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1. Introduction

Moser and Trubowitz [7] showed that the study of the Korteweg-de Vries
equation is simply the study of constrained harmonic motion. Here we show the
same is true for the nonlinear Schrddinger, sine-Gordon and Toda lattice
equations. Briefly, we have found a change of variables under which these
integrable wave equations become a system of free oscillators constrained to an
intersection of quadrics in phase space. This is in analogy with the linear case in
which the study of wave equations with constant coefficients is reduced via the
Fourier transform to the study of harmonic oscillators with linear constraints. One
wave equation differs from another only in the nature of the constraint and in each
case the constrained system is itself integrable.

In another paper we will use the constrained particle systems to analyze the
global phase space geometry of the nonlinear Schrédinger and Sine-Gordon
equations. We have no doubt that our technique can be directly applied to the
continuous Heisenberg spin chain, the generalized Sine-Gordon equation, the
classical Thirring model and any other nonlinear wave equation associated with a
second order linear problem.

2. Hamiltonian Mechanics with Constraints®

Let w= ) dx'ady' be the standard symplectic form an R*" and {F,G} the
i=1
corresponding Poisson bracket between smooth functions F and G. If He C*(R?")

we denote by Vy the corresponding Hamiltonian vector field for which

dH(-)=w(Vy, ). As usual § =<——(I) (I)) and w(u, v)=(u, Sv).

* Research supported by National Science Foundation Grant No. NSF-MCS-76-07039
** Research supported by National Science Foundation Grant No, NSF-MCS-76-18222

1 For a related discussion of mechanics with constraints see [2]
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Let m<n and ¢, ..., ,,e C*(R*) with d¢,,...,d¢,, independent on the
variety X ={(x,)eR*":¢,(x,y)=d,(x,y)=...=¢,,(x,y)=0}. X is a smoothly
imbedded submanifold of R?",

Lemma 1. The restriction of w to X, wy, is non-degenerate if and only if the matrix
C=({¢;, ¢;}) is non-singular at every point p of X.

Proof. If C is singular at p, then there are a,,...,a,,, not all zero, such that
2m

(Vd)j, N (lg a; V(;Si)) = > a{¢,¢;}=0 for all j.

i=1
2m

In other words v=S (Z a; qui) +0 is tangent to X at p. But then w(y,v)

i=1

2m 2m
=(u,S (S Y adiSi)) = ( Z a; I7¢>> =0 for all vectors ueTX, Thus o is
i=1

degenerate on X. i
Conversely if for some 0+veTX,, w(u,v)=(u,Sv)=0 for all ue TX, then
2m

Sv= ) a;V¢, for some a, not all zero. But then
i=1

{qﬁj, iizml airl,’)i} = (l7<f>j,S(;§f1 adibi)) =0 as S(:Zml a l7¢>i> =—velX,.

The form wy is closed since d(wy) = (dw)y =0 and therefore, if C is non-singular,
wy defines a symplectic structure on X. From now on we will always assume that
(the antisymmetric matrix) C™'=(c;; ") exists. Also, if He C*(R*"), V; will denote
the Hamiltonian vector field on X for H|, with respect to wy.

In general Vj =V on X. We have

Lemma 2. Vy=V, on X if and only if {H,¢;}=0 on X for all j=1,...,2m.
2m

Furthermore, if Hye C*(R*") and o,= Y ¢ ;' {Ho, d}, i=1,...,2m, then Vi =Vy
i=1

2m

on X where H=Hy+ Y o0,
i=1

Proof. First of all if {H,¢;}=(SVH,V$)=0 on X for j=1,...,2m, then
Va=SVHe TX , for all peX so that V;=Vy. Conversely if SVH=1Vy, =Vye TX , for
all peX, then {H, ¢,} =(SVH, V$,)=0 for all i=1,...,2m.

The second part of the lemma follows from the first by noting that Vy =V =V
on X.

All Poisson brackets on X can be calculated in the ambient space R>" by the
following

Lemma 3. Let {F,G}y be the Poisson bracket for wy. Then {F,G}y={F,G}
z {F,¢;}c;' {$,G} on X where the right hand side is calculated for any

i,j=1
smooth extensions of F and G to an open neighborhood of X in R*".
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Proof. Suppose that {F,¢,}={G,¢$,}=0 on X for all i. Then by Lemma 2,
{F, G}y =wx{V;, Vit =0V, Vg)={F, G}. For general F and G, again by Lemma 2,

(F.G}y = {F+ 3 G F 16,6+ Z ' (G, ¢l}¢k}

lj_

={F+ Z c; "{F,¢30,G+ Z ca'{G, ¢z}¢k}

ij=1

2m
={F,G}+ lzzlczﬁl{G,%}{F,%}

2

3

+ 3 6 R.6)6.6)
2m
+ X ele {F¢}{Gdley  (onX)
—{F.G)— Y {F.b)c; {6,G).

iL,j=1

This establishes the formula.
The significance of the above lemmas is made clear in the following example of

constrained harmonic motion.
Let

n n
Ho=3 35244 ¥ o
n

=.lei2—'1> b= 2 XiJ;-

i=1

X={¢,=¢,=0} is the tangent bundle to the unit sphere.
We have C,,={¢, .} =2(¢, +1), {$¢;, Ho} =20, {¢p, Ho}= Y »}
i=1

- Z O-ixi2 and H=H,+uo, ¢, +a,¢, where a,,a, are determined by
i=1
={¢, H}=2¢,+0,2¢, +1)=2a,,

0= (62 H) = 332~ ¥ o=, [26,+1]

n n
=) - '21 0 %7 — 20ty .
i=

on X, so that
n n
1
% =7 Z Vi—% Z
i=1 i=1
and
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Thus
H=3 ) yi+3 ) ox}
i=1 i=1
n n n
# (8 3 -1 3 o) £ 57-1)
i=1 i=1 i=1

Now the Hamiltonian equations of motion for the system of the harmonic
oscillators forced to remain on the unit sphere are:

d
—Xi={xiaHO}X={xi’H}=yi’

dt
d
dt {y,, o}x={yi,H}
——oxt (§ 3071 3 o) (-2x,
j=1 j=1
Le.,
d2 n
e X;+0,x, (/Z (0;%; —yf)) X;
j=1
The vector
n xl xl
(o= ¢ | =2
i=1 x x

n n

is the (normal) force required to constrain the oscillators.
In this example

Wﬁhﬂaw4m@@wwm@‘jm2ﬁﬁ

={F,G}+3[{F,$,} {,,G} —{F, ¢,} {$,,G}].

This system was first discussed by Neumann (1859) in the case n=3.
Remarkably, the motion is integrable by:

Theorem 1. The functions
oy =xp)°

A.=x24Y L Y 0 i=1,...,n,
Poisson commute on R*" and on X. Moreover

) Aj=¢,+1

j=1

=1 on X,

and
n n 5 n 5 n 2
Z (Z xj)(z y,~)—<z xjyj)
= J J J

J
=2H, on X.

llM:
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1
Proof. Let z;;=x;y;—X;y;, d;;= . For j#k,

i j

{4, A4,} ={X?,IZ dkzzkz} {Z d.ll ij }
{Z 20 Z dklzkl}

i*j
= —4x; X2 dy + 42 x, X d
+ X d]ldkl{zlp Zj}+ Z d]kdkl{zky zi)

i*j,k
1=k

= Z djidki4zijzikzjk
i),k

+ Y dudAzz,2

Ji¥%kj T Cij%k
i+j,k

+ Z ; djkdkl4zk ZKZji

=4 Z ZZaZ jull Al + d;jdy+ d pdy

itk
=0
as
djdy;+d;jdy i+ d pdy =0.
It is enough to prove this when a,, say, is zero. But then
dydy+d;jdy;+dpdy
_11 1 1 1 1
a a (—a)a—a; a;—a,(—a)
1 1
= Zzﬁ + ————ajak(ak_aj) [—a+a]
=0.

The identity ¢, +1= ) A; follows from the antisymmetry of z2 “c;; and
ji=1

j;lajAF‘J; X7+ Z

}1*]] i

DY

Jt*JJ a;

(X,yj Xy

—Zax +1

(xzyJ ' 1)2

2

zt#); j

=daxj+ [Z r Zi (xgy; = x )

11*11 i

(x Yi— XY j)zj!

=Za 241 [Zx VI+X7YE—2x,y,X;

= §ajxj +<sz§) @ y,-)—@x,y,)?
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Clearly {¢,4;}=0,j=1,...,n, so that

{Aj7 Ak}X= {Aj’ Ak} +%({Aj5 ¢1} {¢2>Ak} - {Aj9 ¢2} {¢1’Ak})
=0.

Furthermore on X, Y a;A;= ) a;x}+ ), y}=2H,, and the proof is finished.
j=1 j=1 j=1

J

3. The Korteweg de Vries Equation

Here we will show how the solution of the KdV equation on the line reduces to the
study of a continuum of constrained harmonic oscillators. This is in contrast to
the periodic case of Moser and Trubowitz which involves a countable number of
oscillators.

The results of the previous section are finite dimensional but provide a
framework for the infinite dimensional problem. We will verify the facts we need

directly.
Let g(x)e #(R) be real and let fi(x) o~ e*, g(x) ~ e ™ be the Jost

x>+
solutions? for the Schrddinger operator —d?/dx* + g(x). The solutions f,(x), g,(x)
are analytic in the upper half k-plane and related on the real axis by the reflection
and transmission coefficients R(k)=R(k;q)e S, T(k)=T(k;q) through

T(k)g,(x) = R(K) fix) +1_1(x).

For simplicity we will always assume that —d?/dx? +g(x) has no bound states
or resonances so that T(k) is analytic in the upper half plane and
T(0)=0=1+R(0).

We begin by deriving an identity among the functions f?, — oo <k <00, from
the estimate?

/1
T(k) f(x)g(x)=1 +O<k_2) , Imk=0.
Multiplying by i/nk and integrating clockwise along a semicircle C, of radius r, we
obtain
i . dk 1\ i T(k)f(x)g,(x)
R
_E o TRANG T TRAMEE g
T |k >¢ k T Ce k
_i ¢ R T(k) f(x)g,(x)dk

i

2 See Deift and Trubowitz [3a], Sects. 1 and 2, for the necessary information on scattering theory
3 See Deift and Trubowitz [3a], Sect. 4
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In the second line Cauchy’s theorem is used and in the third the fact that
Si(x)f_(x)/k is odd. Letting r— oo we find

0RO, i TR
N e S N T

then letting |0
: © 2
=1 RWEE g

1
R (1)
where the integral is interpreted as a principal value.
Now differentiate (1) twice to obtain
; k)
q(x)=— j kR(k)f;H(x )dk— — f V2(x)dx . )

Here the differential equation for f, is used and the principal value is easily
handled.

Also
a i s § RO
0 T rrwgeas 1§ 5D o <o
so that
a)=2 § kR £k ®

where the constant of integration vanishes by Riemann-Lebesgue. It is also
possible to derive (3) directly by contour integration (see [3, Sect. 4]).
Fix a real p(x) in #(R) and set

M={realge ¥:|R(k;q)|=|R(k;p)|, — o <k < o0}.

M is closed in the topology it inherits from & because R(k;q) is a continuous
function of g for each k=+0* and continuous in k for each gq.

Lemma 1.5 If R(k;p) vanishes to infinite order at some k+0, M is not simply
connected.

Proof. For clarity and simplicity we make the proof when R(k;p)+0 for
—1<k<1, |k|>2 and R(k;p) vanishes for |k| between 1 and 2. Set
R (k)— =e*™s"®R(k; p), 0<s< 1, where
nk)=0 for —1<k<l
=1 for k>2
=—1 for k<—2.

4  R(0;q) is continuous on M but not in &
5  For more information on the phase space geometry of the KdV equation, see Deift and Trubowitz

[3b]
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By the basic result of inverse scattering theory there is a continuous, closed curve
q.eM,0=s=1, with R(k;q)=R (k) and g,=q, =p. We will show that this curve
cannot be contracted to p. Suppose it is contractible with homotopy g (x;u)e M,
0=u=1.Thecorresponding reflection coefficients R (k; u) = R(k; q(x, u)) are jointly
continuous in s, u, and k and never vanish for |k|¢[1,2] so that O(k;s,u)
=Im(logR(k;u))can be chosen as a continuous function in {|k|>2} x [0,1] x [0,1]
and {—1<k<1}x[0,1]1x[0,1] with 6(0;s,u)==. Similarly we can choose
O(k; p)=Im(logR(k; p)) continuous on {|k|>2} and {—1<k<1} with 6(0;p)=n.
Now for [k|>2, O(k;s,u) must satisfy

0(k ;0,u)=0(k ; p) (mod 27) , 0=u=lt,
0(k; 1,u)=0(k; p) (mod27), (RS
O(k ;s,0)=06(k; p) (mod2n), 051,
O(k;s,1)=2ns+0(k;p)(mod2x), O0=s=1.

But one easily checks that this is inconsistent with the continuity of 6(k;s, u).
Hence M is not simply connected.

On the other hand, if |R(k; p)| >0 for all k, then M is simply connected. To see
this define

0(k ; g)=Im(log R(k ; q))

as a continuous function of —oo<k<oo for each fixed ge M. Because
R(0,a)=—1, 6(0;q)=n and it follows easily that 6(k;q) is jointly continuous in
—ow<k<oo and ge M. An elementary argument now shows that M is simply
connected ; indeed for any continuous, closed curve g.e M, 0=<s=<1 with corre-
sponding reflection coefficients R (k)=|R(k;p)le®®%), the required homotopy is
R(k;u)=|R(k; p)|eTotas+ (1 ~ublk:aol (<5 4y <1. For the remainder of this section
we will assume that rk—r_k_[R(k p)] >0, — oo <k<co.

Before we can continue it is necessary to make a lengthy technical digression.

Define the Hilbert spaces J#, C #, of functions z,=(x,, y,), — oo <l< 0, as the
closures of €7 (IR) x €y (IR) with respect to the norms

|z,— ZO| lz=z”

”ZHI IZO,2+ j 121+12)

and

dz
21, 124 |[%2
1213 =1+ |(57).

z,—z, (dz) 2
I \dl
+ 2

A TR+

2 © 2
|2,—z,|
+ _joo 12(1 _‘_12)4,.12 dl

dal.

Functions in #, have one L*-derivative at zero whereas functions in #, are
merely continuous.
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If L(w,) is a bounded linear functional on #,, then by Reisz L(w,)=(w,, w,)®
with w, e .

By definition

a bounded linear functional L(w,) has property 1 if w e, ;

a bounded bilinear form B(w,, w,) has property 2 if B(-,w,), and B(w,, -) have
property 1 for all w;,w,;

a bounded trilinear form T(w,,w,, w;) has property 3 if T(-, -,w,), T(-,w,, *)
and T(w,, -, -) have property 2 for all w,,w,,w,, and so on.

We now introduce an algebra &/ of complex valued functions on s, for which
a suitable Poisson bracket can be defined. A function F(z) is in & if

(i) F(z) has Frechet derivatives on s, of all orders.

F'(z)(w)=(DF(2),w), DF(z)e #,
F'(z)(wy,w,)=(D*F(2)wy, w,),
D?*F(z) is bounded from #, to #,
F/’I(Z)(Wp W W3) = (D3F(Z)(W1)W2, W3)a
w, —>D*F(z)(w,) maps #, continuously into the bounded maps from #, to
H,
and so on.
(i) For all z, w, w,, ... in #,’
Fw))= li};n F(2)(t,w1)

F(z)(wy, ) = im F'(2) (1, )

F"(2)(wy, wy, ws)= li,{n F"(2) (3, W1, W3, W3)

. 1 .
etc., where y,(I) is one on {Ill; —’;} and zero otherwise.

(i) F™(z)(wy,...,w,) has property n for each n=1, continuously in z, ie.,
z+—DF(z) maps #, continuously into 4,

z—D*F(z)w  maps #, continuously into #, for each w.

It is easy to check that &/ is an algebra.

If Fes/, then by (iii), D*F(z) maps #, into #, for each z This map is
necessarily continuous: indeed, by the closed graph theorem it suffices to show
w,—w in #,, D*F(z)w,—z, in #,, implies D?F(z)w=z,. But this follows from the
inequality ||D*F(z)w,—z,||, Sconst|D?*F(z)w,—z,||, and the boundedness of
D*F(z) from #, to #,. Moreover ||[D*F(z)|,, ., is locally bounded by the
uniform boundedness principle and the continuity of z—>D?F(z)w for each w.

Similar considerations apply to the higher derivatives.

6  We reserve the symbol (-, ) for a real inner product so that ||z||? =(Z, 2), etc.
7 Note that the existence of li'r'n F'(z)(x,w), say, does not follow from the boundedness of F'(z) as y, w

converges to w in J#, if and only if wy=0
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Lemma 2. The functions

¢1(z)=(j£’—)l—cidl)~1, by(z)= [ ’y’dl

and

Hy(2)=3 fr,(lx, 7 )dl,
defined as principal values, are in <.

Proof. We only consider ¢,(z). The proofs for ¢,(z) and H(z) are similar.
First,

b()+1=1lim [ Ela
S, |
2 2
=lim[ gt | g
noo | <t | iz !
2
=]im[ Dxe—xdi+ | Elal
m20 | << 1 TS

and elementary estimates show that ¢,(z) is defined for all zes#, with
|¢p,(z)] < const | z||2. Suppose that z,=(x,, y,), w=(u;,v,)e #,. Then

¢y(z+w)=¢,(2)+

2jrlr,ul dl}

oy dl}

Similar estimates to those above show that

2l Sconst ), i,

and

TR
f_t_l,l_t_z,_ldl)gconst wyllw, ] -

It follows that ¢,(z) is differentiable with ¢{’(z)=0 for n=3. This verifies (i)
and condition (ii) is immediate.
We now calculate D¢, (z) from the formula

(D)~ (D)o, W, —Wo) dl
21417

for all w=(u;,,v,)e #,. Setting u;=0 we find that the second component of (D¢, ), is
zero. Setting u,=0 and then u,=u, we find

(D¢y),— (D)o =211+ ?)rx;,0)

and

2f T =(DY s o)+ |

(D)= (2; gy 0)
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Thus
"X 2
(Do, (2)),= ((2 | —k—dk) +21(1+1%)rx, 0) .

A similar calculation shows that
F'(z)(w,,w,) =(D2 (2w, wy)

where D?¢,(z) is the real symmetric bounded linear operator

D¢ ()w= ( 2 jﬁ}—z‘lko + 201+ P)ru,, 0).

From these formulae it is clear that z—D¢,(z) maps 5, continuously to #, and
that D*¢, maps #, to #, independently of z. This proves (iii) and the lemma.

Lemma 3. &7 is closed under the Poisson bracket

{F,G} (2)=F(2)($6(DG(2),

where
(ow), = 21— Yo
l
and
1 u
(Sw),=Sw,= { ! .
RN K

Proof. We will show that {F,G}eo/ for all F,Ge.</ and that {F, G} is bilinear,
skew symmetric, nondegenerate and satisfies the Jacobi identity.

The space #, has been chosen to place SO(DG(z)) in #;, so the brackets exists.
The bilinearity of {F, G} is immediate and the skew symmetry follows from

{F,G}(2)=F'(2)(S6(DG(2)))
= lim F'(2) (x,S6(DG(2))) by (ii)

. DG),— (DG dl
= llpj((DF)l_(DF)Oa XnSl(( ) l( )0>> 1+

— dl
~tin = §(06)~ (D)o 1,5, 2P0

= lim — G'(2) (¢, SO(DF(z)))

=—G'(2)(SO(DF(2))), again by (ii)
=—{G,F}(2).
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In the third line we have used the fact that (y,S(6(DG(2)))),=,=0. To see the
nondegeneracy, suppose that {F, G} (z)=0 for all Ge /. In particular this is true
for G(z)= ((h,z,)dl with h,e €3(R\{0}) x €5 (R\{0}). It is easy to show that G is
indeed in «, that (DG),=([ h,dk)+I*(1+1%)h, and that G*(z)=0 for n>2. From
{F, G} (z2)=0 we obtain

di

X1 +DP) =0

[ (DF),—(DF),, S,I(1+1?)h))

and as h, is arbitrary in ¥F(R\{0}) x €3 (R\{0}), we conclude that (DF),
()
l

h
he€3(R)x €7(R), then again G is in <, (DG),= [jfdk] +I(1+1*)h, and
G"(z)=0 for n22. {F, G} (z)=0 now gives

—(DF),=0. On the other hand, if we take G(z)= | dl (principal value) with

dl
0= [ (DF),—(DF)o,(S8(DG)), — (S5(DG))o) <P
+ (DF),,(S6(DG)),)
=((DF)q, (S5(DG))o)

but (S3(DG)), = (_ X (1)

nondegenerate.
Now we show that <7 is closed under {-, -}.

)ho and h,, is arbitrary. Thus ((DF)(z)),=0 and the form is

{F,G}(z+w)=F'(z+w)(S8(DG(z + w)))
=F'(z) (SO(DG(z + w))) + F"(2) (w, SO(DG(z + w)))

+ } (1=t F"(z+tw)(w,w, SO(DG(z + w)))dt
0
= —G'(z+w)(SO(DF(2)))+ F"(z) (w, S6(DG(z + w)))
+ } 1=t F"(z+tw)y(w,w,S6G(z +w))
0

= — G'(2) (SS(DF(2)))— G"(2) (w, SS(DF (2)))
+F"(2) (w, S§(DG(z + w)))

+ jl‘ (1 — ) F"(z + tw) (w, w, SO(DG(z + w)))
0

- f (1 — 1) G"(z+tw) (w, w, SS(DF(2))).
0

But
F'(z)(w, S6(DG(z+w)))=F"(2) (w, S6(DG(2))) + o([|wl| ;)
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as
|F"(z) (W, S8(DG(z + w))) — F"(z, S6(DG(2)))]
=const |w] [|SS(DG(z+w)—DG(2))l;
<const|wl|, |DG(z+w)—DG(2)|,
and z—DG(z) is continuous from 3, to J#,. Also for |w||; bounded,
[ F"(z+ tw) (w, w, S§(DG(z + w)))|| Sconst |w|} | DG(z+w)||,

Sconst(w|}
and

1G"(z+tw) (w, w, SS(DF(2)))|| < const | w|{ | DF(z)|, -
Thus {F, G} (z) exists and
{F, G} (z) (w)=F"(2) (w,S6(DG(2))) — G"(2) (w, S6(DF(z)))
=(w, D?F(2)S3(DG(z))) — (w, D* G(z) S6(DF(2))).
Property 2 for {F, G} (z) follows immediately from the corresponding property for
F’(z) and G"(2). Set g(z) =So(DG(z)). As z—DG(z) is continuous from #, to H#,,
g(z) is continuous from #; to s#,. Furthermore by the discussion preceding
Lemma 2, |D2F(z)| #,-x, 15 locally bounded and the continuity of
D? F(z)S8(DG(z)) follows from the inequality
ID? F(z)g(z)— D* F(20)g(z,) | »
S D2 F(@)ll s, ¢, 19(2) = g(20) | 1 + [(D? F(2) = D* F(2))g(2o) .-
This verifies (iii) for {F, G}'(2).
Higher derivatives are treated in an entirely analogous way. Thus &/ is closed
under {F, G}.
Finally we verify the Jacobi identity. For F,G, H in </,
{{F,G},H}={F, G} (S6(DH))=F"(S5(DH), S6(DG))
— G"(S6(DH), S6(DF))
{{G,H}, F}={G, H}' (S6(DF))=G"(S6(DF), S6(DH))
— H"(S6(DF), SO(DG))
{{H,F},G}={H, F}(S6(DG))=H"(S5(DG), S6(DF))
— F"(S6(DG),S6(DH)).
The Jacobi identity follows from the symmetry of the second derivatives. This

completes the proof of the lemma.
The Poisson brackets between the functions ¢, ¢,, and H, of Lemma 2 are:

{ﬁbv ¢2} =2(¢1 +1)
{¢1,H0} =2¢,

i 2
{¢2,H0}=j —k———krkxk dk.
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For example,

D¢, = (2 {j %dk} +2U(1+ P)ryx, 0)

D¢2 ([j‘rkykdkji +l(1+12)rlyln[j : }+l(1+12) lx)

so that
. dl D 2) D 270
{¢1’¢2}:hyl;nj‘12(1+l2) ((D¢ )l (D¢1)O’anl<w))
0 1
_ mI 2 dl i (2l(l+12)r1x1), ) rl(1+lz)
AR 0 by
r,(1+l2)
) (1"‘12)70’1
((1 +1?) 71x1>
= hm2jdlx,, 1
=2¢,+1).

The other brackets are similar. Also, if
F=([hxdk and G={gydk with hge?3(R),

then
(F,Gy= |9 ’gl dl.
Letting h and g converge to delta function, we obtain formally
l
{xp i} =dk—1)—
T
which is useful for computations.

We now resume the discussion of M. As r, >0 we can define a smooth phase
0(k ; q) and make the following definition:

i

xkE \/;ele(kyq)/zﬁ‘(o; q)
i o ’

V= 1/;6"’“‘"’” 2£0; 9)

for — oo <k<oc0.
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Theorem 1. The map Maq—(x,, y,)€ #, is continuous and to one. Also, translation
q(+ +1t) becomes

d
%xk=yk

d ry?
o= ([ = "0
for — oo <k <o0.

Proof. As £,/(0; q) and f/(0; g) are smooth and f,(0; g) is bounded while f/(0; g)
grows at most linearly, (l/%e“’"‘;‘“/ 2£(0; q),\/%e“’“‘;q” 20, q)) is in #, and the

continuous dependence on q is easily verified.
Upon translation g(-)—q(- +1¢)

105 q(- +)=e ™ f(t; q)

fi0;q(- +0)=e"™ £t q)

R(k; q(- +1))=€**R(k; q)
so that

-
x,(t)= ‘/% kD12 £(t; q)
i o
)= \/;e“’"‘"’” 2fit; q).

The system (4), is now obtained by substituting (2) in the Schrodinger equation.
An elementary modification of the methods of Sect. 4, Deift and Trubowitz [3a],
shows that (4), satisfies a Lipschitz condition on 4#,. Hence the map is one to one.

The point is that the equations (4), are obtained® by constraining #, to X
={¢, =0, ¢, =0} as in the example of Sect. 2. Here it is easy to check directly that

1

Gab)ion o)

(4),
X, — k*x,

0

{FaG}xE{F9G}—({F7¢1}’{F7¢2}) 1
Gndad

={F,G}+3({F,¢,} {5, G} —{F, $,} {$,,G})

for F, Ge o/ is the appropriate Poisson structure on X.

As in the finite dimensional case, the motion is integrable. Let # denote the
class of smooth, even functions on IR which, together with their derivatives, are
polynomially bounded.

8  Strictly speaking (4), are obtained only in the weak sense as F(z)=x,¢.s/ and the Poisson brackets
{x;, G} must be smeared
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Theorem 2. For all b,b’ e 4,

byrxi b,—b, 1
A,(b)= =5~ dk+ —55 — 7 = xi) dkdl

b,r
A,(b)= y%(ka—k_x—kYk)dk

are in o, and
{4,(b), Ab)} ={A4b), A(b)}x=0, ij=12.
Moreover,

A1(1)=¢1+1
=1 on X

and

A, (k) = [ krx? dk+(§ﬁ‘;—’%dk> (j’-’;f@k)

e 2
[
=2H, on X.

The proof of this theorem, which we omit, is a simple modification of the finite
dimensional case. The functions 4 (b) are defined as suitable principal values and
one easily verifies that 4 (b)e «/. Formally

A,(b)=[bA,dk,

where

rkxk (xk xlyk) "

g
Clearly A, is not well defined because the integral does not exist on s, and
further, r,x?/k has only a distributional gradient. But these problems are
eliminated by smearing with b’s (cf. footnote 8).

Similar considerations apply to A4,(b). Here 4,’s are needed as well as 4,’s
because of an inherent symmetry. We illustrate this with a finite dimensional

example. Let Hy=% Y (ax?+y?) be a finite dimensional system with
i=+1,...,xm
n=2m degrees of freedom. If the a;’s are distinct then

X
A_xk+z(—"—yl~——’y—")—, k=+1,...,+m
¥k G

are the conserved quantities for H,, restricted to

X={ Y oo oxz=1, Y xiyi=0}.

i=%1,..,tm i=%+1,..,%tm



Nonlinear Wave Equations 157

If aj=a_; j=1,...,m, the individual Ak’s are no longer defined and must be
symmetrized, i.e.,
(xkyl_xzyk)z

A =x24+x2 +
1%k, —k QG —aq;

_ 2
+ z (X =Xy )  k=l,..m
Ik, —k a,—aq
Ay EXY =X Vs k=1,...,m.
Of course
A= lim A +A_,
j=11,A:,Jm
and
. A
Ay = Jlim (=a-) k
i=1,.m

so that the 2m functions 4;,, j=1,2, k=1,...,m, Poisson commute. In the infinite
dimensional case k*=1? for k=1 or k=—1 and A,(b) and A,(b) are simply the
analogs of 4, , and 4, ,.

To summarize, we now have M imbedded in 5#, and have identified the flow of
translation on M with the restriction of constrained harmonic motion A(k?). We
will now show that under the imbedding KdV can be identified with the restriction
of 2A(k*).

If g(x, t) solves the KdV equation

9~ 699, +qx =0, g(x,0)=¢o(x)
then (see Lax [5]), H(t)= — d*/dx?* + q(x, t) solves
d
—H=BH—HB
dt
where B= —4d3/dx3 + 3(q(x, t) (d/dx) + (d/dx)q(x, t)). It follows that
d
oy Sl )= = 4f70x, 0 +6q(x, 1) fi(x, 0+ 3¢ (x, 0) filx, 1)
+4(ik)? fi(x, 1)

or

d
77/ 0 =10 0 (4GK)* = ¢'(x, 1)) + f(x, £) (24 (x, 1) + 4k?)

%f '(x, 1) =1, 1) (2q%(x, 1) + 2k g(x, 1) — 4k* — q"(x, 1))

+//(x,0)(q'(x, 1)+ 4(ik)%) ,
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where second derivatives have been eliminated by f/(x,t)=(g(x, t)— k?) f,(x, t).
Also R(k;q(t) =e**R(k; q,) so that

| A
x, ()= /;e‘e‘i“"’" WL £(0,1)

i .
— /;:—_e'g(k’QO)/z(e4lk3tfk(0, t)),

; —wo<k<oo,
yd)= /;e"“"““"”"zf,i(O,t)

i .
— V; ele(k,qo)/z (e4tk3t f]:((), t)) ,

satisfy

2 30 = ~ 410,050+ 2400, + 4k 30

S IO=C07(0,0+ 280,040,040+ 4 0,0 3,0). .
From (1) and (3)

g09="2L [kR(k; @) fix; @) it gk
and

9'09= " [kR(K; @) ;@) (53 0)+ (s )Pk

= 499 1Rk ) 20 )k
T TR @ 2055 @)+ KRGS ) Gy ).
At x=0 this becomes
q'(0,0)=4[ kryx, (1) y(t)dk ©)

q'0,t)—24%(0,0)= —4 [ K rxp(@)dk +4 [ kr,ya(0)dk.
On the other hand,
2A4(k*) =2 k¥ rx2dk

"o i
+2(jkrkxk2dk)(pk—dk) +2(jik~dk) ([ kryy2dR)

+ 4(f krex v (f Zrk xkyk)
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which reduces to
rk,Vlf
H, =2 [K3rx2dk+2 [ kry? +2(] krox2dk)| [ 2% dk
on

"y

2
X= {¢1=§ X fk—1=0, ¢, = j@]—{’—‘ﬁdk=0}.

Choosing o, and o, so that {¢,, H, +o ¢, +0o,¢,} =0={¢,, H, +a,; ¢, +0o,,}
on X, we find

o, =2 [ (kryyg — k3 rxp)dk
ay=—4[krxy,,

and 2A4(k*) constrainted to X becomes (cf. footnote 8)

d
%‘xk={xk’H1 toydytayd,}

=(4k? +4({ Irx} dl) y,— 4] Irx,y,dl)x,

d
a0 e Hy+oy ¢y +0,0,}
2
=4({Irpx,y,dl) y, + (4[(13;’,x,2 —Ir,yf)dl—4k? jr—';)—’dl—4k4) X

2
But by (6) and g(0, 6)=2 { Irx?dl=—2 j% dI, these equations are identical to (5),.

This identifies KdV with the restriction of 2A4(k*).

Finally, {A(k%), A(k*)}x=0 so the study of KdV reduces to the study of an
integrable system of constrained harmonic oscillators. The same is true for A(k"),
n=2,3, ..., which correspond to the higher order KdV flows.

In [3b], it is shown that M is in general a product of lines and circles. When
r,>0, as above, M is a product of lines. Otherwise we must add one circle each
time r, vanishes. When M is not simply connected, it it possible to define a phase
only on the product of lines. However, this is enough for our purposes because all
the KdV vector fields are transverse to the toroidal piece of M.

4. The Nonlinear Schrodinger Equation
The nonlinear Schrodinger equation
0q 0J%q

9,99 2a=0
50 T o Tl
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where ¢g—0 as x— + oo describes the evolution of the envelope of an almost
monochromatic wave. We will show how to reduce the study of this equation to
that of integrable constrained harmonic motion. In the last section all the
constructions and calculations were rigorous. Here, for simplicity, some things will
be formal even though the techniques introduced for the KdV equation can be
applied with minor changes.

Let g, r be complex valued functions vanishing ar +oo and let® v (x, k),
¢, (x, k), w_(x,k), and ¢_(x, k) be solutions of

.

vy +ikv, =qv,
! . —

v, —ikv, =rv,

with asymptotics

_(V+1) 0\ ix
w+—<w+2)’“+°"(1)e ’
¢+1) (1) —ikx
= ~ e y
o= (5r2)e- o

_ 1P—1) ~ (1)e—ikx
V- (‘P-z xrel0

and
oolf e

The solutions ., ¢, are analytic in the upper half k-plane while y_, ¢_ are
analytic in the lower half k-plane. They are related by the transition matrix

a,(k) b,k
(a_(k) b_(k)) through

W+=_a+¢—+b—¢+’
pr=a,p_+by,,
y_=a_¢p,+b,d_,
and
p_=—a_yp,+b_yp_.

The functions a ., a_ are analytic in the upper and lower half k-planes respectively.
To simplify the presentation we will assume that both a, and a_ are root free. Set

ri(k)=b,(k)a,(k) and r_(k)=b_(k)/a_(k).

9 See Ablowitz et al. [1a] for the basic spectral theory
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Lemma 1

©

() a=— [ r 0wk, R+ 0w o Rk

o)

(i) r(x)= % | rokyw? ,0x, k) +r_(k)yw? ,(x, k)dk

—

(i) inr_ (0924060 =294 1(,0)p_ 1 (x,0)—r )2 ,(x, 0)
L2 e+ = kydk=0
(i) inr_ (02 5%, 0)— 21, 206, 0y 5(x,0) =, (0)2 5(x,0)

K
-r—‘lf——)wz_z(x, k)dk =0

+ ]

— 0

+ j +(k 3—2()@ k)+

) in(r_Q)w_ (x,0)p_,(x,0) =y, ,(x,0)p_,(x,0)
—p_1(x,0)p, ,(x,0)— r Oy, (x,0)p, ,(x,0)

+ J r+k( )w+ I(X, k)ll)+2(x, k)+ rTUw_ 1(x, k)w_z(x, kydk

=—Ti.

Proof. (i) and (ii) are obtained just as in Sect. 3. The derivation of the remaining
formulae is very similar so that we will only prove (iii). We have

G4y K)p, (%K) g(x) ( 1 )

ka2 o\

when Imk=0, |k|]—+ oo. Now integrate around the appropriate contour in
Imk=0 to find

T b peh) 60,0
0= = e T e

_ OJ? V+(k)w2+ k) 00 k) p_ (x, k)

X dk

=i 4 1 (x,0)p_ 1 (x,0)+7,(0) % ,(x,0)).
Similarly,

0= T r—(k)wz—l(x9k)+llf—1(x’k)w+1(x>k)dk

+mi(r_(0)p2 (x,0) =y 4(x, 0y _,(x,0).

Formula (iii) follows immediately.
The quadratic form

Q=ir_(0)p2(x,0)—2iy, ,(x,0)p_,(x,0)—ir (0)p2(x,0)
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can always be brought to principal axes

Q=(cy1w_1(x,0)4c1,1p 4 1(X,00)2 +(cy 1 (X, 00+ 14 (%, 0))?

because

‘—ih(O)

—i
A RN

(L b, Ob_(0)
= (1 * a+(0)a_(0))

1
= a,0a© F°

In the last line we have used the identity a_ (k)a_(k)+b, (k)b_(k)=1 and the fact
that both a_(0) and a_(0) are finite. Set

X+k_|/ ;gck) +1(0,k), x—k'—|/ rngck) -0/
k
R R (Y

for all k40 and

Xio=¢11¥_1(0,0)+¢;,9,4(0,0)
X_g=C3;%_1(0,0)+¢5,v,,(0,0)
Vio=¢119-2(0,0)+c;,9,,(0,0)
Y_o0=C219_5(0,0)+¢,,9,,(0,0).

It is easy to see that under the map
@14V XY g — 0 <k<0)

translation becomes

d ) ®
d_tx+k=_lkx+k_[ ) l(xi,-i—xz_,)dl]y”

— 0

d [eo]

at Y+k“'lkY+k+[ j 123 +y2)dl x4

p 1)
pra W= —ikx_, [ 00l(x%r,+xz_,)dl V_i

d . @
EY—;F"W—V" [_j 1%, +y2)dl|x_,
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Let

29
pr=xio+xZo+ | xh+x2,dk,

— o0

¢2=Y10 +y2—0+ j y2+k+y2—kdka

b3=Xi0Vs0TX_oVoot | XixViutx_ iy idk,

and

0
Hy=— f k(X Y+ X kY _p)-
- 00
In the Poisson structure

Xipyid=xpy- 3 =0y
Kipx_d=0ipyd={eyt={x_py.}=0,
{1, 0.} =4¢,
{¢,Ho} = —2i T k(xZ , +x2 )dk,
and ’

{¢, Ho}=2i [ k(y2,+y2)dk.

Constraining H, to X ={¢, =¢,=0} we find H=H,+a, ¢, +a,¢, where o, a,
are determined by

0={¢, H}=—2i | kix2,+x2)dk+4u,¢,,

0={¢,, H}=2i | k(yi,+y2,)+4u;6;

on X so that

0

—i S k()’-z+k+y2—k)dk
2¢4
i | k(%2

24

oy =

0y =
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The equations of constrained motion become

i | k(x%,+x%)dk

d ) 2

Ex+k={x+er}=‘lkx+k+ . Vik

d =i | kityZl

Ey+k={y+k’H}:iky+k+ - ¢ Xk

3

p i_j k(x%  +x2 ) dk

Ex_kZ{X_k,H}=—ikx_k+ 2 ¢3 Vi

d —i | k(A +y2dk

EY—k={Y—k7H}=iky_k+ 2 . X_p-
— 00 <k <o0.

But {¢5, H} =0 on X so that ¢, is conserved for the constrained motion. Thus
system (1) is obtained by constraining H, to X and restricting to the hypersurface
¢, = —i. This is consistent with Lemma 1, (v). Moreover, the functions

B. — (XixVio—XaoVs* XV 0—X_oVii)?
+kT k

+ T (x+ky+l_x+ly+k);+(lx+ky—l_x—ly+k)2dl

B _(x—kJ’+o‘x+0)’—k)2+(x—k}’-o—x—o}’-k)2

(X=X Vo)) Xy =Xy )
+ | dl,
e k—1
— o0 <k < o0, Poisson commute and are conserved under the constrained motion

with the result that the system is integrable. Finally, if r= —g* and q evolves
according to the nonlinear Schrodinger equation, the time evolution of v is given

by
d ) .
v = =g, + kg =300y =2k,

. d . ,
i Wea= — (K2 =gy ,—(ikg* +3g¥)p . —2ik*y, ,

and similarly for ¢ . In this case
Y_(x, k)= (¥ ,(x, k*), =y} 1 (x, k¥)),
¢ _(x, k)=(% ,(x, k*), — ¢% 1(x, k*))

and a_(k)=a,(—k), b_(k)=b_ (—Kk).
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Imitating the calculation at the end of the last section it is easy to chek that the

nonlinear Schrodinger equation can be identified with the system obtained by
9]

constraining | k3(B,+B_,)dk to X and restricting to ¢,=—i, x_,=y*,, and
— 00

y_,=—x%, A simple calculation shows that the last condition is preserved in
time.

5. The Sine-Gordon Equation

Here we will show how to reduce the study of the Sine-Gordon equation
an azq
ot ox?

where g—2nn (ne Z) as x— + o0, to the study of integrable constrained harmonic

motion. Again, for simplicity, some of the calculations will be formal.

+sing=0,

Let g(x,0), (0/0t)q(x,0) be real, w, = (% q(x,0)+ %(x,O)) and let!? y(x, k),
¢(x, k), k+0, be solutions of

E—i- i c W—4”-l-isin
(zl>_ 2 TRk 4 g (zl>
Z, w, i . ik i Z,
4 +8ksmq 3 8kcosq
satisfying
p,(x, k) 0\ ifk_ 1),
k)= ~
w(x, k) (wz(x,k)>x“’+°°<1 e(z Bk) ,
d)l(xsk) 1 —i(f-——l—)x
(x,k)=( ~ e \27 8k
Y=g ) o

The solutions v, ¢ are analytic in the upper half k-plane and

P3(x, k*)
a(k)(_w?:(x, k*)) +b(k)p(x, k), Imk=0
¢(X, k) =

, —k
a<k>(_zj§;‘, _ kf) +b(l)y(x, k),  kreal.

/

Also, a(k) is analytic in the upper half k-plane with
a(k)a(— k) + b(k)b(— k) =1

on the axis.
b(k)

For simplicity, it is assumed that a(k) is root free. Set r, = F

10 See Kaup [4] for the basic spectral theory
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Lemma 1

O wi=2 T rwis )+l Da

0

] lr—z’(wf(x, D +w3(x, )l

— o0

(i) w_(9="1

©

(i) singt)=— | Lt D—wiw D)

. 2i %
(iv) cosg()=1-= [ Zyp,(x Dy Dl

[e¢)

_ "
® 0= (L1
(5 B 537)
+27i(r(— D w3(x, =3 —2p,(x, Hp,(x, =) —rB)wi(x,3)
+27i(r(— P pilx, —3)+ 2w, (X, =Dy, (x, ) —rE)wi(x,3)

Wil )+w3(x, )dl

"

I 1
]
+7i(r(— Dwix, — 3 —2p,(x, Hp,(x, =) —rGwix, 1)
+i(r(3)w3(x, D) — 29, (x, =Dy, (x, 3 —r(—Hwilx, —3)

() 0= | " i D= pdee D)l

0

(vi) —mi= | (,—r’—l—)wl(x, Dp,(x, Dl

2 8l
+ i, (x, =31 (%,3) —w,(x, =) ,(x,3)
=13 DB —r(= D, (=D va(=73)-
191 Paws

(Fa (Fha *roond

Proof. 1t is enough to sketch the proof of (vi). Integrate

C, ¢
£\ £ c
¢ i c -c 1
2 2
to obtain
I.— s‘ 1w, dl:_ni¢1(i%)W1(i%)
e (FDa a(+3)
n ¢ 1P1(l)lpz(_l)+rlw%(l) dl

% =)
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and

_ P2vy ”iqﬁz(i%)lpz(i'%)
le=J@mna="" axh

_ _[ P, (— )wz(l)+rzw§(l)
“c (¥3)
Now, I, —-1I_)—(I_-1II,)

dl

7”¢ Bwi(3) T, z)U’z %)

T A T a-d
_ niqS ("2)11’1(_%) n 7”"]52(%)1/)2(%)
a(—% a(d)

C
"
_|. R
AT
2 8l
Formula (vi) is obtained by letting ¢c—co and using

(x, k) =a(k) ( ~ zzg o ']g) +b(k)p(x, k).

The quadratic form
2ir (=) p3(x, =) =2, (6, Dw,(x, =D -1Dwilx,3)
+2i(r(— D pi0x, =3+ 29, (x, =D w,(x,3) =B p3(x.3)
can be written as
(€1191(%,3) 102X, = D)+ (o0 (X, D)+ Co0p,(x, =)
=y (6 =D+ 0, (69 H(canwy (6, =3 — ¢y v,(x, D)

because!!

Wi —wiD)dl.

) -1 -t
~1 (=9 ada=D 2)
Set
1/2
%= (—k-T PR

"y

1/2
e TR v,(0, k)
”k(z 8k)

11 a(k) is bounded on the axis when q+—>2nn, 9, qx—i—>0 fast enough
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for all k+ 4% and

x1/2=C11W1(0a%)+0121P2(0,_%)’ X_172=C2,94(0, —3)—¢219,(0,3)

Y12

We have

(iy

(i)

(i)’

(ivy

vy

(viy

(vii)

Let

(o)~

Set

=—cy,p(0, _%)"'0111/’2(0,%); V- 1/2=0211P1(0, %)4'522’/’2(0’ _%)

w,(0)= _f 12(x12+y12)dl+(%)2(xf/2 +.Vf/2)+(_%)2(x2— 1/2+y2— 1/2)

o)

w (0)=%,( ]

— ®

xl +y,

dl+22(x1/2 +y1/2)+( 2)2(X2_ 1/2 +y2_ 1/2))

© 2 2)

sing(0)= —‘< I ad dl+2(xf/2—yi‘/2)+(—2)(x2_ 1/2‘)’2- 1/2))

if % x
COSCI(O)=Z( f lTyldH—Zx”Zyl/z+(—2)x_1/2y_1/2)

00
0= j x,2+y,2dl+xf/2+yf/2+x2_1/2+y31/2

- ©

0= j l(x12_ylz)dl“‘%(x%/z_Yf/z)'*‘(_%)(xz—1/2—)’%1/2)

—i= f lx,yldl+%x1/2y1/2+(—%)x_1/2y_1/2.

cos% sin% <Z1>
q [\%2
sin  cos3
+iksin
gk 2% g T ( 1)
W i + ik cos 2
g tina gt o8
cosi sing
(x"> for all k
—sind cosd| VK
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Now by substitution

u U
’dl+22(u1/2+vl/2)+( 2)%(u? 1/2+U 1/2))

i v O=|

i
2

ojio
j

(i)’ sing(0)= ( 2 = 02) 4 30y — 02 ) 4 (=1 p— 02 1,2))

(iv)’ 005‘1(0)=i(5 l“zvzdl'*‘%”uz”uz"‘(—%)“-1/2”—1/2)

- 0
0
(v 0= [ w+vidl+ui,+vi,+u,,+0v,),
— 00
. ot
(vi)” 0= | ] dl+2(u? ;=7 ) +(=2) Wk, —v2 )
— o0
. T Wy
(viiy —di= f I +2uy Uy H (=20 0y,
— 00

It is easy to see that under the map
e T R

translation becomes

Al Y &
ar T Ty NNt 4k T
d ik a, a, 0

a3 V= ‘2_J’k"21xk" kT N

d

Fr Y uk+2mvk ka,u,—2ka,v,

d —i

77 U= gk—vk—2muk+a1kvk—2ka2uk
where

1= =4 T Pede s @20 98+ (2202402 0)

®© 4?2 +v
m=§-11_6_( j l dl+22(u1/2+1)1/2)+( 2% (u? 1/2'*'”E 1/2))

T X
_ %(j —l——dl+2x1,2y1,2+(—2)x_1/2y_1,2)

0 X 2
= %( j IYI dl+2(xf/2—yf/2)+(—2)(x2_1/2—y2_ 1/2))
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and

[c o]
0= j xt+y} dl+xf/2 +yf/2+x2_1,2+y2_1,2 ,

— 00

0
0= [ ul+vidl+ul,+v},+u ,+0v2,,,

0= _j l(x,z—y,z)dl+%(xf/2—yf/z)-l—(—%)(xz_ 1/2‘)’2— 12)

© UZ*UZ
G dl+2(uf/2—17%/2)+(—2)(u2— 1/2'“172-1/2)

T (X
,f ( o luz”z)dH‘%(xuszz““1/2”1/2)‘*‘(*%)(3‘—1/2)’—1/2_”—1/20—1/2)

o0

0= f[(XI 4l )+l(u,—v,)]dl+2((x1,2 J’1/2) (“1/2 Ul/z))
+(“‘%)((x—1/2_y2—1/2)‘(“2—1/2“‘02—1/2))

are maintained.
We show that system (1) is an integrable constrained harmonic motion. It will

be convenient to write

o0
Yxi+yi for [ xP4yidl+xi,4+yi, X2 5+V 0,
1

zl:l(xf—y,z) for jl(xzz—J’IZ)dl‘*‘%(xf/z_J’%/z)*'(—%)(xz—1/2‘)’31/2) and

SO on.
Let
= ZXIZ+Yt2= Zl(xl —-)
1
2, .2 1
'P1=Z“z+”1’ ‘P2=ZT(“1_01)
1 1
X,y 1
01=zl:(i—l’—lu,v,>, 02=ZI:—7(x,2—y,2)+l(ul —v?)
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Constraining H, to X ={¢,=¢, =y, =yp,=0,=0,=0} we find H=H,+ 1, ¢,
+A,0, 0,0, +0a,0,+u,p, +p,p, where oy, oy, Ay, A,, uy, i, are determined
by1z

0={¢,,H}= ,1( 8Y Ixy, +a1<22 i ly,>+a2(_2z>_c,lﬂ>

1

0={¢,,H}= /11(8 lx,y,)—tle(x,+y,2)

0={0,H}= z( iy Xi— y>+a2(—§;x Ll +231 (u,+v,)>

l

+N1(2;l(”z —U ))

2 2
0={92,H}=11(22x17y’) +oc1(é2—x' - —2le(u,2+v,2))
l l l

+,u1(821u,v,>
1
Uy,
0={yp, H}= oc( 2y l( —vl))+oc2( 8Zlu,vl)+u2 —S‘IZ‘T
1
i u,v
0={y,,H}= Z +P‘1<8Z ”)
]
on X so that
iy P(x} +7)
1
= 1,=0
! 8 Ix,y, 2
1
#1—“—‘—, t2=0
Ry U
Tl
and
2.2
XV X =W
a =YY, ay =y )
! ; l 2 ; 4]
where
y= (4 + 1)

x2+yA\]
et A7)

12 The x,’s and y,’s are canonically conjugate as are the u,’s and v;’s, while {x,,u,} ={x,, v} ={y,, u;}
={nv}=0
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The Hamiltonian equations of constrained motion are

d —ik o o
= ——2—xk+2)~1yk+ 4_lixk_ j)’k
d ik oy %

a7 2 T AR e g
@

7 = 8kuk+2ulvk oy kuy —2kat, v,
d
pr 8k —2p U+ oy kv, — 2kot,uy

Theorem 1. Let

k—1
Com X (g s+ (1 xen v

15k
and
k+1 k-1
D, = l;k( — l)(ukv, u,)*+ (m) (uu, +v,0))

for all k. Then the C,’s, D,’s Poisson commute on X, as well as in the ambient space,
and they are conserved by the constrained motion (2).

k+1 k—1
Proof. Set zy=x,9,—X;Vi» W =X X1+ Vi Vb Q= ] and b, = %a1 s that C,

=) ayz}+b,w} for all k. Now
¥k
{C,C}= {Z i+ buWes Z az+ bUWU}

=4 Z aklauzklzlj{zkl’ ZU
L¥k,j*i

+4 Z aklbuzklwll{zkb wz]
Lk, j+i

+4 Z aijbkzzijwkz{wkbzij}
Ik, j*i

+4 Z bklbijwkzwij{wkza Wijs -
Ik, j*i
By direct calculation

4 Z U222 215} =42, Z (A — Ay + aya,) 2342,
l*k,j*+i l+i,k

4 Z aklbijzkzwij{zkzswij
Ik, j*i

=4wy, Z (aby — ayby) zywy — 4z, Z AbaWawy,
I+k [

4 Z a; bzl 2; i}
Lk, j*i
=4wy Z (aubyy — ayby) zywiy + 42, Z AubaWaWy
i*i 1
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and
4 Z bklbijwklwij{wkb Wij
Lk, j*i
=4wy, Z bybyWizy; + biibywyzy, + 42y Z bubywiw; -
1 ]
We have
{C), C;} =4z, Z (A — aay + aa;) 242y
1+1,k
+4z; Z (@b — agby—byby)wywy
1
+ 4wy, Z (@b — auby +byby)wyzy
Ik

+4wy, Z (ayby— ayby; = buby) wyzy -
I+i

Also,

Ay — Ay + Qg Gy =

>

aby—ayby+byb; =

>

-1

by —ayby—byby=—1,
-1
1

ayby— ayby;—byby =

’

so that

{Cp C} = — 4z, D (zyzu+wWywy) +4Wik; (Zawi —zgwy) -
[

However,

ZZy T WWy = Wik(xlz + )’12)
and

— 2 2

ZyWi— ZgWy = Zy(X; + 7).
Thus

{Co Ci} = —dzumy Z (xzz + Y1) +4zywy Z ("z2 +3)=0,

1 1

ie., the C.’s Poisson commute in the ambient space.

Let xy =5, 2 =01, £3=05 Xa=V3 As=¢1> X6=V1, and d=({); x;}). Then

6
{C C}x=1{C,, C)} — Z {Cp Xi}di; ! {Xj’ )}

ij=1

3
= Z {Co 1} di; 1{Xj9 C}
=

i 1

I
™

di; 1({Ck’ Xt {Xj’ C}—{Cp Xj} {x-C1})

15i<js3
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since {C,, ¢,}={Cp, w1} ={Cpp,}=0 for all k. By direct calculation
{0,,Cl= (F+yD{h1: 0.} +8kx )04,

2 .2
(0,C = =450 (6,03 + (2222 g,

and
_ 2, .2 YiVk
{0,,C} = —(x;+y){4,,0,} =2 k b,

so that

{Cp Ct}xzdl_zl({cks X1} {2 €} = {C 22} {24, C1})
+d53 ({Co 22} {235 C}—{Cou 23} {12 C.})
+d73 ({Co 1} 23 C} = {C 143} {x1,C})
=d, (g + ) 0+ D) (1, D23 {61,013 —{01,0,} {$1,6,))
oy (¢ +30) 7 + 1) ({01,053 (61,0, —{1,0,} {$,,0,})
+d iy (g +y0) 7 + 37 (81,053 {by, &,3 — {01,0,} {91, 6,))

+terms proportional to ¢,

=0 on X.
ie, the C.’s Poisson commute on X.
Also
d i o, [1 1
7 Ck=2l;k AyZy (E (I—=Fk) (x,y,+x,y)+ —41 (E — 7) ey +x,00)
o, (1 1 :
+ _2% (7 - E) e "‘xkxz))

i o, [1 1
+2Zbklwkl (E (k+D ey, —xy) + Zl (E + 7) (X =y
1

o, (1 1
- 72 (E + 7) (ka’z+szk))

= —ikx} Y (xF+y2)+iky? Y. (xZ +y7P)
1 !

+ixg Yl —yP) +ive Y Ux —y7)
1 1

%y 2 2 2, .2y, F0 2 x; =yt
+ SR —=xD) YYD+ 5 R+ D) Y II
2k 2 T 2

20 _ X,y
+ XD DO 4y = 200+ v X } 1.
l 1
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On X
I=0

I=2 % 2(xk+yk)

and

M= —2 %1%

( +yk)

Thus ; C,=0on X, ie, the C;’s are conserved by the constrained motion (2).

The remaining assertions are verified by similar calculations. The proof is
finished.

System (1) is obtained from (2) by imposing further constraints and
symmetries.

2 1 2_ ,2\2
Lemma 2. Y Ix,y, Zu~’lv—’ and (2%) n (szz lyz> are conserved by the
1 1 1 l

constrained motion (2).

Proof. Direct calculation.
Now

1
A= —gglz(x,2+y,2)=l

and

1
1_—6;

on the orbits which satisfy
Yilxy=—i,
14

Z@:-%

i
Also, we can define

cos=£ﬁ&
q a7

L2 2
. i X2~y
ing=—--Yy *1—L
sing 82,: l
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when

]

1

Lexi—yr\ _
+(§Z 7 =-16

1

with the result that system (2) becomes

dx ik y .
d—t" = — 7x,(+2,11y,‘+ ﬁ(xkcosqﬂksmq)
dy, ik y .

E& = ?yk_z,ll X — i?(ykcosq—xksmq)

du i 4yk .

d_tk = — g T(ukcosq——vksmq)+2,ulvk
dy, i

i
dr 8k

By direct calculation, it is easy to see that
cosq/2

w\ sing/2\ (x,
(vk) B (—sinq/2 cosq/2) (y;)

is a solution of (2**) provided

g
y and Zzul—/ll.

O | =

Finally, one can check that any solution with

9(0) . 4q(0)
(uk(())) ~ COs —2— sin T (xk(()))
w0 sin 4D ¢os 40 J\O)
2 2

maintains this symmetry for all time, and that

V(t)E*%’ %"1=N1_/11-

k .
(v cosq+u,sing)—2u,u,.

P. Deift, F. Lund, and E. Trubowitz

(2%)

(2*%)

*)

Let (x" , Z" be a solution of (2*), (2**), satisfying (*) and set 24, = — (¢ + p)/4.

k k
Then 2u, =(¢—p)/4 and (2*), (2**) are identical to (1).
The Sine-Gordon equation is treated in exactly the same way. If g(x,0),

%q(x, 0) are given and

0*q 0%q .
Ez——gg+smq=0
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then!3 )
—&—Lcos e _ L in
d (xk) 2 gk 4 gk,
dt\y, w, i i Vi
—4——8—ksmq 3 +§lgcosq
. )
L+Kcos2 — EEsin
dw) | 82 42 q(uk)
dt\v,) | w_ ik | i ik v
3 2" gk~ 2 0%

System (3) is the flow generated by the Hamiltonian

1 1 1

e L ok
on X

Y Ixy,=—i, Z@=—4i,

1 i
-

1 1

y=—1/8 and
Also system (2) is the flow generated by
1 1

Z(mkz kz)c" (k 161k2)D"]

6. The Toda Differential Equations

16

The Toda differential equations

X,=eXitiT¥_egnTrA =1 .. n,
describe the motion of particles interacting with exponential forces. The particles
move on the line when x,=—00, x,,, =00 and on the circle when x,,,=x,
i=1,...,n. We will show that in both cases the Toda system can be mapped to a
system of particles constrained to an algebraic variety. Again, the constrained
motion is integrable.

The first step is to make the change of variables due to Flaschka

ai=%e(Xi“xi+1)/2’ bi='~
For particles on the line a, =a, =0 and for particles on the circle a,, ,=a,;, b, ,=b,,
i=1,...,n

(i) Particles on the Line [6]
Let (ay,....a,_;by,....h,)e(R*""'@R" and let L be the Dirichlet difference
operator defined by

Lf=(a,_,f0-1+b f(h+a,f(+1),l=1,..,n),
where a,=a,=0.

13 See Ablowitz et al. [1b]
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Lemma 1. The spectrum of L is simple.

Proof. First, if Lf=Af and f(1)=0 then f=0 since f(2)= (i— Z—l) f(1)=0 and so
1

on. Now suppose A is an eigenvalue with both Lf=Af, Lg=Jg. Then
s ) ( (1) ) ( IO ) f) )
L ———g|and 1)=0 so that
(=) == g ?) 1= =
Now let 4, <...<4, be the eigenvalues of L and f,...,f, the corresponding
normalized eigenfunctions with f(1)>0, i=1,...,n. Set U=(f{(j)). We have

Ay O
L=U' . U
0 A,
from which it immediately follows that
b= % LSO, I=1,..,n,
i=1
and

o= 3 A0S0+, 1=1n=1,

Theorem 1. The map
(R*y~ 1@R"9(a1,... a,_13by,..b,)
—— Ay s Ay [y S(1))ER"ORTY

is one to one and onto

{(/11, A i), fD))ER DR A, <... <4, Z fi2(1)=1}.

Proof. We can recover b, = Y A, f?(1) and hence a, f,(2)=(4,—b,) fi1), [=1,...,n
i=1

n

from the data (4,,..., 4,; f;(1),....f,(1)). Since a} = Z Aifi(1)(a, f(2)) we know a; >0
(alf(Z))

=1,...,n. Now we can recover b,= Z 2;f4(2) and hence

and f(2)=

a, fi3)=(4,— bz) [(2)—a, (1), I= ,n. Continuing in this way L can be recon-
structed from (4,, ..., 4,; f;(1),.. f (1)) and the map is one to one.

To see that the map is onto let A, <...<4, and ) f2(1)=1 with f(1)>0,
i=1

I=1,...,n.Setb, = ‘Z A f3(1). We have i (A, f{1)—b, f(1))*>>0; otherwise 4, f,(1)

=b, f,(1) for all 1§—l§n which is impos;ible. Now set

a,= ]/Z (A S~ b, fi(1)?* >0,
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and

1(2)=

Observe that

('lz_b1)fz(1) I

1

=1,...,n.

¥ A= z H G=b (D)

2 S2(1)=b, Zﬁ(l))

= ®|~ 5|~

(/1 f1)=b, f(2))*

ay

Il
m|,_.
IIM:

J(2) (A =by)f(1)

I Il
IIM: "Mg iy

/1 JSDS2),
and

n 1 n
'=Zl 2= o .; [ =by) f(1)=1.
Set by= 3 4,f2(2). I n>2,
i=1

3 (0= baf(2)- 0, (17>,

Otherwise, b, fi(1)+a, £42)=Af(1), a, f(1) +b, f(2) =4, £(2) for all 1 <I<n and it

. (b, a .. . L
follows that the matrix [ * '] has more than two distinct eigenvalues which is
a; b,
impossible. Now set

- VZ (L2 =b,f2)—a, f(1)? >0,
and

PP AV ACITY P

2

As before '_Z () £3)=0, i /2 £3)=0,

Il

f(3)(/1f(2) b, f(2)—ay, f(1))

"M: ||[\4=

/1 S(213),
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and

= 512" é f;(?’) ().ifi(Z)— bzfi(2) — alfi(l))

ek

= L3 A5@£0)

2i=1

Repeating this construction n—1 times we obtain (ay,..
e(R*)"@®R" and a unit perpendicular frame (f(k)), 1 <k, I <n, satisfying

b fil)+a, fQ)=4f1), I=1,..,n.
a_filk=1D)+b fk)+a filk+1)=4f(k), I=1,...,n,

and

= Y LAOfA+Y, I=1,..,n—1, k=2,..,n—1,
i=1

b=y ALfFD, I=1,..n,.
i=1
It only remains to show that
a4, fin=1)+b,f(N=21f(n), I=1,..n.

But for k=1,...,n—2,

3 090, fin= 1+ b, fl0)— 4
== 3 Af0ostn
== 30 k= D+ + 0l D))
=0.
Also,

X n=1)(6, - fn= 1)+ b, )= )

=an_1§:f (n—1)— zxf(n 1))

= 3 Affn= 0o

e ly_13by,
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and

3 100, Sl 1)+ b, () 2

n

=b Z )-Zlfz(n)

i=1

—b,— 3 4f2n)=0.
i=1

The proof is finished.

Theorem 2. The system of differential equations

d
;l;al=az(bz+ 1= by,

J I=1,..,n, (1)
Egb,=2(a,2—a12_1),
with ay=a,=0 is mapped to

d
Ell:o N
GH0= (3= 3 as20) S0,

d
Proof. System (1) can be written as — L= BL~— LB where

dt
bia, 0
a,b,,
- b,_1a,, ,
0 a,_.b
and

0 a, 0

' IR

0 Gy -1

0 —a, 0

Let%V— VB, V(0)=1. ThendiVV’ Oand VLV’ 0, so that VLV~ 1= L(0)

giving %A,zo, I=1,...,n

Now differentiate the equation Lf,=4,f, to obtain L(d fi—Bf, )
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d
= <;—t f,—Bf,) and hence f Bf;=cf, since 1, is s1mp1e However c= ( I f f,)

—(Bf;, f)=0 because (f,, f;)=1 and B is skew. We have 7 f,=Bf,. In particular

d
afl(l) =a, f(2)=(4,—=b)f(1)

= (1= S, wsm) oo,

The proof is finished.
L dx; Ady; . . .
The form w, = 3, x— defines a symplectic structure on (R™)"*@R" with
i=1
Poisson bracket {,},, satlsfymg {xpx} s =y} + =0and {x,,y,}, =3,x, for all
1=k, 1=n Let H,= Z y?. Then the corresponding Hamiltonian equations are

i=1

%yl={y1,Ho}+=0,

Lot = 3 x—1, ¢y= ¥ yi—c. We have (,.6,), =26, +1) (9, Ho).

=2 Z x?y; and {¢,,H,},=0. Constraining H, to X={¢,=¢,=0} we find

H= H0+oc1(/>1 +o,¢, where a,, a, are determined by
0={¢1’H}+=2i;xiZJ’i+°‘22(¢1+1)

=2 Z x2yi+24,,

i=1

0={d,,H} . = —0;2¢p; +1)=—20,

1

on X so that a; =0 and a,=— ) x7y, Finally, the equations of constrained

i
A

motion are

d n
ax,={xl,H}+ = (yl_ ) xizyi)xl
i=1
I=1,...,n.

d
2 =}, =0,
Thus system (2) is realized by constraining H, to X ={¢, =¢,=0}.

It is also possible to constrain with respect to the standard symplectic structure
after a logarithmic change of variables; but then ¢, is no longer a polynomial.
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(ii) Particles on the Circle

Let (a,...,a,;b,,....,b,)e(RT)'@R" and let L be the periodic difference operator
defined by

Lf=(a,- fI=D)+bf()+af(+1),leZ),

with a,,,=a, b,,,=b,and f(I4+n)=f(l) for all I. We will assume that the spectrum of
L is simple except at the very end of the section.

Now let A, =4,(a;b),...,4,=41,(a;b) be the eigenvalues of L and fi, ..., f, the
corresponding eigenfunctions which are determined up to a choice of sign by the

normalization ) fX()=1,i=1,...,n. We have, as before,
i=1

bl = ';1 Aifiz(l) >

and

a,= ; LLDAA+1),

for all I Fix (o; f)e(R*T)"@R" and set
M={(a;b)e(RTY'@®R":)(a;b)=2[x;B), i=1,...,n}.

Finally, let N be the quotient of (R%/(0,0))" by the fixed point free involutions
(xp ViseeosXp Yip oo s Xy yn)
—)(xlaylﬁ ceny — X5 _yia cees X yn)a

i=1,...,n. N is a smooth symplectic manifold since the involutions are symplectic

for the usual form )’ dx; A dy;.
i=1

Theorem 1. The map
M>(a,b)—(}/a, f,(1), Va, £,2), ... Va, £,(1), Va, £,(2)eN

is smooth and one to one.

Proof. The map is well defined because f(1), f,(2) cannot both be zero for any
1 <I1<n. The map is smooth by regular perturbation theory. It is easy to show, by
imitating the proof of Theorem 1 for particles on the line'?, that (a, b)e M can be

constructed from (]/a_; fi(), [/a—1 NV ]/a-1 S, V‘Z £,(2))e N. Of course, this

proves that the map is one to one.

f0)= — Y4 )= Vel T

|/ L (/arsi? [/ £ (Vaus®

14 Now the proof begins with the self-evident identities
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Let

x=Va, f), y=Va £,

for =1, ...,n. This can only be done locally on N.

Theorem. The system of differential equations

ay=afb,,,—b),

dt
I=1,...,n,
d 22
;i—tb1=2(a, —a-1)>
with ay=a,, b,, ,=b, is mapped to
X = l_ln —A|x+ ZX-Z+Yi2 Yi»
dt 2, 2 =1
Z X; +y;
i=1
=1,
, Saeeed|
i=1
EJ’I: M= yl—<2 xi2+yi2>xl‘
2 2 i=1
Z X; +Y;
i=1

System (2) is invariant under the map

(xi’yla"*’xinyi’“wxnayn)

’(xlayl""a _xi, _yia-“’xmyn)s

1<i<n, and therefore defines a flow on N.

M

Proof. The proof is essentially the same as that of Theorem 2 for particles on the
line and so we will only sketch it. Again, system (1) can be written in matrix form

by setting
bya, a,
a,b
=% z..‘
b,_a,_,
an an—lbn
and
0 g —a,
—a, 0
B=|
an~1
a, -a,_,0
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As before dgt«f,=Bfl, 1<I<n. It follows that
d
Elffl(l)=(b1 — ) f(1)+2a, f(2),

d
77 1A= =0,)11 ()~ 2a, f(1),
Now, a direct calculation, using the identities

n
= ) X} +yi,

i=1
and
+
by +b, _ L, HxE D)
2 . ’
2 Xty
gives (2).

Now let ¢1= z xiy,-,-(ﬁz: Z in&Xi2 and
i=1 i=1

Hy== ¥ iyt (5 2)( £ 7).
i=1 i=1 i=1
We have
{¢,0,}=2 Z xi2+yi29
i=1

{$,,H,}=0,

and

{9, Ho}t=2 Z li(xi2+yi2)modulo b1,
i=1
Also

{x, Hy} = _11x1+2<z )J’n

and

s Hol=4y,— (zi )xl:

185
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forl=1,...,n. Constraining Hy to X ={¢, =¢, =0} wefind H=H,+a, ¢, +a,¢,
where a,, o, are determined by

0={¢1,H}=2(2x?+y?)a2,
i=1

0={p, H}=2Y, l,-(xi2+y,~2)—2(2 xiz+y?)a1
i=1 i=1

i=

’li(xiz +Yi2)

LG

]

on X so that ¢, =" and a,=0. Hence the equations of constrained

x?+y?

i=1

motion are

d n
Et'x1={bu}= —izxz"‘z(‘;l xiz)yl

n
_Z Al +y7)
+ ————L"ln X,
X7 +y;
=1

d n
—y={y,H}=4y,—2 Z yi2 X
dt i=1

Z Ai(xiz-'_yiz)
i=1
- n Yis

Y x4y}
1

13

for I=1,...,n. Clearly, the constraints ¢,, ¢, and the free Hamiltonian H, are
functions on N. Indeed, the entire calculation really takes place on N. Thus system
(2) is obtained by constraining H, to X inside N'5.

Once again the constrained motion is integrable.

Theorem 3. The polynomials

_ 2
E, =X, + Z()C—"J;f——%y—")—, 1<k<n,
l+k 17 M
Poisson commute on X. Moreover, {Hy, E,}x=0, k=1,...,n. Also
Z‘ Ek=¢1
k=1
and

kZ1 /lkEk’;d’%_Ho-

n
X+yi=23 5

1 i=1

IV

15 Note that2 Y x?=
i=1 i
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Proof. The proof is by now a familiar calculation which we omit.

The map of Theorem 1 must be changed when there are double eigenvalues’®
because of the further ambiguity in the choice of an orthonormal frame of
eigenfunctions. It is enough to explain the necessary modifications when there is
just one double eigenvalue, say A=A, =1,. The choice of an orthonormal pair of
eigenfunctions for A is parametrized by SO(2), that is a circle. Now the constraints,
free Hamiltonian and motion are rotation invariant. Thus we can remove the
ambiguity by taking the quotient of N with respect to the torus action

(4, %,)—(x, cosf—x,sinb, x, sind+x, cosl),
. ) 0=0=2n.
(¥1,¥,)—(y, cos@—y,sinb, y, sin@+y, cosb),

and mapping M into this quotient. We see that one degree of freedom is lost in the
particle system for every double eigenvalue.

There is another change of variables under which Toda becomes an integrable
system of constrained particles. Let

00a03704307708"'-; fo’f3>f4’f7af8a"';
and
01,05,05,06,...5 £, 55 s, £, 000

denote the periodic and antiperiodic spectrum and eigenvectors of L respectively.
It is well known that 6,>0,20,>0,20,>05=04>.... Now, by interpolating
the gradient of det(L— 1) off 04,0,,0,, ..., we obtain the formulae

1
Z = igzo 8if22i(l)3
b 2c
Zl = i;} 73 &30 = Vi
T AUTA(ERY
Aa, - i£h iJ 21 2i s
where ¢, ¢, ¢,,..., depend only on ¢,,0,,0,,..., and

A= ] qa.
1=1
The appropriate change of variables is

(a,b)—(])/eoAay fo(1), [V eoAay fo(2),-.., V/ g;Aay (1), |/ g;Aay f,(2),...)

and Toda is realized by constraining

H0:_i§00ixiyi+(z x?)(z J’z2>

i=0 i>0

16 It is clear that L cannot have eigenvalues of multiplicity more than two
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Finally (see Deift-Trubowitz [ 1979¢]) we note that passing to the continuum limit

1

1= Y. &.f3{l) converges to the formula 1=} &f3(x) for the Hills operator
iz0 iz0

[see 9]. -
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