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Statistical Fluid Dynamics: Unstable Fingers
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Abstract. This paper is the first in a series by the authors devoted to the study
of fingers in fluid surfaces. Fingers are a form of surface instability which occur
on many length scales. In particular, they may occur on length scales small
relative to the natural dimensions of the problem in this sense the instability is
similar to turbulance. In the present study, the transition from stability to
instability is determined by a critical value in a viscosity ratio. This series of
papers is devoted to methods of accurate numerical computation. We find that
the random choice method gives excellent resolution of fingered surfaces and
discontinuities. Even an unstable interface, with three to four well developed
fingers can be resolved on a coarse grid of 10 to 15 zones wide.

1. Introduction

Fingers are a form of surface instability; they occur in a number of physical
phenomena. They often occur with a characteristic length (finger width, or finger
spacing) which is small relative to the natural dimensions of the problem. In fact,
fully developed fingering is approximately scale invariant, in that it may occur on
all length scales from the dimensions of the problem down to a cutoff length
provided by some dissipative mechanism.

We study this phenomenon numerically in the context of two phase flow in
porous media.
The equations of two phase immiscible flow in porous media have the form

ds
(1.1)—

V v = 0, (1.2)
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neglecting capillary pressure (the dissipative mechanism). Here s denotes the
saturation (fraction of water in total fluid) and p is pressure. Also fc and / are
known functions which describe the permeability and porosity of the reservoir and
the viscosities of the two incompressible phases flowing in it. We use the functions

s)2/μ, (1.3)

= s2/k(s), (1.4)

where μ is the viscosity ratio for the fluids in question. In order to eliminate
geometrical effects from the study of viscous fingering, we have chosen as a model
geometry a rectangle O^ΞxrgX, Orgj;^ Y, and with the boundary conditions

dxp(x = 0, y, t) = dxp(x =X9y,t) = 0, (1.5)

In particular the role of the source terms normally present in the Eqs. (1.1) and
(1.2) is played by the boundary data.

The problem (1. !)-(!. 5) is scale invariant. This means that for any

s'(x, t) = s(ax, at) ,

' ~1

solves (1.1)-(1.5) in the rectangle ΰ^x^X' = a~lX, Q^y^ Ύ' = a~lY if s, p solves
(1.1)-(1.5) in [0,Jf] x [0, Y]. We have fixed v= 1 throughout this paper. This is no
loss of generality because change of v is equivalent to change of time scale.

The problem we have addressed is to determine the oil-water saturation front,
for values of μ corresponding to both stable and unstable (fingering) regimes. The
answer should be independent of (a) mesh refinement, (b) choice of random
number generator, (c) scale transformations (1.6), and (d) the value of the
eccentricity ratio e=X/Y, for X/ Y not too small. (Our computations include values
of e as small as e=l/4). In the unstable case, the front y(x, t) is subject to random
disturbances, which means that y cannot be computed to meet criteria (a)-(d).
Instead, we extract statistical information, namely the mean and variance, and find
that these quantities are deterministic in the sense that computations of the mean
and variance satisfy criteria (a)-(d). In the language of statistical mechanics, the
mean and variance are thermodynamic functions of the ensemble.

The independence of eccentricity means that x-direction boundary effects have
been eliminated. Conceptually, the problem can then be thought of as defined on
an infinite strip xeR, ye[0, Y]. The problem is then x-translation invariant, and
the transition to instability and formation of fingers is a symmetry breaking
transition. By general principles the breaking of symmetry has the multiplicity of
G/G0 if G is the full symmetry group and G0 is the unbroken symmetry subgroup
(G=zR, G0 = 0, G/G0 = jR in our case). In the unstable case, only x-translation
invariant functionals have values which are independent of exactly how the
symmetry is broken.

Since the exact nature of the symmetry breaking is not part of the formulation
of the problem, it is only these translation invariant functions which can be



Statistical Fluid Dynamics: Unstable Fingers 3

computed with an answer independent of mesh refinement and other accidental
features of the computer code. We demonstrate numerical convergence for some
specific translation invariant functionals chosen to give information about the oil-
water front.

The second paper in these series introduces wells (point sources and sinks) into
the flow field. The third paper elaborates on some numerical analysis aspects of the
computations.

The problem of computing unstable fingering was previously considered by
Peaceman and Rachford [11]. A general reference to petroleum reservoir pro-
blems is [12]. The computer programs related to this paper were written in the C
programming language and were developed on the UNIX Operating System.

2. The Numerical Methods

The random choice method [6, 2] was first used to solve the Buckley-Leverett
equation (1.1) in [1, 4]). The random choice method [6] uses the physically correct
structure of waves and their interactions combined with a statistical sampling
procedure. The method is characterized by first order accuracy (when applied to
typical problems on practical mesh sizes) and exceedingly good resolution. The
method makes use of a sequence {Θn} of numbers [here we choose θn to be the

fractional part of (n + const) ]/2] equidistributed on the interval [0, 1]. In
this method of solution, each wave in the solution achieves its correct speed
statistically (as in a random walk), but because adjacent fluid blocks are never
averaged or mixed, numerical diffusion is completely eliminated. A detailed
discussion of this method can be found e.g. in [3]. The extension of the one
dimensional random choice method [6] to higher dimensions is by operator
splitting [2, 14] (a numerical version of the Trotter product formula), in which the
successive solution of one dimensional (x, t) and (j;, t) problems approximates the
solution of a two dimensional (x, y, t).

The problem we are solving has no x-dependence, so its mathematical solution
is independent of x and can be found in closed form by the method of lines.
However this solution is unstable for μ sufficiently large, and the solutions of
physical interest are those which result from small (x-dependent) perturbations of
the data. Here the randomness of the random choice method is an advantage,
because it introduces small random perturbations into the solution at each time
step. In the stable region, μ<μcrit, these small perturbations are damped out and
do not affect the solution, while in the unstable region, μ>μcrίt, the small
perturbations grow to produce fingers and occasional isolated phase islands: oil
surrounded by water or vice-versa. In this sense, the random choice method can be
thought of as simulating a slightly heterogeneous medium. In the present paper,
we have no control over the degree of heterogeneity except that we choose distinct
random number generators for each column x = const in the mesh. This is
achieved by choosing the constant in

θn = (n + const) ]/2(modl) (2.1)

to depend on y.
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Fig. la. The mean position of the oil water interface for oil water viscosity ratio μ — μ0/μw = 2. Two runs
are presented, each with 20 y-mesh blocks, x —10 x-mesh blocks and Π = 20 x-mesh blocks. For
comparison, the mean of an ensemble of one dimensional problems, calculated by the same procedure
is shown with the legend +
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Fig. Ib. The variance of the oil water interface for oil water viscosity ratio μ = μ0/μw = 2. This is the
stable case and the variance does not increase with time. Three runs are presented here, all have 20
x-mesh blocks, x = 10 y-mesh blocks, + = 20 y-mesh blocks, and Π = 30 y-mesh blocks

To reduce the heterogeneity, we propose tracking of the front, cf. [7], and to
increase heterogeneity, one could take k(s) = k(s, x, y) to be a random field with a
lognormal distribution of permeabilities, cf. [5, 9]. Heterogeneity is also reduced
by y-direction mesh refinement (see Fig. Ib) because the statistics generate
fluctuations on the level of one y-mesh block.



Statistical Fluid Dynamics : Unstable Fingers 5

The elliptic equation was solved by an accelerated [8] version of the conjugate
gradient [10] algorithm. Because of the sharp resolution in the solution of the
hyperbolic equation, the elliptic problem has discontinuous coefficients moreover
for μ > μcrit, the discontinuity surface is highly irregular. We used a finite element
method [13] with piecewise linear elements. The exact solution of the pressure
equation is continuous but only piecewise smooth, so the elements had no more
regularity than the exact solution.

It is a pleausre to thank O. Widlund for helpful discussions on the elliptic
acceleration.

3. The Results

A) μ = 2

For μ = 2 the oil water surface is stable. The computed interface

3W = X*>0> (3-1)

has fluctuations which go to zero with Ay. In the dimensionless variables

τ = ί/y, (3.2)

ψ(^τ) = y f r o n t(x,τY)/y, (3.3)

we define the mean and variance

m(τ)=χ-l]ψ(x9τ)dx, (3.4)
o

X l/2

. (3.5)

scaled to be independent oϊX and Y.
Because the interface is stable, v(τ) is bounded in τ. A scaling analysis suggests

v(τ)~Ay/Y For comparison, we computed a one dimensional problem corre-
sponding to (1. !)-(!. 5) with different random number generators. The result
produced the same m and υ, within the accuracy of the computation. Thus it
appears that the statistical fluctuations from the random number generator and
the nonlinear dynamics from the Buckley-Leverett equation are not interacting
with each other. In Fig. 1, m(τ) is plotted for two levels of A mesh refinement and
for the decoupled ensemble of independent one dimensional problems ι (τ) is
plotted for three levels of Ay mesh refinement.

B) μ = 4

This value of μ marks the beginning of instability. The fingers form and grow
slowly, so that by eye, they are hard to distinguish from the statistical fluctuations
introduced by the random number generator. However, the plot of t (τ) for two
levels of mesh refinement shows clearly that the fingers are growing linearly in time
(see Fig. 2b). Figure 2a is the plot for m(τ). Note the good agreement obtained even
for a very coarse mesh.
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Fig. 2a. The mean position of the oil water interface for oil water viscosity ratio μjμw = 4. Two runs are
presented, each with 20 y-mesh blocks, x = 10 x-mesh blocks and Π = 20 x-mesh blocks
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Fig. 2b. The variance of the oil water interface for oil water viscosity ratio μ = μ0/μw = 4. This is the
unstable case. At t/y = 0 the variance begins at a nonzero level due to numerical heterogeneity effects.
The linear increase with time is due to the dynamical instability. Two runs are presented, with 20
y-mesh blocks, x = 10 x-mesh blocks and Π = 20 x-mesh blocks

C) μ= 10

The instability of the fingers is now apparent, and a new phenomena appears:
yfront is no longer singlevalued. To resolve this ambiguity, we choose a saturation
contour level line as the first approximation to (3.1). Because of the sharp
resolution, the advancing saturation front has a dominant value s/5 and we choose
the level line corresponding to sf/2 to define the first approximation to yfront. This
level line occasionally fails to be single valued as a function of x we then choose
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Fig. 3a. The mean position of the oil water interface for oil water visocisty ratio μ0/μw = 10. Three runs
are presented, with eccentricity ratios e=l(x) e = l/2(Π) and e = l/4( + ). The three runs also used
distinct random number generators and mesh spacing
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Fig. 3b. The variance of the oil water interface for oil water viscosity ratio μjμw = 10. The same runs as
in Fig. 3a are presented here

the larger branch. With this choice of y{ront, we plot m(τ) and t (τ) for several choices
of mesh level, eccentricity and random number generator. The results are in good
agreement (see Fig. 3a and b). Even a very coarse mesh (10 x 20) gave good
agreement for m(τ), and for τ up to 3/4τbreakthrough for v(τ).

In Fig. 3c, we give saturation values for a 30 x 30 mesh. Qualitatively, one sees
the same picture on a 10 x 20 mesh. The resolution at the edge of the front is nearly
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Time Data: 42nd Time Step, Time =1.91694, Time Step = 0.037618
Grid Data :X = 1, 7=1, Ax = 0.0333, Ay = 0.0333

Saturation: (A's removed)
Max=l Min = 0
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NNDONNRRPPOONNQQQQOODOQQPPOOOOOOOORRQQNNNNQQPPOONNQQQQPPOOPP
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Fig. 3c. Saturation values for oil water viscosity ratio μ0/μw= 10. Each mesh block is a 2 letters wide
and one letter high. The saturation values are plotted on an alphabetic scale, so that ZZ represents
saturation in the interval [25/26,1]. A's have been removed, and the sharp discontinuity in the front is
seen by the jump from H's or /'s to A's (removed) along most of the front

Fig. 3d. Velocity field and saturation contour level line for saturation value 5 = 5/26, and the same run
and time step as Fig. 3c. x components of the velocity field have been magnified by 5

perfect. Velocity plots are shown in Fig. 3d, for the same time step, for the
30 x 30 mesh. For visual clarity, the x velocity component is multiplied by five
relative to the y velocity component. Note the tendency of the velocity to avoid the
trench - i.e. inverse or oil finger, and to expand at the tip of the water finger. In the
stable case (μ = 2) these tendencies are reversed.
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Fig. 4a. m(τ) vs τ for μ =
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Fig. 4b. t?(τ) vs τ for μ =

D) μ = 4ΰand μ-80

Here the loss of single valuedness of yfront becomes fairly marked, and occasional
phase islands appear (oil surrounded by water or vice-versa). The case of isolated
water droplets seem to be caused by numerical effects; they are probably
connected to the front by a narrow stream, not resolved on this mesh spacing.
Plots for m(τ) and t (τ) are given in Figs. 4a and b and 5a and b while saturation
levels are given in Figs. 4c and 5c. Figures 4d and 5d give velocity plots, with vx

magnified by a factor of 5.
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Time Data: 40th Time Step, Time = 9.71944, Time Step = 0.146781
Grid Όata:X=l, 7=2, Ax = Q.Q5, Ay = 0.1

Saturation: (A's removed)
Min = l Min = 0
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Fig. 4c. Saturation values, on an A — Z scale, for μ = 40, on a 20 x 20 grid

Fig. 4d. Velocity values (exaggerated by a factor of 5) for μ = 40, for the same run and time as Fig. 4c.
NoteX=l, 7=2
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Fig. 5a. m(τ) vs τ for μ = 80
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Time Data: 40th Time Step, Time = 13.7156, Time Step-0.204564
Grid Data :X = 1, Y=2, Δx = 0.05, Δy = 0.1

Saturation: (4's removed)

DD
DD
DDDDCCDD
EEDDDD
EECCBB
EECCCC
EEDDCC
EEDD
FFDD
FFDD
FFDD DDCCEE
FFDDCCDDDDEE
GGDDDDDDDDFFDD

DD
DD
DD
DD

DD CC BB DD
DD DD DDDD
EECC CC DDEE

BBEE CCCCCC DD
CCDD DDDD
DDDDDDEEDD
DDEEEEEE DDDDDD

DDDDEEDDEE DDDD DDCCDD
EEEEEEFF DDDDDDDDDDEE

GGDDDDDDEEFF DDDDEEFFEEFFDDDDDDDDEE GG
HHDDDDEEEEGGDDDDEEFFFFEEFFDDDDDDEEEEDDGG
IIΞEEEEEEEGGEEEEEECGFFFFGGEEFFEEEEFFEEHH
JJEEEEFFFFHHFFFFFFHHGGGGGGFFFFFFFFFFEEII
NNGGFFGGGGJJHHGGGGHHGGHHHHGGFFFFFFGGFFLL
Z2IIHHMf1JJLLlIHHHHΠI 1iα<JJIIί1HJJIIHHNNJJOO
2222Z22222Z2ZZZZZZZZZZZZZZZZZZZ2ZZZZ2ZZZ

Fig. 5c. Saturation values, on an A — Z scale, for μ = 80, on a 20 x 20 grid
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Fig. 5d. Velocity values (υx exaggerated by a factor of 5) for μ = 80, for the same run and time as Fig. 5c.
:=ι, γ=2

4. Conclusions

We have seen that the random choice method can resolve sharply moderately
complex wavefronts in a two dimensional problem even on a coarse grid. The
resolution was aided by the fact that the wavefronts were dominantly parallel to
the grid geometry. In addition to numerical grid effects, the phenomena of
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fingering itself is strongly affected by the curved geometry introduced by the flow
patterns around producing and injecting wells.
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