ V

But by (6) and q(0, t) = 2 j lrxx
2 dl = - 2 J-y^ d/, these equations are identical to (5)k.

This identifies KdV with the restriction of 2Λ{k4).

Finally, {A(k2\ A(k4)}x = 0 so the study of KdV reduces to the study of an
integrable system of constrained harmonic oscillators. The same is true for A(k2n),
n = 2,3,..., which correspond to the higher order KdV flows.

In [3b], it is shown that M is in general a product of lines and circles. When
rk > 0, as above, M is a product of lines. Otherwise we must add one circle each
time rk vanishes. When M is not simply connected, it it possible to define a phase
only on the product of lines. However, this is enough for our purposes because all
the KdV vector fields are transverse to the toroidal piece of M.

4. The Nonlinear Schrodinger Equation

The nonlinear Schrodinger equation



160 P. Deift, F. Lund, and E. Trubowitz

where q->0 as x->±oo describes the evolution of the envelope of an almost
monochromatic wave. We will show how to reduce the study of this equation to
that of integrable constrained harmonic motion. In the last section all the
constructions and calculations were rigorous. Here, for simplicity, some things will
be formal even though the techniques introduced for the KdV equation can be
applied with minor changes.

Let q, r be complex valued functions vanishing ar ±00 and let9 ψ + (x,k),
φ + (x,k\ ψ_(x,k\ and φ_(x,k) be solutions of

v\ + ikυί =qv2

v'2 — ikv2 = rvi

with asymptotics

V

and

The solutions ψ + 9 φ+ are analytic in the upper half /c-plane while ψ_, φ_ are
analytic in the lower half fc-plane. They are related by the transition matrix

(a+{k) b + (k)\ u u/ , 7 through
\a_(k) b_(k)J

ψ+ = -a+φ_+b_φ+,

φ+=a+ψ_+b + ψ+,

ψ_=a_φ++b+φ_,

and

φ- = — a_ψ+ +b_ψ_ .

The functions α + , a_ are analytic in the upper and lower half /c-planes respectively.
To simplify the presentation we will assume that both a+ and a_ are root free. Set

r+(k) = b+(k)/a+(k) and r_(k) = b_(k)/a_(k).

9 See Ablowitz et al. [la] for the basic spectral theory
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Lemma 1

(i) q(x)=-- J r
7 1 - 0 0

(ii) r{x)=- J r+
π -a,

(iii) iπ(r_(O)v>i .{x, 0 ) - 2ψ + ^x, 0)ψ_ x(x, 0 ) - r+(0)ψ 2

 t(x, 0))

+ ΐ ^ ^
- 0 0

(iv) m(

(v) iπ(

-t/;_1(x,0)t/;+ 2(x,0)-r+(0)i/;+ 1(

r (fc)00 r f

- o o

= —πί.

Proof, (i) and (ii) are obtained just as in Sect. 3. The derivation of the remaining
formulae is very similar so that we will only prove (iii). We have

φ+ι(x,k)ψ+ί(x,k) = q(x)

ka+(k) ~ 2ίk2

when Im/c^O, |fc|-» + oo. Now integrate around the appropriate contour in
Im/c^O to find

v- //\ΊH ί-v ls\ A.7 Φ^(x,k)ψ-X{x,k) Λh .Φ+1(x,0)ψ+1(x,0)
U — - UK 7ΓΪ

7 y +

Similarly,

Formula (iii) follows immediately.
The quadratic form

Q = ίr_(0)ψ2_(x,0)-2iψ+ί(x,0)ψ_1(x10)-ίr+(0)ψ2

+(xi0)
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can always be brought to principal axes

because

-i irJO)

= 1 +
α+(0)α_(0)

1

α+(0)α_(0)
+ 0.

In the last line we have used the identity a+{k)a_(k) + b+(k)b_{k) = ί and the fact
that both σ+(0) and α_(0) are finite. Set

πk

for allfc + Oand

It is easy to see that under the map

(q,r)->(x+k,y+k,x_k,y_k - cxj < k < oo)

translation becomes

d Γ

—x+k=-ikx+k-\ f

jtχ_k=-ikx_k-
(1)
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Let

00

φί=x2

+0 + x2L0+ f x2

+k + xikdk,

— oo

00

Φ2=ylo+y-o+ ί y2

+k+y-kdk>
— oo

00

Φ3 = x+oy+o + χ-oy-.o+ J
— 00

and

H o = -

In the Poisson structure

{φl9H0}=-2i j /c(x2

+k

— oo

and

{φ2,H0} = 2i f /c(y2

+k +
— oo

Constraining H o toX = {φ1 =φ2 = 0} we find H = Ho + ot1φ1+ot2Φ2 where α l 5 α2

are determined by

00

0 = {φvH}=-2i j /c(x2,

onX so

O C , = •

that

— i

00

— oo

00

ί *
- oo
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The equations of constrained motion become

i J k{xlk + x2_k)dk

-i J k(yl

φ3

y-k

— oo</c<oo.
But {φ3,H} = 0 onX so that φ3 is conserved for the constrained motion. Thus

system (1) is obtained by constraining Ho toX and restricting to the hypersurface
φ3 = —i. This is consistent with Lemma 1, (v). Moreover, the functions

B+k =

, 7 k 1
K—l

,,

,

— oo </c< oo, Poisson commute and are conserved under the constrained motion
with the result that the system is integrable. Finally, if r=—q* and q evolves
according to the nonlinear Schrodinger equation, the time evolution of ψ+ is given
by

and similarly for φ+. In this case

and a_(k) = a+(-k), b_(k) = b + (-



Nonlinear Wave Equations 165

Imitating the calculation at the end of the last section it is easy to chek that the
nonlinear Schrodinger equation can be identified with the system obtained by

00

constraining J k3(Bk + B_k)dk to X and restricting to φ3= —i, x_k = y%k, and
— oo

y_k=— x%k. A simple calculation shows that the last condition is preserved in
time.

5. The Sine-Gordon Equation

Here we will show how to reduce the study of the Sine-Gordon equation

d2q d2q

where q-^2πn (neZ) as x-> + oo, to the study of integrable constrained harmonic
motion. Again, for simplicity, some of the calculations will be formal.

Let q(x,0), (d/dt)q(x,0) be real, w± = ( —

φ(x, k), k Φ 0, be solutions of

ίk ί

^(x,0)) and let 1 0 ψ(x,k),

w

w,

satisfying

2 8k

The solutions ψ, φ are analytic in the upper half /c-plane and

φ(x,k) =

a(k) fereal.
χ — ψΛx, —κ)

Also, a(k) is analytic in the upper half fc-plane with

a(k)a(-k) + b(k)b(-k) = l

on the axis.

For simplicity, it is assumed that a(k) is root free. Set rk = —-.
a(κ)

10 See Kaup [4] for the basic spectral theory
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Lemma 1

P. Deift, F. Lund, and E. Trubowitz

(i) w+(x)=~ j rlψ\
π _Λ

— 1 °° r
(ii) v v _ ( x ) = — J ^ ( v

(iii) sinq(x)=- J ^(φJ
7C — r

(iv) cosg(x)=l J -j
ft — oo ^

00

(v) 0 =

(vi) 0 = J — L (φ J(x, I) - ψ2

2(x, l))dl

00 ^

(vii) - π i = f ' xpi(xj)ψ2(xj)dl
_1 _ _ |

U 8/j

It is enough to sketch the proof of (vi). Integrate * * , (]—\l around
(/ + 2)0, (/ + j)a

J_ C

2

-c _J_
2

to obtain

i+=fτί^H<=-
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and

Φ2Ψ2

167

TT _ j,_.

- c

,,

+ J TΓ^-Γ

Formula (vi) is obtained by letting e->oo and using

φ(x,k) = a(k)

The quadratic form

can be written as

because11

-i K-i)

Set

— 1

, 1/2

\ 1 / 2

11 a(k) is bounded on the axis when q > 2πn, qv qx > 0 fast enough
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for all /cφ±^and
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We have

(iy w+(0)= ] i^xf+rf

(ii)' vv_(O)=

= ^ ί J

— /
(iii)' s i n β ( 0 ) = —

(ivy

(v)' 0= J
— O0

oo

(viy 0 = J
— oo

00

(viiy - i = j

Let

C O S2 S m 2 W\

-sinf cosf/'^

then it is easy to check

i ίk

-112'

w_ ίk

w

w, — w_ ίk .

Set

M for all k.
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Now by substitution

(ii)" W_(0)= IL| J u t ^ l

(iii)"

(iv)"

(V)" 0 =

(vi)" 0 = J ι ί ^ l
— oo ι

UJVJ

(vii)" - 4 i = j ^
- oo ^

It is easy to see that under the map

q{x, 0), -^ (x, 0) j -> (xfcs yk, uk, vk)

translation becomes

d —ik _ a, aΊ

ik rs1 α 1 a2

-yk-2lxk--yk-γkxk (1)

d i
— uk=—-uk-\-2mvk — kaίuk — 2ka2 vkdt k Sk k k 1 k 2 k

— vk=—-vk-2muk + a1kvk- 2ka2 ukdt k 8fc k * i * 2- k

where

ί=-i( ϊ
\-oo

ι = - β 1 ^ ! i ^ + 2x1 / 2}'1 / 2 + (-2)x_ 1 / 2 >'_ 1 / 2
\ - oo ^

/ oo γ 2 _ V 2

I- ~ 3 2 J /
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and

00

0= j xf f2 2 l l
— oo

00

0 = j uf

0 = j l(Xf-
— oo

0= ϊ ^-

0= ϊ̂  ψ^- +Ku2-v2^dl+^x\l2-y\l2)-(u\l2-v\l2))

are maintained.
We show that system (1) is an integrable constrained harmonic motion. It will

be convenient to write

00

for J xf + :
— oo

) for ? l(x;
I

so on.

Let

Σi
I l

and
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Constraining Ho to X = {φ1 =φ2 = ψ1=ψ2 = θ1=θ2 = 0} we find H = H0 + λίφί

+ λ2φ2 + oc1θί+a2θ2 + μίψί+μ2ψ2 where α l 5 α2, λί9 λ29 μ1? μ2 are determined
b y 1 2

2 2
y

on Z so that

r ι2

and

where

Σ

12 The xz's and y/s are canonically conjugate as are the wz's and i /s, while {xk, wj = {xfc, vt] = {yk, ut]
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The Hamiltonian equations of constrained motion are

1 α2

4kyk~2kXk

( 2 )

d

ItXk-

d

d

JtUk~

d

Theorem 1

-ik

2

- Λ

i

— i

. Let

and

for all k. Then the Ck 's, Dfe's Poisson commute on X, as well as in the ambient space,

and they are conserved by the constrained motion (2).

k+l k—l
Proof Set zkl = xkyι-xιyk, w^^x^ + y ^ aki=γz\ a n d bki= T~Π s o t h a t

= Σ akizki + bkiwki f°r aU k- Now

/Φk

f Λ Γ1 \ ί V ^2 i U ,2 V 2 , L

| C t , C.) = I > a t , z t / + bujWj.], > α. ,z. ; H- o. , v
<- K7 I) < Z« j ίCί Kl Kl KO ί^ IJ IJ IJ

[/** jΦί
= 4 Σ m

aklaijZklZijiZkl>Zij}

~h 4 / a>'b Z W ί w Z Λ
Z—ί i*7 k/ ij kl v k i ' 17 J

By direct calculation

4 Σ akiaijZklZij{Zkl^ij}
/Φfc,jΦί

4 Σ W«W i j{ZH'W i j
ΪΦfc,jΦi

= 4 w / f c Σ K A fc-^^
/Φfc

4 Σ flΛ;zo w w K ^ o
ZΦfc,jΦi

= 4wfci Σ (ailhl-ailbki)
i Φ /
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and

4

ZΦfcJΦi

= 4wik Σ bkibik^kizn + bkit>nWiiZkl + 4z k i

z

We have

k, C J = 4z fc ^ ( α ω α ί Λ - α w α i z + α w α i z )z w z l 7

ZΦi,fc

zi/c Σ (flίfcfofcZ ~ aiΦil ~ bklbil)WilWkl
I

ifc Σ K l f e i k - /̂c/fo£/ + bkibil)WilZkl
ZΦfc

ίfe Σ (aiibki-^iibki-bkibik)wkizir
ZΦi

Also,

aubki-aiibki-bkibik= *>

so that

ίcfe5 C J = ~4zzfc Σ(zfcz2iz+^
z

However,

and

Thus

z z

i.e., the Cfc's Poisson commute in the ambient space.

Let χ1 = φ 2 , χ2 = Θv χ3 = θ2, χ4 = ψ2, X5 = ΦV X6 = Ψi> a n d ^ = ({Xi>Zj}) τ h e n

- Σ

= Σ ^ \{C» xJ {χ,, CJ - {Cfc, x.} {χ, CJ)
1 ^ i < j ^ 3
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since {Ck,φ1} = {Ck,ψi}=^{Ck,ψ2} = 0 for all L By direct calculation

{φ2, Ck} = {χl + yl) {φv Φ2}

and

so that

2, Q )

+ terms proportional to φγ

= 0 on X.

i.e., the Ck's Poisson commute on X.
Also

d-C=2YaZ (i(l-
dt k ,ti " kl\2y

1 1

•2Σ^Ht

1

ikx2

k Σ(4+yf)+iky2

k Σ(χ?+yf)

m.



Nonlinear Wave Equations 175

O n l

1 = 0

and

m - ^ α i α 2 / 2 , V2\

—Thus — CΛ = 0 o n I , i.e., the Cfc's are conserved by the constrained motion (2).

The remaining assertions are verified by similar calculations. The proof is
finished.

System (1) is obtained from (2) by imposing further constraints and
symmetries.

2 (\ x2 — v2\2
uv I x v \2 (\ x2 — v2
uv I x v \ (\ x — v\

Lemma2. Σlxj^ Σ^Γ and Σ " ^ + k Σ ' ? a r e conserved by the
i i I \ i I / V- i I I

constrained motion (2).

Proof. Direct calculation.
Now

and

= mM l ~ 8 1 6 t I2

on the orbits which satisfy

Also, we can define
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= - 1 6

with the result that system (2) becomes

dx t ik y /

dy ik

duk ί 4yk .

By direct calculation, it is easy to see that

uk\ _ ( cosg/2 sing/2\ lxk

cos q/2) \yk

is a solution of (2**) provided

7 = - - and 1 = ^ - ^ .

Finally, one can check that any solution with

maintains this symmetry for all time, and that

(2**)

Let (X\ (Uk
be a solution of (2*), (2**), satisfying (*) and set 2λx = -(q + p)/4.

Then 2μ1=(q-p)/4 and (2*), (2**) are identical to (1).
The Sine-Gordon equation is treated in exactly the same way. If q(x, 0),

— q{x,O) are given and

d2q d2

at
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then 1 3 ,
ik

w+_ ...

, . . f 2 8ί , (3)
/ i ik

dί\ϋk/ VV_ Zfc

\ 4 ~ 2 ^ °7' Λ

System (3) is the flow generated by the Hamiltonian

on X

Λ ,.2\2

7 = - 1 / 8 and

Also system (2) is the flow generated by

1 .Λ Λ . 11

To

6. The Toda Differential Equations

The Toda differential equations

describe the motion of particles interacting with exponential forces. The particles
move on the line when xo= — oo, ^ n + 1 = oo and on the circle when xi + n = xi,
i— 1, ...,n. We will show that in both cases the Toda system can be mapped to a
system of particles constrained to an algebraic variety. Again, the constrained
motion is integrable.

The first step is to make the change of variables due to Flaschka

For particles on the line a0 = an — 0 and for particles on the circle ai+n = αf, bi+n = bt,

(i) Particles on the Line [6]

Let (a1,...,an_1;bv...,bn)e(R+)n~1®Rn and let L be the Dirichlet difference
operator defined by

where a0 = an = 0.

13 See Ablowitz et al. [lb]
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Lemma 1. The spectrum of L is simple.

Proof. First, if Lf= λf and /(I) = 0 then / = 0 since /(2) =(λ--Af(l) = 0 and so

on. Now suppose λ is an eigenvalue with both Lf=λf Lg = λg. Then

Now let λ1<...<λn be the eigenvalues of L and /t,...,/„ the corresponding
normalized eigenfunctions with/;(l)>0, i = ί,...,n. Set U = (fi(j)). We have

Mi 0
£/

from which it immediately follows that

and

n

i= 1

Theorem 1. The map

is one ίo one and onto

Proof We can recover b1 = ]Γ λjfil) and hence a1fι(2) = (λι-bί)fι(l), Z= 1,..., w

n

from the data (λu...,A^ /^l),..,/n(l)). Since a\ = ^ Λ//(l)(«i/f(2)) we know«! >0

and
/=l , . . . ,n . Now we can recover fe2= Σ Λ /«2(2) a n d h e n c e

aι i = i

a2fι(3) = (λι — b2)fι(2) — aιfι(l\ 1=1, ...,n. Continuing in this way L can be recon-
structed from (λί,...,λn; f^l), ...,fn(l)) and the map is one to one.

n

To see that the map is onto let λ1<...<λn and £ fi

2(l)=l with /J(l)>0,

/ = l , . . . ,n.Set ί) 1 =
i=ί

= fc1// (1) for all l^l^n which is impossible. Now set
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and

α i

Observe that

a

4ί
"l \i=l

= 0,

α1 ; = 1

= Σ
i = l

and

ί = l

ί = 1

Otherwise, 61/,(l) + a1^(2) = A^(l), a1/,(l) + &2/ί(2) = l2/ί(2) for all lίlίn and it

follows that the matr

impossible. Now set

follows that the matrix ( 1 M has more than two distinct eigenvalues which is

«2=J/.Σ α,./^)-

and

As before £ /ί(l)^(3)=0, £ fβ)fβ) = 0,
i = l ί = l

«2= Σ ^ ( Λ Λ ^ -
i = l

= Σ W)fβ),



180

and

n

Σfi
f = l

1

a2

= 1.

n

Σ

P. Deift, F. Lund, and E. Trubowitz

Repeating this construction n—ί times we obtain (av ...,an_ί;bί,...,bn)
e(R+)n®Rn and a unit perpendicular frame (/,(&)), lgfc, /<Ξn, satisfying

and

«z= Σ ViίO/iC

It only remains to show that

But for fe=l,...,n-2,

Σ f)(Vi/i(«-
i = l

= - Σ VWΛ"

= - Σ K-i/i(fe-

= 0.

Also,
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and

Σ •#»)(«-1 Άn -1) + KΆn) - Win))
i=ί

=KΣ I'M- Σ kf
i = l ί = 1

=A- Σ λJM=o.
ι = l

The proof is finished.

Theorem 2. The system of differential equations

d

(1)

with aQ = an=^0 is mapped to

(2)

d
Proof System (1) can be written as —L = BL — LB where

at

Let -rV=- VB, 7(0) = /. Then — W = 0 and — VLΨ = 0, so that VLV'1^L(0)
at dt at

giving—^-0, /=l,...,rc.

Now differentiate the equation Lf — λif to obtain Li — f — Bf
\dt
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= λxί — f{ — Bfλ and hence — fx — Bfx = cfx since λx is simple. However c=[ — fbfx
\dt I &ΐ \ClL

d
— CB/j,/z) = O because (//,/j) = l and B is skew. We have —fι = Bfι. In particular

The proof is finished.

The form ω+ = Σ —ι- ι- defines a symplectic structure on (R+)nζ$Rn with

Poisson bracket {,} + 5 satisfying {xk,xt}+ = {y^yι)+ = 0 a n d {^3^/}+ =^uxk ^ o r a ^

1^/c, / ^ π . Let H 0 = 5 ^ y?. Then the corresponding Hamiltonian equations are
i= 1

— x ι = {xι,H0}+=yιxι,

Let </>!= Σ x f-1, </>2= Σ ^ - c We have {φ1,φ2}+=2(φ1 + ί), {φ1,H0} +
i=l ί = l

= 2 ^ x?y. and {φ2,H0}+=0. Constraining H0 to X = { φ 1 = φ 2 = 0 } we find
i= 1

H = H0 + a1φ1+(x2φ2 where α1 ? α2 are determined by

on X so that 0^=0 and oc 2

= ~ Σ ^ ^ ί Finally, the equations of constrained
i = l

motion are

—χι = {χι,H}+ = \yι- £ xfyήxl9

/ = l , . . . , n .

{ H } 0

Thus system (2) is realized by constraining Ho to X = {φ1 = φ2 = 0}.
It is also possible to constrain with respect to the standard symplectic structure

after a logarithmic change of variables; but then φ1 is no longer a polynomial.
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(ii) Particles on the Circle

Let (av ...,an;bί9 ...,bn)e(R+)nφRn and let L be the periodic difference operator
defined by

with aι + n = aι,bι + n = bι and /(/ + n) =/(/) for all /. We will assume that the spectrum of
L is simple except at the very end of the section.

Now let λί=λι(a;b), ...,λn = λn(a;b) be the eigenvalues of L a n d / 1 ? ...,/„ the
corresponding eigenfunctions which are determined up to a choice of sign by the

n

normalization £ fί

2(l) = l, i = ί, ...,n. We have, as before,

i= 1

and

ί = l

for all /. Fix (a;β)e(R+)n@Rn and set

ί = l

+)n@Rn

Finally, let N be the quotient of (K2/(0,0))" by the fixed point free involutions

(xί,yv...,xi,yi,...,xniyn)

>{xί,y1,...,-xi,-yi,...,xm,yn),

i = 1,..., n. N is a smooth symplectic manifold since the involutions are symplectic
n

for the usual form ]Γ dxt A dyt.

Theorem 1. The map

Ϊ5 smooth and one to one.

Proof. The map is well defined because /z(l), /z(2) cannot both be zero for any
l ^l^n. The map is smooth by regular perturbation theory. It is easy to show, by
imitating the proof of Theorem 1 for particles on the line1 4, that (α, b)eM can be

constructed from (|/fl7/i(l), V<hfι(2l •• ^lΛΓ/n(l), ]/a^fn(2))eN. Of course, this
proves that the map is one to one.

Σ (AΛ 1 )) 2 / Σ (l/fli

14 Now the proof begins with the self-evident identities
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Let

for /== 1,...,«. This can only be done locally on N.

Theorem, The system of differential equations

/ = l , . . . , n , (1)

wiίfe α o = αn, bn+ι =b1 is mapped to

(2)

System (2) is invariant under the map

1 ^ i g n, and therefore defines a flow on N.

Proof The proof is essentially the same as that of Theorem 2 for particles on the
line and so we will only sketch it. Again, system (1) can be written in matrix form
by setting
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As before — /, = £/;, ί^l^nΛt follows that

Now, a direct calculation, using the identities

2a, = Σχϊ+yf>
i= 1

and

2 " '

Σ*f+3f
ί = l

gives (2).

rt n

Now let ψx= Σ ^y^ Φi^ Σ y ? - * ? a n d

i - 1 ί = l

n \ I n

ί = l \ ί * l / \£=1

We have

and

{φ2,H0} = 2 X Af(xf + y?) modulo φι,φ2.
i= 1

Also

and
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for 1=1, ...,n. Constraining Ho toX = {φί=φ2=0} we find H = Ho + θi1φί + ot2φ3

where α l 9 α 2 are determined by

= {φ2,H} = 2 t
f = l

on X so that αx =
 ι—^ and α2 =0. Hence the equations of constrained

motion are

A ί ^
___ v _ rv m _ _ 3 Y 19 V

at \i=1

for ί = l , . . . , n . Clearly, the constraints φί9 φ2 and the free Hamiltonian Ho are
functions on N. Indeed, the entire calculation really takes place on JV. Thus system
(2) is obtained by constraining Ho to X inside N15.

Once again the constrained motion is integrable.

Theorem 3. The polynomials

IΦk Al~Ak

Poisson commute onX. Moreover, {Ho,Ek}x = 0, k = l,...,n. Also

Σ £*=Φi
fc=l

and

k=ί

15 Note that 2 £ χf= Σ xf+yϊ = 2 Σ y\
i=ί i = l i = l
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Proof. The proof is by now a familiar calculation which we omit.

The map of Theorem 1 must be changed when there are double eigenvalues16

because of the further ambiguity in the choice of an orthonormal frame of
eigenfunctions. It is enough to explain the necessary modifications when there is
just one double eigenvalue, say λ = λί=λ2. The choice of an orthonormal pair of
eigenfunctions for λ is parametrized by SO (2), that is a circle. Now the constraints,
free Hamiltonian and motion are rotation invariant. Thus we can remove the
ambiguity by taking the quotient of TV with respect to the torus action

(xvx2)^(xί cos0 — x2 sinθ,x1 sin0 + x 2 cos0),

(yv y2)-+(yi cosθ — y2 sin0,yx sinθ + y2 cos0),

and mapping M into this quotient. We see that one degree of freedom is lost in the
particle system for every double eigenvalue.

There is another change of variables under which Toda becomes an integrable
system of constrained particles. Let

and

σ1? σ2, σ5, σ6,... f1? f2, f5, f6,...

denote the periodic and antiperiodic spectrum and eigenvectors of L respectively.
It is well known that σo>σ1^σ2>σ3^σ4>σ5^σ6>.... Now, by interpolating
the gradient of det(L — λ) off σo,σ2,σ4,..., we obtain the formulae

Λ a i i^O

where c, ε l 9 ε2,..., depend only on σo,σ2,σ4,..., and

The appropriate change of variables is

{a,b)-^{\/ε0Aa1f0{\\ |/εo^lα 1/o(2),..., )/εiAa1 / 2 i(l), ]/zi

and Toda is realized by constraining

£ ̂  0 / \ί ̂  0

16 It is clear that L cannot have eigenvalues of multiplicity more than two
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to

Finally (see Deift-Trubowitz [1979c]) we note that passing to the continuum limit

"7 = Σ εif2iW converges to the formula 1 = ]Γ zj^x) for the Hills operator

[see 9]. '
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