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Abstract. The existence and exponential clustering of correlation functions for
a classical coulomb system at low density or high temperature are proven using
methods from constructive quantum field theory, the sine gordon transfor-
mation and the Glimm, Jaffe, Spencer expansion about mean field theory. This
is a vindication of a belief of long standing among physicists, known as Debye
screening. That is, because of special properties of the coulomb potential, the
configurations of significant probability are those in which the long range parts
of r~l are mostly cancelled, leaving an effective exponentially decaying
potential acting between charge clouds. This paper generalizes a previous
paper of one of the authors in which these results were obtained for a special
lattice system. The present treatment covers the continuous mechanics situa-
tion, with essentially arbitrary short range forces and charge species. Charge
symmetry is not assumed.

Introduction

In two previous papers [2], we have studied the quantum statistical mechanics of
continuous systems with pair potentials such as the Yukawa r~1e~ar, α>0.
Rigorous results on the existence and clustering of correlation functions were
obtained using a type of cluster expansion which is convergent for a region of
parameters physically associated with the plasma phase. The reason for studying
such potentials is that they provide a first step towards obtaining the same type of
results for the matter system, a system of positive and negative charges, one species
of which is fermions, interacting by the coulomb law r'1. They have in common
the difficulties that arise from the singularity of the potential at the origin.
Correlation functions for the matter system are the next most obvious quantities
to inquire after, following the papers of Dyson and Lenard [5] on the stability of
matter and Lieb and Lebowitz [12] on the existence of the thermodynamic

functions. For this purpose it is necessary to control the long range part of the -

interaction this was a major motivation for our present effort.
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One of the authors has studied a discretized version of the coulomb system in
classical statistical mechanics [1]. Herein two species of equal fugacities and equal

opposite charges interacted by "- = ——", the discretized version of-, with Δl the
Y Zi ι i

discrete Laplacian on a lattice of side /. In a suitable range of parameters the
exponential screening and the existence of correlation functions was rigorously
proven.

The present paper greatly generalizes [1], to essentially arbitrary short range
forces, to the continuum situation, to arbitrary charge species charge symmetry is
not assumed. In a classical pure coulomb system collapse will occur, so that the
short range forces will be required to ensure the stability of the system. As well,
they will have to have some exponential fall off so as not to interfere with coulomb
cancellations at long distances. In the discretized version previously considered,
the lattice spacing / provided a short distance cut off and ensured stability.

The mathematical development is parallel, using the sine gordon transfor-
mation [6] and the Glimm, Jaffe, Spencer expansion about mean field theory [10].
Additional difficulties with the short range potential are handled with a Mayer
expansion for the short range portion of the interaction. In this connection we
derive interesting new estimates for the truncated correlation functions, using
expressions from [3].

The present paper rigorously proves screening in a regime corresponding to a
dilute system in ionic solutions. This settles a debate as to whether indeed there is
exponential screening in such a system [13,14]. For an investigation which
complements the present program by obtaining weaker results for special systems
but valid for all ranges of parameters, see [7]. Our results relate to the plasma
phase in the quantum statistical mechanics of matter, a high temperature, high
density region. At present we do not see how to tackle the quantum mechanical
system.

The thermodynamic limit is approached through a sequence of systems whose
volumes increase to infinity. Conditions on the boundaries and on the fugacities
are carefully tailored to avoid any difficulties with surface charge. This treatment is
somewhat arbitrary and subject to some generalization, however a satisfactory
study of. surface phenomena is beyond our present techniques.

There is another aspect in which our treatment is not complete: the region of
convergence of our expansion is not uniform in the relative sizes of the activities
thus, if one species with charge that is fractional with respect to the other species is
present in much lower density than the other species the values of the constants
governing convergence deteriorate. While we are still undecided whether this is an
artifact of our estimates or something more physical, we are able to prove that
integral charges can screen two fixed fractional charges essentially as well as they
screen integral charges.

The present paper is largely self-contained, only a few specific lemmas from
previous papers are used. Familiarity with the organization ideas of cluster
expansions in constructive field theory is very helpful, [10,11], however we have
made an attempt in Sect. 5 to explain some of the ideas in the cluster expansion.
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1. Definition of the System

The physical system we wish to study consists of s species of particles, species i
having charge et. For simplicity and consistent with the physical situation we
assume the et are integers. These classical particles have an interaction energy F0,
constructed from two-body translation invariant potentials, Coulomb and short
range parts

= U0 + W0. (1.2)

σi is the density of species z, it is a sum of (5-functions at the positions of particles of
species i. J is the charge density

The colons in (1.1) indicate that the terms involving w^O) and "/ 1_ | A |" which arise

when the definitions of J, σ are substituted into (1.1), are to be dropped. Physically,
this corresponds to excluding self-interactions of point particles. The integrals in
(1.1) are over R 3 xR 3 .

In terms of parameters λ, 1D, to be discussed later, we rewrite (1.1), (1.2) as

V0 = U, + W19 (1.4)

(L5)

We have added a specific short range interaction to the Coulomb term and
included a compensating term in Wv

The statistical mechanics of this system is approached by taking grand
canonical ensemble averages for a sequence of ascending volumes. However we
diverge from what might be the expected procedure by taking an infinite volume
limit in two stages, with the Coulomb interaction modified by boundary con-
ditions. Let A cΛf be rectangular boxes given as a union of unit lattice cubes in R3.
We replace U l by U — d0, and W± by W.

£

~Δ

(1.6)

(1.7)

. (i.9,
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The Laplacian, A, used in constructing the kernel w, and throughout the pape
unless otherwise indicated, is constructed using Dirichlet boundary conditions 01
dA. (If the infinite volume Laplacian, A0, were used U1 would equal U — d0.) u0 i:
obtained by replacing A by A0 in (1.9). The integral in U is over Ax A. Wis definec
by replacing integrals over IR3 x 1R3 in W± by integrals over A' x A. Thus we hav<
two volumes. Particles inside the larger one A interact via a short range pai:
interaction W. Particles inside A interact in addition by a long range interaction [
which in particular contains the long range part of the Coulomb interaction. Th<
Coulomb interaction has zero boundary conditions (grounded boundary).

To study the statistical mechanics of the grand canonical ensemble of thi
system, we define, for A a functional of the σ inside A, I (A) :

Here N\ stands for ]^[(JV.!) and ZN stands for Y[z^ where z is the fugacit^
i i

associated to species i. The integral is over the positions of the £ Nt particles in A1

Since we have a fugacity for each charge, we are not enforcing neutrality, but late
we will impose a condition on the fugacities that at least approximately enforces i
in an average sense. We define

(i.n

and

Z= lim /(1)/Z0. (1.12
'

Z0 is 7(1) calculated with U set equal to zero. The existence of the A' limits will b<
discussed when we come to the Mayer expansion. Z is a normalized partitioi
function.

Equations (1.11) and (1.12) express our strategy of taking the infinite volunu
limit in two stages. The easy one is A'** IR3. We still of course have to take Λ^IR3

2. The Sine-Gordon Transformation

We construct a Gaussian measure dμ0(φ) on a measure space of continuou:
functions, φ(x), xeA, with co variance u

. (2.1

It is then straightforward to show that

e-W= $dμ0(φ)eίβl/2 £*<•>*(*«) . (2.2

We define

|>_ z <^l/2/?e l

2u0(x,x) (2.3

One then has

(2.4



Debye Screening 201

where

We have interchanged the A' limit and the dμ0 integral. This is justified by the
Lebesgue dominated convergence theorem. The requisite bound is supplied by the
Mayer expansion in the next section. We write

(2.6)

where M is the Mayer expansion. For s0(φ) a functional of the φ(x) we define

(2.7)

3. The Mayer Series I

We consider the relation yielding M, the Mayer series. We start with Mr defined by

eM' = z-ιy_LzN(e-
βweίβί/2Σeί^φ(x^. (3 1)

Nl

Following the notation of [3] closely, we may expand

M'=ΣκW2»-logZ 0, (3.2)
1

where the Mayer expansion is developed from

and

Vi = -ju2erf(x). (3.4)

v2 and υ1 are the two-body and one-body potentials, respectively, used in [3].
Estimates which prove convergence of our expansions are obtained in Appendix 1.
We now introduce the variables

8.(x) = eίβί/2eiφ(x}-l (3.5)

and assert that M' may be rearranged in the form

M' = Σ ί ftMΦ) + i Σ ί ft,/*, y)Φ)φ) + . . . , (3.6)

where each ρtί i2 ίt(xl5 ...,*() is independent of φ(x). This may be understood as
follows: within each teτmK(N)zN in (3.2) there are factors z'i(x) = zίe

ίβί/2eίφ(x\ We
expand each such factor

z;.(x) = (z'i(x)-zί) + zί (3.7)
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andresum (3.2) to obtain a power series in z' — z, i.e. (3.6). The constant term in
(3.6) is missing because the normalization Z0 has been chosen in such a way that
M' = 0 if φ = 0. Each ρ in (3.6) depends on A'. We let A /* IR3 (anticipating results in
Appendix 1). M is thus the expression obtained from (3.6) by taking the limit
Λ'S R3 in each ρ. Note that the variables εt (x) in (3.6) vanish for xφA by our
boundary conditions on u. We will require

Σft*i=° (3 8)
Here ρ. is the infinite volume limit of ρ.(x), lim ρ.(x). Equation (3.8) is automatic

Λ's R3

in the charge symmetric situation. It is capable of some weakening, but we require
some such condition, and it is the most effective condition to impose. [In Eq. (6.5)
the linear terms in δ may be added because of (3.8), they are needed in later
estimates.]

We would conjecture that any infinite volume equilibrium state obtained by
any limiting procedure (near our range of parameters) can also be obtained by our
limiting procedure, and with a choice of ρ satisfying (3.8).

4. Notation and Description of Results

We begin with a discussion of the basic parameters and their dimensions. In our
notation the charges, et, are integers and thus dimensionless. The unit of electric
charge has been absorbed into /?, the inverse temperature, which thus becomes a
parameter with the dimensions of length. It is known as the Landau Length. The
combinations

have the dimensions of length. 1D is known as the Debye Length. These lengths are
natural units to measure screening. 1D can be related to 1D by using our results in
Appendix 1.

In (1.5) we introduced a dimensionless parameter λ. A priori our thermody-
namic limit will depend on λ. We will introduce a norm || ||α on the two body
potential v2 in W and require that [see (9.94)]

^\\υ\\a£c. (4.2)
λ

\\v2\\a is defined in Appendix 1, (A1.9). This dual use of λ saves the introduction of
two related parameters, α is an inverse length and serves to specify an exponential
fall off for v2. We impose a condition

α^ίl-cJji, δι>0 (4.3)
1D

so that the tail of v2 does not destroy the screening properties of -.
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The parameters β, 1D, λ, and α are external to the proofs. The proof itself
involves an expansion depending on two lengths L and ZΛ Basically we always
work in units with ΪD = 1, but we keep ΊD in most formulas to emphasize physical
parameters. In particular "unit" cubes are of side fβ, and L, Z/, and |AΓ| (the volume
of region X) are understood measured in units of 1D (or Γ^) when not appearing in
dimensionless expressions. L'/4ΪD ana ΪD/L are both large integers.

Our estimates are all valid provided they are preceded by the quantifiers: if L'
is fixed large enough, if L is fixed small enough, and if λ is sufficiently small, then
for β/ϊD sufficiently small depending on L, Z/, /ί,.... We occasionally omit this
qualification, c's are used for strictly positive constants. Often the same c's are used
for different constants in unrelated equations.

In Sect. 9.9 we present the most general situation in which we prove Debye
shielding. There, also, is the complete set of conditions on parameters and
constants. We also state a result on the screening of fractional charges. In order to
provide some feeling for these rather complex theorems we will present a special
case which has some interest in its own right.

The System

There are two species of particles with equal fugacities, z, and equal and opposite
charges e.= ±1. There is an infinite repulsive hard core of radius R about each
particle and no other short range forces.

The Observαbles

We consider observables of the form

A=$(f(x1,,..,xw)σ(x1)...σ(xJ. (4.4)

σ = σ (x) is the density of species i at x. The species indices of /, σ in (4.4) are
suppressed. / is bounded and compactly supported. We say that A is supported in
X ClR3 i f / vanishes whenever one of its arguments, x l 5 ...,xw, is not in X.

Theorem 4.1. For any given c, there is a cv (depending on c) such that if

ξ1=β/R<c

and if

ξ2 = zR3<Cl

then the following limit exists

where A is any observable.

Theorem 4.2. For any ΐ > 1D and any given c, there is a c2 (depending on I' and c)
such that if
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and

Ϊ2<C2

then

\(ABy-(Ay(By\ίcAcBe-d"', (4.6)

where d is the distance between the supports of A and B.

Remarks. 1. We have stated a theorem for a charge symmetric system (in-
terchange of species is a symmetry) but our results in Sect. 9.9 do not require this.
The pleasant feature of charge symmetric systems is that it is possible to prove that
the limit in (4.5) is independent of λ (for permissible λ). In systems without charge
symmetry we have imposed a neutrality condition [see (9.92)] which depends on λ.
2. Degeneracy : We let M t be the first term in the series (3.6) for M, linear in ε's. It is
the dominant term that controls our development of the cluster expansion. In the
charge symmetric situation, eMl assumes its maximum at φ = nτ, n = 0, ± 1, .... τ is
the period of M. If on the other hand there are more than two species present, for
example charges e.= ±1, ±2, then eMl has local maxima at φ = ί/2nτ. If the
activity of the unit charge species is very small, these secondary maxima are very
nearly degenerate with the true maxima. We refer to this situation as "degeneracy".
Physically one has a very low density of fractional charges with are to be screened
by integral charges. Parts of our proof (particularly the ratio of Z's in Appendix 4)
run into difficulties in degenerate cases and we impose condition (9.96) to avoid
degeneracy. We do not know, particularly in the light of Theorem 9.15 on the
screening of fractional charges, whether this reflects a physical phenomenon or a
failure of our procedure.
3. The statements of Theorems 4.1 and 4.2 have been patterned on Theorem 2.1 in
[1]. The transcription of the results in Sect. 9.9 to this case is straightforward, but
not immediate. The principal ingredient to be supplied is a stability result for a
Yukawa interaction with hard cores present, in particular the following inequality

i φ j r ί j i κ

We use a slightly stronger form of this inequality. Let φ(r) be the unique
continuous function satisfying

(-A+μ2)φ(r) = 0,

-κ\*\

Then

5. A Procedural Introduction

Much of the complexity of the present paper is due to the short range interactions,
W in (1.6). In particular, if W were identically zero the paper would be vastly
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simplified E would be zero. A number of improvements and simplifications over
the treatment in [1] would be evident. We suggest the reader set E to zero on a first
reading.

One feature of the present paper (in common with the papers of Gallavotti et
al. [8]) is the use of a Gaussian process whose covariance (propagator) is the
inverse of a fourth order differential operator. This has as a negative aspect the
result that many theorems from constructive field theory specific to second order
operators can not be employed. However the positive advantages are very
pleasing.
In particular it is never necessary to normal order any expressions in φ I

Appendix 1 presents estimates on the fall off of the truncated correlation
functions in classical statistical mechanics. These arise naturally from the develop-
ment of the Mayer series given in [3]. They serve a key role in controlling the
effects of the short range potentials.

Sections 1 through 6, and that portion of Sect. 7 preceding the construction of
g, may be viewed as preliminary. They involve little difficulty and technicalities.
Our construction of the Peierls expansion essentially is an elaboration of the
approximation often used by physicists (for g2 large)

00

£02(cosχ-l)^ y e-g2/2(χ-2πn)2 /<j j \

Several of our later estimates are involved in controlling the error, justifying the
value of the approximation. This is only superfically different from the use of
approximate projections in [1] and [10] to derive a Peierls expansion.

The cluster expansion is detailed in Sect. 8. Most of the rest of the paper, Sect. 9
and the four Appendices, is devoted to estimates ensuring the convergence of the
expansion given in Sect. 8. These estimates from the core of the research. We have
used terms like "Vacuum Energy" because our methods have been taken from
Field theory. However these techniques are sufficiently removed from their origin
that the objectives and difficulties have changed. In particular we have no concern
with "divergences" which are the central fact of Field theory. One of our principal
questions is the physical meaning, if any, of some of our field theoretic concepts,
especially phase boundaries, in this new context.

The remainder of this section is devoted to an informal discussion of some of
the ideas behind the complicated expansion in Sect. 8.

We consider a quantity of the following type

(5.2)

where dφ is product Lebesgue measure

(5.3)

AΆβ is a positive definite matrix, φ = {φa}> αe/. We take / to be a finite set. Except
in this last restriction L resembles I(j/(φ)). P plays the part of the observable. We
take it to be a trigonometric polynomial. N is defined so that L = l if D = 0 and



206 D. C. Brydges and P. Federbush

We now suppose that / is a very large set of variables but P depends only on a
small subset 71 C/

/ = /iU/ 2, 0ι = W»β}β6/1, 02 = WU.6Jr2' ( „

P(φ) = P(φ1) I.nl^φ.

We also suppose that D has a natural decomposition

, D^D^φ^ (5.5)

where D1 depends only on φly D2 on φ2.
The cluster expansion is a method of studying the approximate factorisation

(5.6)

where

Ll=N-lldφe-ll2*+A+^P (5.7)

(we have suppressed α and /?, but the sum is still over α,/?e/)

Z2 = ΛΓ 1 Jdφβ- vwφe02 . (5.8)

K is a remainder which under the right circumstances will be small. Notice that if
D15 D2, D12 vanish then .R vanishes, (Z2 = l). The point about the factorisation
(5.6) is that L1 will only involve a "small" number of non Gaussian variables, and
so is easy to estimate, whilst Z2 is a simpler quantity than L because P has been
separated out.

We will now obtain, by a formal argument, an expression for R which puts it in
the same form as L so that one can then iterate the approximate factorisation. We
write L in the form

( ) ) (5.9)

where da = — — and C is the matrix inverse

In (5.9), the exponential is to be expanded and φ set to zero after the derivatives are
performed. The reader can verify that the result is a formal expansion for L.
Corresponding to the decomposition, φ = (φ1,φ2\ we write

/ Γ Γ \ ίC 0 \
Γ ( ^1 °12\ Γ ί°l U \ /r Λ Λ \

c c r 0= o c r ( }
\ 1 2 2 / V 2/

SC'"< (5.12)

(5.13)

C0 is called a "diagonalised" covariance. We let

(5.14)
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noting that if s = l, L(1} = L and if s = 0

LγZ2. (5.15)

Therefore by the fundamental theorem of calculus

1 A 1

R= \
J

(5.16)

where K is the differential operator

κ = D12 + ̂ (d + dD(s))Cl2(d + dD(s)). (5.17)

By applying (5.9) backwards with C replaced by C(s)

R= ]dsN;^dφe-ll2^A^φeD(s>κP, (5.18)
0

where A(s) = C(s)~1.
The cluster expansion is generated by iterating this basic step. Thus we expand

the KP in (5.18) into terms that depend on small subsets of the variables {φa}

and choose for each j a new division of / into a small subset and its complement.
We then apply (5.6) to each Rj and so on until / is exhausted.

This describes the process by which the cluster expansion in Sect. 8 is generated
up to detailing how / is to be partitioned at each stage. By referring to Sect. 8 the
reader will see that the Peierls expansion controls this step.

6. The Peierls Expansion

In the expression for Z(φ)

we wish to exhibit the fact that for the portions of φ space that dominate the
integrals over Z(φ)

Σ e^"2"* - 1) = - iΣ e,βef(Φ -
ί ί

(6.2)

for some integer n, where τ is the least common multiple of the periods of the
exponentials (associated to non-zero e^. We consider the lattice of cubes of side L,
{Ωα}, and define functions h(x) that assume on each Ωα some constant value, an
integral multiple of τ. The h(x) may be discontinuous at cube boundaries. We write

Σe~^M~hfeGeE , (6.3)
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where the sum is over all possible such h(x) defined on A. The function G is defined
to absorb all the damage of approximation (6.2) and is hopefully "small". The sum
over /z's is the Peierls expansion. £ is the closed set along which h(x) has a step
discontinuity. Edges along dA are part of ]Γ if /zΦO in the corresponding cube
along dA. (One may imagine h = 0 outside A.) £ is called the Peierls contour for h.
We let Σ be the set of unit lattice cubes in A whose distance from £ is less than ZΛ

It is convenient to now give an expression for G. For the lattice of cubes, {Ώα},
of side L we define for cube Qa

A = A« = L-3 f φ(x)dx (6.4)
β«

and

) = φ(x)-AΛ(x) for

One then has

G =

r(A) = . (6.6)

7. Translation of φ

We study the expression for Z derived in the last section, I(jtf(φ)) may be treated in
just the same way.

Z=Σf<fcoΛ~^W~'V (7.1)
h

for each h we will define a 0Λ(x) = gf(x) and write

. (7.2)

The variables ιp(x) will replace 0(x). It is desired to modify the Gaussian measure
μ0 to include effects of the quadratic (φ2) terms from

-^2(φ-h)2=-^(ψ + g-h)2. (7.3)

We also wish to include the part of E' quadratic in ψ

-ifvvφ (7-4)

in the measure. We define
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See also (A1.20). We will see that G and E are "small" in regions that dominate the
integral (for the choice of g that we will make). We introduce some convenient
notation

u'1 + ~- =λ2l2(— A)2 + ( — Δ)+ ~- ^C"1, (7.5)
12

D 12

D

λlD(-A) + (-A)+^+v = C =C0 + v, (7.6)

J^c=ico. (7.7)
LD

We change variables from φ to φ in (7.1) and include the terms quadratic in ψ
arising from (7.3) and (7.4) in the measure. The result may be written in the form

Z= ΣN$dμ(ψ)eEeGeR, (7.8)
h

where dμ is the normalized Gaussian measure defined by

ι_ 2

Ndμ(ιp) = dμ0(ιp)e ~^ e~1/2ίψvψ . (7.9)

The covariance of dμ is C. R is given by

R= — ̂ f2$(g~h)2 — ̂ gu~1g — §\pCQ1(g — gc) (7.10)
21D

with

(7,11)

Notice that if g were picked equal to gc, the integrand in (7.8) would have no
dependence on ψ outside the small terms G and E, i.e. R would vanish. However
we will for later convenience define g as only approximately equal to gc.

Analogously to in [1] we also write

R=-F1-F2 (7.12)

with F1 the first two terms on the right side of (7.10) and F2 the last term (with sign
changes).

In defining g we wish to satisfy four goals:
(1) g = h outside £",
(2) Inside any connected component of ,̂ g depends only on h inside the

same component.
(3) g is in the domain of CQ 1.
(4) The last term in (7.10) does not become too large.
For a differentiable function / to be in the domain of CQ *, it is necessary that /

and A0f vanish on dΛ. If / satisfies these conditions we seek what conditions on φ
insure that φf satisfies the boundary conditions, (φ is also assumed differentiable.)
φf is automatically zero on dΛ. Looking at A0(φf)

φ. (7.13)
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On the boundary / = 0, J0/ = 0, and V/ is normal to the surface. Thus it is
sufficient that φ have zero normal derivative on dΛ, for φf to be in the domain of
Γ"1o0 .

We now fill Λ with a lattice of cubes of side Z//4. For given /z, we let ̂  be the
set of cubes of this lattice at distance greater than Lf/4 from ]Γ. We let {Ra}ael be
the connected components of ̂  and {^β}βej the connected components of the
complement of ̂ . On each Ra we set g = h. Let J*β be a component that does not
intersect dΛ. Let he

β be equal to h inside J^, be defined on ]R3, and be constant on
the components of the complement of J^n^Γ. We define

lD(-A0)
2 + (-Δ0)+V\ h*β. (7.14)

W

If J>β intersects dΛ, we define he

β on /L, to be equal to h inside J>β, and to be constant
on the components of the complement of «/^π^. We define

§=icoft«. (7.15)
*D

# finally is to be constructed by patching together the /z's on the Rα with the gβs on
the J>β, with smoothing over a neighborhood of the d^β.

We set BJ^ as the union of cubes of the unit lattice inside J>β and having non-
empty intersection with (d</β — dΛ). χβ is a C°° function equal to zero outside ̂ β,
equal to 1 in (J^ — B^β), and such that

(7.16)

and

Vχβ\dΛ is normal to dΛ (7.17)

provided J?β intersects dΛ. All derivatives of the χβ are uniformly bounded, i.e.
for any derivative da (of any order)

\^ba all x and β. (7.18)

These bounds do not depend on ]Γ or /I, they are absolute constants. We now
define g

h in Ra

gβ in Sβ-BSβ (7.19)

We observe that

C-,\g-gc] (7.20)

the expression appearing in the last term of (7.10), is zero except in 1 I B.Pβ.

8. The Cluster Expansion

In writing the cluster expansion we will follow as closely as possible the
development of Sects. 3.3 and 3.4 of [1], with which we assume familiarity. Aside
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from simple notational changes the essential change and complication we must
face is due to the fact that £ is a non local interaction of fields at different points.
(G is also non local but it factors into a product over cubes which is sufficient
locality for it to cause no problems.) We study /(j/(</>)) where the observable, #0, is
assumed to be a function of fields in a region Yv We also assume $i is periodic of
period τ in φ but this assumption is not essential, nor will it be used until the
resummation described in Sect. 9. We fill IR3 with a set of disjoint lattice cubes of
side ΪD. All the subsets of IR3 in this section will be unions of these "ίp-lattice
cubes". In later sections we often make a choice of units of length so that 1D= 1, in
which case we refer to these cubes as unit lattice cubes. We will refer to the lattice
cubes in Y1 as "distinguished cubes".

By (7.8)

(8.1)

Rs/. (8.2)
h

The expansion we use yields for (8.2)

ϊeR(χcϊ , (8.3)
h X

where

'My^)eG^eR(x)^. (8.4)

These compare quite exactly with (3.18) and (3.19) of [1]. We explain the notation
above, to the extent it is not a direct translation.

We let y be the set whose elements are either connected components of ̂  or
/p-lattice cubes in A — ̂ .yisa sequence of sets Y19 Y2, ... , Yn9 where each Y. is a
union of elements in Ϋ9 and the Yt are disjoint. (In [1] each Yt was an element of y.)
Xl = Yί9 Z =y ί uX f _ 1 , Xn=X. dμs(ψ) is a normalized Gaussian measure with
covariance C ( x 9 y 9 s ) = p(x9y9s)C(x9y)9 p as given in (3.14) of [1]. For any set y, a
union of /^-lattice cubes, in Λ9 YC = Λ— Y, and G and R split naturally

(8.5)

(8.6)

We still need define E(Y), E(X,s\ and κ(y,s).
E may be written as a sum of terms, of which the following is a standard form

— f dx1 . . . f dxtρ(xί9 . . . , x^xj . . . ε(xf) . (8.7)
a i at

Here the summation over species types is suppressed. Each α is an ΓD-lattice cube.
[There are also similar terms when t = 2 containing ip(xt) instead of ε(xt ), and these
will be treated identically.] E(Y) is the sum of all such terms where α C Y all i.
E(X, s) is the sum of the same terms as add to E(X\ where a term such as (8.7) is
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multiplied by ίQ s.. Here iε / if 1 ̂  z ̂  w — 1 and for some α, /?, 1 :g α, /? rg f, αα C I^+ 1
ίel

and α^ C .̂ Clearly as s. becomes zero the interactions in E(X) between the region
Xt and Yi+1 are shut off.

The differentiation terms, κ(y,s), are more complicated than in [1]. We have

κ(y, s) = κ(n - 1) - κ(n - 2) . . . κ(l) , (8.8)

where

J dx f W-^

[ -V— V— ?-// /n Q\

'
(ί)(AΓ, 5) contains those terms in E(X, s), multiplied by the same s's, for which

By definition XCX 7 if X c Γ and Y is the smallest union of sets from Y" that contains
X.

The (/) on the brackets indicates the following restrictions on terms kept in
expanding the derivatives :

δ δ
1. The — — - — — term is kept only if Y , , is an element of Y.

δψ(x) δψ(y)

2. The terms -^-- ̂ M and δ(E(X>*}} -*- include in £(Y , 5) only those
δψ(x) διp(y) διp(x) δψ(y)

terms satisfying (8.10).

3. The term - -̂  --- —-— — includes only terms in the product such that if
δψ(x) διp(y]

α l 5 ... ,αί labels a term contributing to the first E(X,s) and α'1? ... ,a'r labels a term
contributing to the second E(X, s), then

Thus in (8.9) only certain terms are kept in the expansions of E(X, s) as sums of
terms like (8.7). The restriction (8.10) and the three restrictions above, 1, 2, 3, each
ensure that in the cluster expansion the Yί+ί chosen is the smallest union of sets
from Ϋ that isolates the differentiated terms at each stage.

9. Proof of Clustering

9.0 Resummatίon

It is straightforward to interchange the order of summation over h anάX in (8.3),
restricting the sum over h to a form compatible with X. The sum over h naturally
factorizes (see [1]) because of the periodicity of E, G and R. We can therefore
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rewrite (8.3) and (8.4) in the form

(9.01)

(x's)κ(y,s) eGmeR(X)j/, (9.02)
y h

where

Z'(Λ,X) = X N J dμ(ιp)eE(X">eG^eR^ . (9.03
h

In (9.02) the sum over h is restricted to a form compatible with y. Further details
may be found in [1].

9.1. Combinatorics

The reader might be advised to omit this subsection on a first reading since it is
only concerned with some of the counting involved in our convergence proof.

We are going to find an estimate for (c'A ^ 0)

X \jΓ(X)ec-W\. (9.11)

Our strategy is to list the many sums (integrals) in (9.11) and repeatedly use the
elementary inequality

£ Jdv(x) 1 Sup|α(x)/(x)| (9.12)
φ)

to convert the sums to supremums. (This is the method of combinatoric factors
used by Glimm and Jaffe.) If this inequality is used a number of times one gets an
inequality of the form

(9.13)

where at the zth stage the first term on the right side of (9.12) we call Ai9 and a(x\ Bt.
We now enumerate the sums in (9.11) in the inverse order in which they are to be
performed :

1. n: the length of the sequence y.
2. (ra ), ί = 1, . . . , n : Yt is a union of ra sets Ytj.
3. (Ytj) : the sum over choices of sets, Yίp ί=l,...,n,j=l,...,mί, from 7.
4. h : the sum over all h consistent with the choice of Yt .
5. Jds: the integral over interpolation parameters.
6. T : the sum over tree graphs. Suppose that κ(i) is written as a double integral

over x and y [the second term in (8.9) is in the required form already], then K
contains 2(n—l) integrals which we expand as follows

Π ί ί = Σ Π ί ,f (9.14)
i y { + 1 \JYj T ί Y ί + ι Y T ( ί + i )

j= i

The tree graph, T, is a map, ί-> T(z), such that T(ΐ) < i. More details are given in [1].
7. Types of terms : κ(ΐ) as given in (8.9) is a sum of five types of terms. (Four are

obtained by expanding the square bracket.)
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8. (£): in each κ(ί) the E's are sums over ί = 2, 3, ..., of terms as in (8.7).
9. Δ'p A", z = l , ...,n — 1. The integrals in (9. 14) are expanded into sums of cubes,

j rfx J Jj; = Σ f Λ c J d y . (9.15)
Yi+i ^τ(i + i) Δ'i,Δ'{ Δ'ί Δ'i

10. (a) the cubes, aly...,at9 in (8.7) are to be summed over configurations
compatible with Yij9 A\, A".

Our objective is the following bound for (9.11),

(9.16)
(•)

where CA, CB, δ2 are constants, d is given by

d = £dist(4,4') (9.17)

the supremum is over all compatible parameters listed under 1Σ to 10Σ, the
subscript 0 on the absolute value sign means that the absolute value is to be taken
inside the sum that results when all differentiations in K' are performed and inside
spatial integrals and sums over species. The definition of κf comes after the next
paragraph.

We will use £(a^ = £(al9...9at) to denote a quantity of the form (8.7). The
control of WΣ will rely on an estimate, (A1.6), on the exponential decay of <?(α.)
when the cubes are widely separated. In Appendix 1 we have introduced some
measures of separation, LηΛ(a^. (ηA is any of a set of "augmented tree graphs".) For
the purposes of this section their essential property is

where the sum is over all positions of α1? . . ., at with one held fixed. Equation (A1.6)
can be paraphrased as follows : there exists a decomposition

so that for constants bηA as in (A 1.4)

In order to use this conveniently we introduce a formal operation denoted eyL°,
7 > 0. Given any expression containing ^(α.)'s or their derivatives with respect to ψ,
eyL° replaces these factors according to

•Σe ηA &η*(ai) (9.18)

We introduce a similar formal operator 00 such that

ey°°: S(a^ -» eytS(af). (9.18a)

We can now define K'

κ' = κ;'(n+l)...κ;'(l), (9.19)
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where κ'(ΐ) is, depending on the type, (7Σ1), one of the following five operators :

(1) er°°eδ2L°ff(aί9 α2, . . ., αt) , (9.1 10)

where r>0, IJα^ must be contained in Xί+1, contain A\, Δ", and have non-zero
intersection with Yί+1 . for j =1,2, ..., m.+ 1.

(2) j Jx J ^^_C(x,);)-4τ, (9.111)
j? j;. 51/;(X) (S1/>(V)

(3) *"V2Lo i Jχ i ^ ^Lc( }^2 (5U12)j;, J;.

where

and the union of all the α's and α"s satisfies the conditions below (9.110). (4) and (5)
are obtained from the cross terms which arise by multiplying out the square
bracket in (8.9) by replacing £'s by <ί's and prefacing the result by

Lemma 9.1. For any <52, c'A, cA>0 there are cB,r so that (9.11) is bounded by (9.16)
(for β sufficiently small).

By virtue of (9.13) and the remarks surrounding it we can prove this lemma by
giving for each of the listed sums an At and a Bt satisfying

'ί ) (9 113)( )
such that the product of the (Aβ^'s is of the form

ecΛF1 + cB\X\+δ2deδ2LoerO0 (9114)

We will present a list of such A?s and 5/s and prove that (9.113) holds for some of
the non-trivial cases.

ΊΣ) B7 = l, AΊ = 5*-^

T(ϊ)

where

q(τ,s)= Π -Γ^-ίvi'-Λ )- (9 115)
( ί , j ) e T asj-ί

The validity of (9.113) for these choices for A6A5, B6B5 follows from (5.6) of [1] or
Lemma 5.5 of [2]

420 £4 = eC 4 F l W, A4 =
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c4 > 0 can be chosen arbitrarily. c'4 depends on c4 and tends to zero as the period τ
tends to infinity. We will prove that A4, B4 stand in the correct relationship,
namely

£β-C 4FιW^ecW/L3 (9.U6)

h

giving, in the process, a simplified derivation of (5.13) of [1].
First suppose X = Y, an element of Ϋ. Let eί9e29 ... be a sequence of disjoint

lattice cubes, of side length L, exhausting Y. We suppose the sequence selected so
that each et shares a face with some eΛ(ί} with α(/)< /. We pick e1 to be a boundary
cube so that h can be fixed in e1 (we direct the reader to [1] to see that this is
consistent with the way the sum over h factorizes). We overestimate the sum by
dropping the remaining restrictions on h. Next we use

Lemma 9.2. There is c> 0 such that

(9.117)

where ]Γ is over the internal faces of the lattice cubes in Ύ ana δh(f) is the jump in the
f

value of h between the two cubes joined at f.

This is identical with Lemma 5.2 of [1], if we use the fact that

u-^-Δ. (9.118)

We are now reduced to proving (9.116) with the left hand side replaced by

h

We sum over the values of h in et in inverse numerical order. (9.119) is less than

|Y1/L 3 / n = o o \

Σ Σ e~c(m)2)• (9.120)
i — 1 \n = — oo /

We thus obtain

Lemma 9.3. The sum in (9.116) is less than

-cτ* \ | Y | / L 3

(9.121)

This completes the proof in the case X = Y. In general X is a union of disjoint Fs
and we prove (9.116) by taking a product. [The left hand side of (9.116) factors.]

1Γ) For any cλ >0 we may choose

2Σ) For any c2 > 0 we may choose
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3Σ) Every Ytj is constrained to be connected and to contain one of the "α"
cubes mentioned in IOΣ.

9Σ) A\ is contained in YΓ(ί+1). Set

n-l

(We are simply counting the number of cubes in
For any c9>0, let

where the sum is over all unit lattice cubes in a lattice centered on the origin, 0. We
now take

VT.Q — ^^Q "*^9 > Q ~::: Q Q *

8Γ) and 10I1) For any c10 >0 there is a c'10 and c'ί 0 such that we may choose

This concludes the proof of Lemma 9.1.
By the same methods we easily obtain the following generalization of Lemma

9.1.

Lemma 9.4. For any 62, c'A, CA > 0, there are c'B, r such that (for β sufficiently small)

me-d-2δl)dist(Xι,w) ^ (9.122)

K" is the same as κf, but with ^-^I+^LO repiacιng e

δ^LQ throughout.

Remarks. Lemmas 9.1 and 9.4 are purely combinatoric in the sense that nothing
we have done so far assures us that the right hand side of (9.122) is finite. In
particular the sequel will show that we must have upper bounds on δl9δ2,cA and
our short range forces must be such that

(9.123)
1D

α appears in ( Al. 6). We will also need

~(1-^χ-^. (9.124)
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9.2. Holders Inequality

We wish to study the integrals in (9.16) and (9.122). We recall the splitup of R
defined in Sect. 7

R=-F1-F2

and define a new splitup of G

(9.21)

following the notation of (6.4). Performing the functional derivatives in κr or jc",
each of (9.16) and (9.122) becomes a sum of terms of the form

^dμse
EeG2e~Fle~Fίgk^/, (9.22)

where g is eGl or some derivative of eGl (and integrals coupling k and § are
momentarily suppressed in the notation). We will find in Sect. 9.8 an inequality

\gk^\^k(xύY[\y(xύ\ell2y^ + 9~h}2 (9 23)
i

to control the last three factors in (9.22). The integrals in (9.23) are restricted to the
region X, k(xt) ^ 0, and

y<i. (9.24)
1D

Employing (9.23) we estimate (9.22) with Holders inequality.

|(9.22)| ^^k(xi)^dμs\eEeG2e-F

_
eG2e-2Sδ2\p^9 (9.25)

where

p >l, Σ~ — 1? p1 even integer
Pί (9.26)

P 37<r 2LD.

The first factor on the right side of (9.25) with the polynomial in ip's is studied in
Sect. 9.3 the factor involving F2 is studied in Sect. 9.4, the last factor but one in
Sect. 9.6 and the final factor in Sect. 9.7.
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9.3. Wick's Theorem

We choose units such that 1D = 1 and study

(9 31)

using the estimate (discussed below)

y\ (9.32)

let rij be the number of x 's in unit cube A . A simple generous counting of
contractions in (9.31) as detailed in [11] yields

|(9.31)| rgc^Π ("A (9 33)
J

(9.32) is easy to establish when C is replaced by C0. See for example (9.47) and the
remarks below. By referring to (7.6) we see that C differs from C0 because of the
non local operator, v. Provided

α>l/2, c2(α) sufficiently small (9.34)

in (A 1.6), we may obtain (9.32) by studying the Neuman expansion of C with v
regarded as a small perturbation in a suitable norm.

9.4. (g — gc) is Small Enough

In this section we look at
j_

($dμse~p2F2)pι, (9.41)

where, from (7.10)

F2=lψ(C-1)(g-gc). (9.42)

(9.41) may be explicitly evaluated by completing the square in the Gaussian
integral, to be given as

ei/2p2S(9-9c)CoίCCo1(g-gc) (9 43)

Lemma 9.5

l(g-gc}C^CC-\g-gc)^c(L}F^ (9.44)

where c(E) becomes arbitrarily small as L is increased.

This lemma replaces Lemma 6.7 of [1], but since our construction of g is
different, another proof is required. The remainder of this section is devoted to this
proof.

We first study the co variance C0, as defined in (7.5). With

1 2 2 / 2

,2 (9.45)
1D
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which for small λ becomes

A ID 1D

C0 may be expressed as

C0 =

(9.46)

(9.47)

with the small λ form

(9.48)

From (9.47) one may read off the regularity and exponential fall off of the
infinite volume limit of the covariance. The path space representation of the
individual Yukawa terms in (9.47) yields the result that

OgC0(x,3θ^C00(x,3θ, (9.49)

where C00 is the infinite volume form. [(9.49) is a pointwise estimate.] C0 may be
constructed as an infinite sum of terms each of the form of a translated C00, by the
method of images. This is very useful to read off estimates on the derivatives of C0.
(If we worked in more general volumes, technical results on boundary values of
Green's functions would be needed.) We will use the following estimate from the
above considerations

(9.410)

Of course the same estimate holds for C00. In fact we will only need the estimate
for derivatives of degree less than four.

We will also make use of the following simple well-known estimate.

Lemma 9.6. Let k(x, y) be a symmetrical integral kernel. Then the norm of the
associated integral operator is bounded by

Supfdj>|fc(x,jO|. (9.411)

For the remainder of this section we set ΐD = ί for simplicity. From Lemma 9.2
we write

(9.412)

Using Lemma 9.6 we get

(9.413)

We complete the proof for the case where C^\g — g^ = Q in all but one ̂ , which
Jβ has zero intersection with dA. The extension to the general situation is
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straightforward and left to the reader. From the definitions in Sect. 7 and (9.410) it
easily follows that

lC-\g-gc}C-\g-gc} = c\dx f
BJP

.e-V2\y-*\\h*(z)-he(y)\. (9.414)

Notice in the last integral the variables \y — z\ and \x — y\ are both ^ — . We define
8

smoothings of he(x)

hs(x)=$dyφ(x-y)h*(y), (9.415)

where φ(x) is C°°, ΞgO, of integral one, and whose support lies within distance — of

the origin. Then the last term in (9.414) is

\hs(z)-hs(y)\ (9.416)

we perform integration by parts in the radial variables (x — y and \z — y\ for fixed y
to get

(9.416)^cjώc J dy$dz\Vhs(x)\e-1/2\χ-y\ e - ί / 2 \ y - z \ \ V h s ( z ) \ . (9.417)
B^

We use Lemma 9.6 again to arrive at

(9AΠ)^c(L)$dx\Vhs(x)\2, (9.418)

where c(L) goes to zero (exponentially) with L. The Lemma follows from the
inequality

J dx\Vhs(x)\2 ^ c £ \δh(f)\2 (9.419)
/

that follows immediately from dimensional considerations alone.

9.5. Derivatives of r(A)

We require bounds on r(A) and its derivatives.

Lemma 9.7. There are c l 5 c2, c3, & y< -^ such that

(c2β
ll6fec*mnN. (9.51)

This lemma contains all the information we will need and this section is devoted to
its proof.

Taking the expression for r(A) from (6.6) we replace A by a complex number
x + iy, and easily obtain :

(9'52)
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where

(9.53)

e—\ " > f 2 L V ' ^< y\ *> '"n

L\== / C D

n

We first study r(A) and derivatives for \A\^ -rĵ . We consider the region
P

2 1
l *l = o i/6 , 1/1= gi/e

In this region the following bounds hold

(9.54)

m^ (9 55)

Terms I and II have been studied by expanding all the exponentiated exponentials
in Taylor series (with easily controlled remainders). Thus

^ (9.56)

and

—^
\H\<^ce2l» (9.57)

in this region, estimates on the remainder terms of the Taylor Series absorbed into
the constants. In IV a single term « = 0, dominates the sum. From (9.55) using
Cauchy's inequality the bound of (9.51) follows (with γ = Q and c3 = 1).

To study r(A) when \A\^ -r^ we consider the region

W^i, bΊ^A- (9.58)

ε is picked sufficiently small so that the two largest terms in the sum over n in IV

are within π/2 in phase. There is a y< ̂  and εί >0 such that
LD

— <ce(L3/2)y(ί-εί)X

2 (9>59)
IV ~

and as in (9.55)

M ̂  (9 51°)
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There follows

\β2

But by maximizing over values of β

\N

(9.511)

\β213,

from which the lemma follows.

9.6. The Vacuum Energy I

Recall that dμs depends on a parameter λ introduced in (1.5), g as defined in Sect. 7
depends on a length Z/, and the fluctuation field δ [given in (6.4)] depends on L. In
this section we will show that the next to last factor on the right side of (9.25) may
be controlled by a proper selection of 1, I/, and L.

Let

h)2+δ2. (9.61)

From the definitions of δ and ψ one sees that

δ = P(ψ + g-h), (9.62)

where P is the projection which takes a function / into its fluctuation part, i.e.

(9.63)

with Ωa the cube containing x.

Lemma 9.8. Given p y < l / ΐ p , if λ and L/ΐD are sufficiently small and L'/ΐD is
sufficiently large then

meδFί, (9.64)

where δ<l.

(The c in Lemma 9.8 and the similar c in Lemma 9.9 each go to infinity as Λ->0,
so as in other places, λ must be fixed small but non-zero.)

To simplify our notation we will set ΪD=1. Let f = g — h. Recall from Sect. 8
that the covariance, Cs, of dμs is a convex combination of "diagonalized"
covariances, i.e.

Cs = ΣλiCi> Σλt=^ (9-65)

where the coefficients λi depend on the interpolating parameters s and each Ci has
the form

ΣxA/ (9 66)
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C was defined in (7.6) and the χ . are characteristic functions of disjoint sets (each a
union of cubes) drawn from the partition used in the cluster expansion.

We begin by proving that

f^^Πtf^Y', (9.67)
ί

where dμ{ has co variance Q as in (9.65). Since ]Γ λt = 1 this inequality shows that it
is sufficient to prove the lemma with dμs replaced by dμt. To prove this inequality,
let dω(σ) be the Gaussian measure with covariance given by the positive bilinear
form 2B so that

epyβ = J dω(σ)ey^5 σ(ψ + /} . (9.68)

We substitute into the left hand side of (9.67) and interchange integrals to obtain

\dω(σ)ldμse^^ + f\ (9.69)

We now do the integral over ψ to obtain

J dωe^Sσfe1/2pyίσCsσ . (9.610)

Writing Cs as a convex combination of C/s and using (9.65), we apply Holder's
inequality to obtain the upper bound

Π (j dωe^ίσfe1/2p^σCiσ)λi . (9.61 1)
ί

If we reverse the steps that led from the right hand side of (9.67) to (9.610) in each
factor in (9.611), we obtain the inequality (9.67).

Next, suppose that for some α > 1 and sufficiently close to 1 we have

C.-gαCJ (9.612)

in the operator sense. Our choice of C will be given below. We will show that

ldμCie^B^dμCie^B. (9.613)

We prove this by writing, as above in (9.610)

^B = J d
1/2αpyί<τCίσ. (9.614)

This inequality comes from (9.612),

ell2Λpy5σCίσ (9.615)

(9.616)

The inequality in (9.615) is because upγ>pγ and for any Gaussian measure dg(σ)
with mean zero the characteristic function

(9.617)

is increasing in K. Q is the covariance. This yields (9.613).
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We will use (9.613) to control the awkward nonlocal operator v which occurs in
C and thus in C . Choose α>l. We first show that if λ is sufficiently small
depending on α, then

C^αC0. (9.618)

Define C0ί by replacing C by C0 in (9.66). Equation (9.618) implies the analogous
inequality for CI? C0 . To prove (9.618) we note that

C" 1 - u'1 + 1 + v^u~ 1 + 1 - || v | | ^(1 - | | V | | ) ( M " ί + 1) (9.619)

provided 1— | |v | | >0,

= (l- | |v | |)Co 1 . (9.620)

Thus inverting each side yields

C° (9 621)

By combining Lemma 9.6 with the bounds (9.94), (A1.6), and (A1.12) we see that
| |v | | tends to zero as λ tends to zero. Therefore we choose λ so small that

. (9.622)
1-IMI - '

By combining (9.618) with (9.613) choosing C\ to be C0i we obtain

$dμie
pyB^$dμ0ie«pyB, (9.623)

where dμ0i has covariance C0ί. This combined with (9.67) shows that to prove the
lemma it is sufficient to prove that for αpy<l,

(f dμQie^BYlp ^ c^eδFί (9.624)

if L' is sufficiently large and L is sufficiently small.
We now start to prove (9.624). We prepare to undo the translation from φtoψ

by reintroducing Fί9F2 (see Sect. 7). By the Holder inequality the left hand side of
(9.624) is less than

F2))w, (9.625)

where l/p' + l/q'=l/p. Choose p' so that αp'y = /?<!. Since the covariance C0i of
dμ0i is a direct sum of covariances associated to disjoint regions inX, the integrals
in (9.625) factor. A typical factor of the first integral has the form

βBe-*ί-t2)VP 9 (9626)

where the integrals mB,Fί,F2 are taken over the support Y= Y. of one of the χ .̂'s
in (9.66). The covariance is C0 instead of %jC0Xj because the χ .̂'s can be dropped
since the fields in B, F2, are localized in Y. We change variables in (9.626) by setting

ιp = φ-g9 (9.627)

where g is calculated from h, with

h = h-h0. (9.628)
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hQ is a constant chosen so that h vanishes near oo. h0 = 0 for Y that intersect dΛ.
Note that F1=F1(Y), F2(Y), f\γ do not change if h is changed to h in their
definitions. The result of the translation applied to (9.626) is obtained by applying
formulas (7.8) to (7.10) backwards. It is

(No l ί dμ0(φ)e- ι/2ί<*-*>VB)1'1'' , (9.629)

where B = B(φ — h) and

N0 = fdμ0e-1'2^2. (9.630)

We will prove that if L is sufficiently small,

(Noi$dμ0e-V25(φ-*2e<ί*)V*'£cV2W (9.631)

and if L' is sufficiently large,

lpFί. (9.632)

These two estimates combine to prove (9.624) and hence our lemma because by
taking a product over bounds (9.631), one for each Ύ the support of y^ in (9.66) we
bound the first factor in (9.625) by c1/2|x |. Note that p'>p>l, so we may take
δ = l/p in our lemma. The bound (9.632) is an immediate consequence of
Lemma 9.5 and the remarks preceding it.

We turn our attention to (9.631). Let χ(x) — 1 if xe Y, 0 otherwise. Define Q to be
the operator

Q = l-βχ-β4pχp, (9.633)

where P is the projection defined in (9.63). Note that the exponents in (9.631)
combine to yield

-lβ\(φ-h)Q(φ-h}. (9.634)

By completing the square, the left hand side of (9.631) becomes

(AT" 1 f dμ»(φ}e-W**+γl*' exp { - l/2j/ J hQh

+ l/2p'$hQ(u-1 + QΓ1Qh}. (9.635)

Since h is constant on the cubes Ωa appearing in the definition of P, P annihilates h
and

(9.636)

We prove below that if L is sufficiently small

u-t-β-PχP^Q (9.637)

and therefore

-βχ)^l-βχ (9.638)
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which in combination with (9.636) implies that the quantity inside the curly
brackets in (9.635) is negative. Therefore we have reduced the task of proving
(9.631) and hence our lemma to proving (9.637) and

(N-^dμ0(φ)e-1/2ίΦQ^1/p'^c1/2^. (9.639)

In Appendix 3, we show, by explicit Gaussian integration and control of the
resulting determinant, how to obtain (9.639). The bound (9.637) is implied by

~(-A) (9.640)

because

χ^l , P2 = P, u-^-A. (9.641)

Let — AN denote the Laplacian with Neuman boundary conditions on the
boundaries of all cubes Ωa filling A. Since

~A^~AN (9.642)

it is enough to prove (9.640) with A replaced by AN, for which it is trivial because P
is the projection onto the orthogonal complement of the zero eigenvectors of — AN.
The Laplacian for a cube of size L with Neumann boundary conditions can be

explicitly diagonalized and the first eigenvalue above zero is j.
Ll

9.7. The Vacuum Energy II

In this section we show that the last term in our Holder inequality (9.25) is under
control provided λ is chosen sufficiently small. We summarize our result in the
following lemma

Lemma 9.9. Given cλ>0 and p^l, if λ is sufficiently small

V*Fl. (9.71)

We adopt units in which 1D=1 to simplify the notation. Our proof will use the
bounds on the Mayer expansion given in Appendix 1.

From the definitions it follows that

by using the easy estimate

x2

\f>ιx— 1 _ rγ | < _
\V *• ιx\= * •

We now refer to the definition of E, (Al. 20)

co γ

E= Σ Γϊ-ίftli...,iA(χι)-βJxι.)

)v(x1-*2Mx2). (9.73)

«=2

1
ΐ.
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Our integrals include summation over species indices z 1 ? ...,!„. We write (9.73) in
the form

(9.74)
n = 2 Δ

where

Kiιi2= -ί-fρ.ι§ > ί nε ί 3 >_ fε ί n. (9.75)

The integration is over the coordinates and species x3, z'3, ...,xπ, zw. Note that K
also depends on n. By taking operator norm we bound (9.74) in absolute value by

/ oo \ I

' Σ 11*11 f M 2 + ό l M l f v > 2 (9 76)

Next we note that since εf is a periodic function of φ

^\e^1/2^-h\. (9.78)

Thus (9.76) is bounded by

Σ \\K\\β)(Σe?}$(Φ-h)2+^\\v\\$ιp2. (9.79)
,n=2 I\i I L

We bound the operator norms by Lemma 9.6 in conjunction with

(9.710)

to control the factors εt in K. The resulting expressions are then bounded by
appealing to our estimates (A1.6), (A1.12), and (9.94). In this way we prove that

O and IMI-+0 (9.711)
n = 2

as λ-»0 so that (9.79) is less than

/ι)2 + l/2c'Jv;2 (9.712)

for some constant c'λ that tends to zero as λ tends to zero.
On collecting our estimates we find that the left hand side of the bound in our

lemma is less than

( ( d a e

1/2pc'λί(φ~h}2+1/2pc'ASψ2)1/p . (9 713)

Since dμs = dμs(ψ) we substitute

φ-h = ιp + g-h = ιp + f (9.714)

and complete the square in (9.713) to obtain

l2c^ίf\ (9.715)
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where Q is the kernel corresponding to

β = (Cs-
1-2C'Λp)-1. (9.716)

Since Cs is a convex combination of operators bounded uniformly, C"1 is
bounded below uniformly in s and λ. Therefore Q is bounded uniformly in λ if λ is
sufficiently small. Our estimates on Gaussian integrals in Appendix 3 therefore
imply that (9.715) is less than

l/2c'Λ J/2 (9.717)

for λ sufficiently small. Since, by the definition of F19

1/2 ί/2^

we obtain our lemma by choosing λ so small that

(9.718)

9.8. Bounds on Functional Derivatives

We discuss gks/ [see (9.23)], in our Holder inequality. For simplicity we specialize
to the following form for j/

^=f[eiβl/2aiφ(x^ . (9.81)
i = l

where the a{ are integers, and such that j/ is periodic in each φ(xf) with period τ.

We also assume

(9.82)

to simplify the form of our estimates. We choose units of length with ΪD=1.
We are going to study

e~ °2eCl V2'*l |0 (9.83)

which up to the last two numerical factors is \gκjtf\0. The main result of this section
is the "combinatoric bound" (9.823). It is combinatoric in the sense that no
assumptions on parameters or interactions are necessary to ensure its validity. The
constant c'2 in (9.823) depends only on c2, g, L, L'. The other result, (9.824), requires
conditions (9.123), (9.124).

Each derivative — — in K" can act on any of the following: eGί, e°2, e+R, a factor
dip

in J3/, one of the ε's (or ip's if t — 2) contained in one of $'s which occur in the K" to
the right of the given differentiation. Thus a convenient way of mechanizing
Leibniz rule is to expand each derivative.

(9-84)
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where /' is a label that specifies on which of the above factors the differentiation
will act. Corresponding to (9.84), we have, by so expanding every differentiation in
K"

κ" = Σ< (9.85)
/

Suppose K" specifies nα differentiations localized in unit lattice cube, AΛ, and mα

factors of ε and/or ψ (contained in <f s) localized in AΛ, then the number of terms in
the expansion (9.85) for K" is less than

ΠK + wα + 3)"«, (9.86)
α

where vvα is the number of factors of j/ with x. [in φ(xi)'] in Aa. This factor grows
rapidly with the order of the expansion. To control it we use "exponential pinning"
e.g.

Lemma 9. 10. Given c'>0 there is a constant, c, such that

Π K + wα + 3)"α ̂ cΣ(n" + Wα) ec'0oec'd . (9.87)
α

We prove this lemma in Appendix 2. The proof may be paraphrased as
follows : the expansion has been constructed in such a way that if a large number,
nα, of differentiations accumulate in one cube, then there are a corresponding
number of covariances, C, with large associated exponential decays. (If a large
number of people in a sparsely populated region want to get together they have to
travel long distances.) A similar argument applies to a large number of different if s
having factors ε localized in a common cube.

We substitute (9.85) into (9.83) and apply the exponential pinning (9.87) to
obtain the following upper bound for (9.83)

-Re-G2

9 (9.88)
i

where c1? c2, and r, δ (in the definition of jcj') have been increased. The inverted
commas on the supremum indicate that the supremum is to be taken after the
integral (Lp norm) over the field ψ has been performed. We can do this because
there is nothing to prevent us from using the conversion of a sum to a supremum
after (9.83) has been integrated.

The operator e°ldκfί has the form

(9-89)
j l k

where J(x) is independent of ψ and is formed by convolutions of ρ(xl5 . . ., xf)'s from
the Mayer series terms and covariances C(x9y) and includes the combinatoric
factors prescribed by ecid, eδL° and er°°. If κ'ί involves factors, <f, with t = 2 then
(9.89) must be replaced by a more complicated expression. We will ignore this
because the reader will see that the estimates which follow remain correct.

We substitute (9.89) into (9.88) and obtain

|(9.83)| ̂  Π (". !)cw«^lχl"Sup" f |J(x)| Π I TΛi\ , (9.810)
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where c'2 >c2 in (9.83), α labels a unit lattice cube, Aa, Taί is a function of fields ψ(x)
localized in Aa and also may depend on some of the variables x localized in AΛ. Tai

is either equal to or a derivative of one of the following types, labelled by i in
(6.810):

i) eG*Δ<*\

ii) eίβί/2aίφ from ^

iii) F9, a numerical function, from differentiating F '~
(9811)

iv) ε(x), ιp(x\ or (^1/2e^ - 1 - iβ^e^) from <? 's

G 2 ;

vi) (^1/2^-l-iβ1/2e.<5) or (e^^-ί-iβ^δ + β^fδ2) from G2.

We divide the unit lattice cubes into two classes :

Class A) unit cubes in which q = h.
(9.812)

Class B) unit cubes in which

Thus class B) unit cubes are contained in the phase boundaries ̂  defined in
Sect. 6. We simplify the quantities TΛi by bounding them above according to the
following scheme : Terms from i) are bounded by Lemma 9.7. The nth derivative of
a term from ii) is bounded by

(cβll2)n. (9.813)

The nih derivative of a term from v) is bounded by

(cj81/2)B 2. (9.814)

The nth derivative of either term from vi) is bounded by

h\2~n) if n<2, (cβlf2)n if n^2. (9.815)

In class A) cubes we bound the ψ in iv) by \ψ\, the nth derivative of the third term in
iv) by

cβ\ιp\2~n if n<2, (cβ1/2)n if n^2. (9.816)

The nth derivative of ε for n^l is bounded by

(cβll2}\ (9.817)

In class B) cubes (9.816) is modified for n = 0, 1 to

2 + cβ1/2\ψ\ if n = 0, cβί/2 if n = l. (9.818)

We divide the undifferentiated ε's in iv) into two sets: distinguished ε's and
undistinguished ε's. We bound the ε's by

2 if undistinguished, cβ1/2\ψ(x)\ if distinguished. (9.819)

The point is to generate sufficient factors of β1/2 to control the powers of z.
contributed by factors ρ(x1? . . . , xt) in J. See for example (A1.6) and (A1.12). On the
other hand we must avoid creating too many factors of \ψ\ which will lead to
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uncontrollable factorials when the bound in Sect. 9.3 is used. We first select one
distinguished ε(x) localized in each cube of class A), wherever this is possible. From
each factor δ we select three further distinguished ε(x) in class A) cubes, or if this is
impossible, as many as one can select. This completes the selection of distinguished
ε(x). Many other selection procedures would have been possible.

The result of these estimates applied to (9.810) is a bound which is not good
enough for our purposes because factorials such as na I grow too swiftly to be
compensated by the powers of β available. We will now show how to use an
exponential pinning lemma to include some compensating factors in our bounds.
Let Na be the number of factors of distinguished ε's in K" which depend on fields in
AΛ. In Appendix 2 we prove

Lemma 9.11. Given c'>0 and q there exists c so that

c'Loec'd. (9.821)

By means of this lemma we can include a factor

ΠK ! ΓWΓβ ΞΛ (9 822)
α

in front of (9.88) and (9.810) at the expense of increasing c'2, c± and δ, r in the
definition of K", J.

We apply our bounds for Tai to (9.810) with a factor fq included and obtain for
all q and c'2 depending on q

2βM/6. (9.823)

(Some numerical factors have already been absorbed by fq with an unindicated
index change.) Our notation for the integrand is schematic. N/2 is the power of β
that comes from applying (9.813) to (9.819) to TVs. It depends on the term in the
"Sup". The "Sup" is over not only / but additional parameters arising when sums
like the one in (9.815) are converted to supremums. c'2 has been accordingly
increased. M is the number of functional derivatives acting on e+Gί. The bound
(9.823) thus provides a bound of the form (9.23) for gfcjtf. The "Sup" is not an
important modification since it takes place after integrals over fields.

In order to use this bound, one must know something about the kernel J. We
use (A1.6) and (A1.12) to control the factors ρ(xί9...9xt) in J. We use the
exponential decay [see for example (9.32)], of the co variances. We need restrictions
such as (9.123) and (9.124) so as to control the combinatoric factors ecιd, eδL°, er°°.
We put this together to obtain: there is a q so that for any c'2 and c3>0

cΣw^-csFi^lXI^/l^M/βjμi^i^i^^.^i) (9 g24)

tends to zero as β-+Q uniformly in X, \X\>1 and all compatible h, J. The powers of
β and the exponential of F1 together control the exponential of \X\ because in Sect.
8 the choice of Yi+l for each i is made so that every cube, AΛCYi+ί9 either



Debye Screening 233

contributes convergence by belonging to ΣΛ which means that Fί is large (as β-+0)
in ΔΛ or it contains a term from K" (or K) which contributes a power of β. The
factors g — h, F2 are also controlled (in L2 norm) by e~C3Fί and fq.

9.9. Conclusion of Proof

The reader can easily check that the hypotheses of Lemmas 9.5, 9.8, 9.9 are
compatible. For λ sufficiently small, L sufficiently small and L sufficiently large, we
see that the product of the second, third, fourth and fifth terms on the right of our
Holder inequality (9.25) are bounded by

where c, c' depend on γ in (9.25) but not on zi9 β. We obtain the first term in the
Holder inequality through a bound on \gκjtf\ by (9.823) and then use (9.824).
Before we state the result, we detail conditions on our potentials and parameters
that have entered our discussion.

(1) We have fixed integral charges, et. Our activities are constrained, from (3.8),
by a neutrality condition

0. (9-92)

(2) We assume stability of the short range potential [see (A 1.8)] in the form

c^N (9.93)

(W= Fin Appendix 1).
(3) Referring to (A 1.9) and (A 1.10) we require smallness of the short range

potential in the form

2ezmβ\\υ2\\ae
c^c2λ

2<±, (9.94)

where v2 is given by (3.3). λ first appears in (1.5).

(4) We assume

α^(l-^)i,|C(x,y)|^c^(1-^l^^ (9.95)
1D

with δ1<l/29 from (9.123), (9.124), and (9.34). By our remarks in Sect. 9.3 the
second bound holds if λ is sufficiently small and if the first bound holds with δί

replaced by δ\ <δ1. The second bound in (9.95) prohibits 1 = 0.
(5) Non degeneracy : we limit the fugacities by the conditions

>0 (9.96)
m

for some constants c . The origin of this condition is the non-uniformity of y in
Lemma 9.7 in the relative sizes of the activities z . In consequence c' in (9.91) will
depend on the constants c .

Lemma 9.12. With the parameters (et, c1? c2, λ, α, δ± >0, c , L, L} fixed as above and
with <$# as given in (9.81) supported in Jf 1? a union of lD-cubes, let c'A be arbitrary.
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There are CA and c3 independent of β, z. such that if β/lD is sufficiently small the
expansion converges in the sense

\X\\<^c">eCA\Xι\.e-(l-2δ1)dist(Xί,W)lϊD^ (9.97)

If the sum over X is further restricted so thatX strictly contains Xl we may replace

c™ by cc™ where c-»0 as β/lD-+Q.

Remarks. Parts of our convergence proof were given with 1D=1. In obtaining the
form of Lemma 9.12, the length scale in variance of results is useful, that is the
transformation

β-+β/l, z^zf, w->/w, x-+x/l9

λ^λ, δ^δv CI-+G! etc.

Lemma 9.12 carries forward the intentions of Lemma 9.4. There is a similar
statement to correspond with Lemma 9.1.

We now consider the expansion obtained by dividing both sides of (9.01) by Z
so that the left hand side becomes the finite volume expectation of jtf. By
combining Lemma 9.12 and results in Appendix 4 we obtain the existence of the
infinite volume expectation of j/. By using a standard [1,11] "doubling the
measure" argument we also obtain exponential clustering of infinite volume
correlations of j/'s.

Theorem 9.13. With the parameters fixed as above, and with jtf, £β of the form (9.81)
with j/ supported in X19 & supported in X2, products of w1 and w2 factors
respectively, there exist c3, CA independent o/z , β such that for β/lD sufficiently small,
the infinite volume expectation < > exists and

(9.98)

(9.99)

δί may be picked arbitrarily small if the first relation in (9.95) holds by keeping all
the parameters other than λ fixed and making λ small depending on δί (thus forcing
the short range potentials to be small by (3)). With δ1 and λ fixed the above results
hold for β/lD sufficiently small.

Now we consider observables built up from particle densities σ^x) (see Sect. 1).
Let A be an observable of the form

^^ί/(x1,...,xj:σ(x1)...σ(xj: (9.910)

where / is a bounded function supported in X1 and species indices have been
suppressed. Such observables can easily be pushed through the sine Gordon
transformation and emerge as convergent sums of polynomials in ε(x), e

ίejβl/2φ. For
example, consider the linear combination

(9.911)
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then

(9.912)

As in Sect. 3 we write Z(φ) = eM/ and expand M' as in (3.6) in a convergent series.
The result of performing the derivatives is a sum of terms I(^/(φ)) with s$ a
polynomial in ε, eίβl/2ejφ. The argument for an observable as in (9.910) is more
complicated but no more difficult. We now prove and analogue of Theorem 9.13
for observables A of this type and deduce.

Theorem 9.14. Let A,B be observables as in (9.910), supported in X^ X2 re-
spectively, and with w l 5 w2 factors of σ respectively. With the parameters fixed as
above the infinite volume limit exists and

δ1 is as in Theorem 9.13.

Remark. In order to control the sums over observables j/ discussed above it is
necessary to obtain some convergence from the ε factors. This is achieved by
lumping them in with the ε's in (9.811) iv).

Next we discuss the screening of fractional charges. Suppose that in addition to
species 7=!, ...,s with charges ej we have a species 7 = 0 with charge e0 not
necessarily a multiple of g.c.d. {et}, i.e. possibly fractional. We will discuss the
expectations of observables of the form

A=^$f(x1,...,xJ:σ0(xί)...σ0(xJ, feL^ (9.914)
zo

in the limit z0->0. The activity of the fractional species goes to zero. This is a way
of studying fixed fractional charges in a sea of non fractional charges.

Theorem 9.15. With the same hypotheses as in Theorem 9. 14 we obtain the same
conclusion for observables as in (9.914) (X'1nX2 = 0).

We do not give a proof of this theorem. It is more difficult than our preceding
theorems because the resummation in Sect. 9.0 is no longer valid if the observables
don't have period τ as is the case after applying the Sine Gordon transformation to
(9.914). However it is possible to iterate (8.3) so that the factors

only appear with h constant on the boundaries of the components of Xc not
containing the point at oo. (Each such component of Xc has a single value of h over
its entire boundary.) Also h = Q at the boundaries of the union of components oϊXc

containing the point at oo. The resulting expansion can be resumed over h subject
to the boundary conditions given above and yields Theorem 9.15.

Finally we state that our limits are independent of the parameter λ (if small
enough) in the charge symmetric situation.
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Appendix 1. The Mayer Series II

We return to the definition of the M ' and the ρ's of Sect. 3 in order to establish
estimates that will justify the manipulations of Sect. 3 and also will enter into our
convergence proof in Sect. 9. Recall

Let

ks(at) = J dXi . . . f dxjρ ί l t ...,jβ(Xι,...,xX (A 1.2)
fll as

where α1? ...,αs is a set of unit lattice cubes. In order to examine the size of ks(at)
when the cubes are widely separated, we define an object ηA

9 an augmented tree,
consisting of

i) a tree η on sf vertices, srgs'. This is a mapping i-+η(i\ l^η(ί)<ί^s'. (Trees
were defined this way in [1], unfortunately a different definition from in [3].)

ii) An augmentation mapping, A, defined on 1, ...,s with range the integers.
This satisfies

if i = K / .

For a given ηA we define

For a given α>0 there will be constants bηA satisfying

= 1 (A 1.4)

for which we define L(at) by

e-«^^). (A 1.5)

Our basic estimate for fcs(α ) reads

)e-«L(a*. (A 1.6)

Conditions on the potentials and α that yield (A 1.6) will be detailed along with an
upper bound for cs(α). The bηΛ will only be implicitly derived, for only their basic
properties such as (A 1.4) will be relevant. (A 1.6) is uniform in A'.

We assume that the two body potential v2 given in (3.3) can be decomposed
into two terms

(A 1.7)

where WR is purely repulsive, i.e. wR^0, and for all integers Λf^ O,

Vn^-BN (A 1.8)
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on the N body subspace. Vn is the interaction constructed from the two-body
potentials wπ. We define a norm ||u2 | |α similarly to (A3) and [34] of [3]

ωi+ile-^-ll]. (A1.9)

The supremum and sum are over species indices ij which have been suppressed on
the w's. Our final assumption is that K defined by

obeys κ<\. B is from (A 1.8) and

zm-maxz . (A 1.11)
I

With these assumptions, we will show that (A 1.6) holds and cs(α) is bounded by

2s f
c'wswΰT' (AL12)

Our arguments will assume familiarity with [3] and we will follow the notation of
that reference closely. Note that (A 1.12) and (A 1.6) imply convergence in (A 1.1)
uniformly in A'.

We start with Eq. (49) in [3] and expand the exponential of the one-body
potentials using (3.7) and then resum the series, (27) in [3], as described in Sect. 3.

The result is

&,...,,.(*!. ->*.)=£ 7! Σ Πft)
t = s ί η ίs +ι, », it i

J<M-j8ΓMd σ

f-ι/fa»σt-ι)Π^^^
r~1 (A1.14)

where

(i) £ is the sum over different possible s member ordered subsets of the t
ys

vertices of the tree diagram labelled by η. These are distinguished vertices which
have coordinates xl9...,xs. The integral is over the positions of the remaining

vertices. ^ sums over the species at the non-distinguished vertices.

(ii) The species subscripts in J, t/2, and w/(ί) are omitted,
(iii) V'2 and W'(t} are constructed with the possible extension to repulsive

potentials as detailed in (A4) and (A5) of [3]. A specification of a permutation of
the integers 1,2, ...,5 together with a tree graph η with s distinguished vertices in
(A 1.13) defines an augmented tree graph ηA. By removing non-distinguished
vertices that join exactly two lines, and branches of the tree containing no
distinguished vertices, a unique minimal augmented tree graph ηA is determined.
(Trim the tree and straighten its branches!) The length as defined in (A 1.3) is the
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same for a graph and the corresponding minimal graph. These minimal graphs are
the only ones that will appear in the sums in (A 1.4) and (A 1.5). It is useful for us to
observe that for these minimal graphs s'5^2s — 1. We apply to (A 1.13) and (A 1.14)
the estimate (A 1.8) and

Here the variables xl9 ...,xs are to be integrated over aί9...,as and the remaining
variables over A'. In addition we use Proposition 3 of [3] :

In direct analogy to (56) in [3] we thus derive

CO 1 £|

- - -

t l
We have used the fact that there are - - '——- ways of selecting a subset of s

(t — S ) \ S l

elements out of t. Thus

<'(«)S!*5Γ' (AU8)

which implies our bound (A 1.12) when κ<l/2.
Finally, note that these inequalities and (A 1.1 3), (A 1.1 4) show that the limit

A' s IR3 exists and satisfies the same bounds.
We write

i

and

M=Σρ ίjVij>φ + E, (A 1.20)
ί

where

v=Σβeiejβi,J(x,y). (A 1.21)
ij

The ρ's of this paper are the truncated correlation functions of statistical
mechanics. Similar bounds to our (A 1.6) on fall off rates for these correlation
functions have been obtained in [4]. Using the results of [4] our theorems may be
restated with slightly different conditions on the potentials.

Appendix 2. Exponential Pinning

We begin with the proof of Lemma 9.10. For d >0 there is a constant cr so that

^<α + Wαπα!^'mα. (All)
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This is a trivial inequality that can be obtained by considering the maximum of
Nnc~N. Next let Δt be unit lattice cubes packed as closely as possible about zlα, then
for all c' > 0 and p there is c so that

(na\)p^cf[ec'άisi{A«>Aί} if rcαΦθ. (A2.2)
ί=l

c is independent of α. The proof is easy. Now we note that the product over α of the
right hand side of (A2.2) is less than

c^ec'd (A2.3)

and

Y[ec'm«^ec'°0. (A2.4)
α

The proof of Lemma 9.10 follows by collecting these estimates.
We now discuss Lemma 9.11. The first inequality is immediate from (A2.2) and

(A2.3). To prove the second inequality we start as in (A2.2) with

ΛΓα

(NΛ\)q^cY[ec'άi*t(A" Δi) (A2.5)
ί = l

and dominate the product over α of the right hand side by

c\X\ec'L0ec'd (A2.6)

for some c.
Factors to be controlled have each been pinned to distant cubes by

exponentials.

Appendix 3. Gaussian Integrals

We summarize some useful facts about Gaussian integrals which are in repeated
use throughout the paper.

Let M be a bounded positive operator on L2(Λ) with A ClR" open. There exists
a measure space (Ω, dμM) and Gaussian random variables, symbolically denoted
by

IfΦ (A3.1)

indexed by functions /eL2(/l) such that

(A3.2)

(Ω, dμM) is unique up to isomorphism of measure spaces. M is called the
co variance of dμM.

The ensuing formulas are most easily understood in the light of the following
heuristic representation for dμM

φ Π ^(^/Normalization. (A3.3)
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One may perform certain changes of variable in Gaussian integrals, e.g. the
translation

(A3 A)

yields

9e-^M~ld. (A3.5)

This formula is valid provided g is in the domain of M"1 which is generally an
unbounded operator on L2(A).

If M is trace class and its kernel satisfies some additional regularity properties
(continuity properties on the diagonal, see for example [9]) the measure space Ω
may be taken to be the space of continuous functions φ on A and (A3.1) is no
longer symbolic. We are in this case in this paper (except for the measure dω
introduced briefly in Sect. 9.6) and our remarks given below will assume this
additional regularity.

Let N be a bounded selfadjoint operator on L2(Λ). The function

J φNφ (A3.6)

is a random variable (i.e. measurable). We are about to obtain conditions on N
such that

(A3.7)

is finite. If M and N were matrices on a finite dimensional Hubert space an
elementary calculation involving changes of variables that diagonalize M~1—N
and M"1 shows that

(A3.8)

= det~1/2(I-M1/2NM1/2) (A3.9)

provided

||M1/2NM1/2||<1 (A3.10)

which we will henceforth assume (or establish). These formulas continue to be
valid in our context.

We shall now show that

(A3.ll)

^ecNtr(M\N\) ^ (A3. 12)

where \N\ is the operator absolute value of N and
1. (A3.13)

It is enough to find corresponding upper and lower bounds for the determinant
in (A3.9).

A i ), (A3. 14)
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where λl9λ29... are the eigenvalues of the trace class operator Mί/2NM1/2. We
bound the log above and below by

log(l-A)^-A (A3.15)

and
/ 1 \

(A3.16)

—,. (A3.17)
~ ί-λ

In (A3.15) we take λ to be an eigenvalue λi and the lower bound in (A3.11)
immediately follows since

(A3.18)

To prove the upper bound in (A3. 12) we first replace N by \N\ which increases the
integral and then take λ in (A3. 17) to be in turn each of the eigenvalues of
M1/2 |ΛΓ|M1/2 so that (1-/ΓΓ *^CN and

^T^λ (A3 19)

since λ is positive. The upper bound in (A3. 12) follows immediately in analogy to
the lower bound.

The measure

(A3<20)

is also Gaussian and its covariance is

(M~1-NΓί=Mf. (A3.21)

This is easily seen by computing the Laplace transform, e.g.,

. ( A3.22)

We have used this formula frequently in the text. It follows by using (A3.5), the
formula for translation, g is chosen so that the term linear in ψ (which has been
relabelled φ) is eliminated, i.e. we complete the square.

We now leave these general considerations and instead discuss their appli-
cation to the Gaussian integrals that came up in Sects. 9.6 and 9.7. In Sect. 9.6 we
have the bound (9.639) to prove. Let

C-^=u~l + \. (A3.23)

The associated Gaussian measure is dμ0. The left hand side of (9.639) can be
written in the form

(A3.24)

where

(A3.25)



242 D. C. Brydges and P. Federbush

By virtue of our bounds (A3. 11) and (A3. 12) the proof of (9.639) reduces to
showing that

|| Cy2 NCX2 1| < 1 , tr(CQN) £c\Y\, (A3.26)

where 7 is the support of χ. Since Y is a union of cubes Ώα, P commutes with χ and
so

(A3.27)

(A3.28)

The second inequality can be obtained from an estimate for C0(x,x). The first
inequality in (A3.26) holds if L is sufficiently small because

\\βχ\\^β<i (A3.29)

and

||Ci'2PχPCi'2||^IICέ/2PCi'2|l (A3.30)

and the right hand side goes to zero with L by (9.640). This completes the proof of
(9.639).

In Sect. 9.7 we required the bound

\dμse
pc'^2^ecW. (A3.31)

This reduces by (A3. 12) to showing that if λ is sufficiently small

|| C^22pc'λχC^2 1| < 1 , tr(Csχ) g c\X\ , ( A3.32)

where χ is the characteristic function of X. The first bound follows immediately
from c'A->0 as /l-»0 as established in Sect. 9.7. To prove the second bound recall
that Cs is a convex combination of "diagonalized" covariances of the form

where the supports of the χt are disjoint. This means that it is sufficient to prove the
bound with Cs replaced by each of these diagonalized covariances in turn.
Furthermore, if λ is small enough we have shown that

(A3.34)

[see (9.618)]. Therefore we are reduced to proving that

^XiCQχiχ = trC0χiχ^csuppχiχ (A3.35)

which again follows by estimating C0(x, x).

Appendix 4. Ratio of Partition Functions - Infinite Volume Limit

Our principle result is

Lemma A4.1. Under the same conditions on parameters as described in Sect. 9.9
there exists a constant c independent of Λ such that

Z'(Λ,X) _ c | x | (A41)
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Furthermore the infinite volume limit

exists.
The proof is based on the proof of Theorem 6.1 in [11]. We write our

expansion as an equation on a Banach space and solve by a Neumann expansion.
We start by recalling that in Sect. 8 IR3 was partitioned into ΓD-lattice cubes.

We set /D = l. We suppose that these cubes are assigned some arbitrary order
independent of A. We wish to obtain an expansion for

Z'(Λ,X)= ΣNldμ(ψ}eE(χc]eG(χc}eR(χc} - (A4.2)
h

The compatibility conditions mentioned in Sect. 9.0 simply amount to having h
run over all configurations for which h is constant in certain "collar" neigh-
borhoods of width L' of connected components of X. We apply the cluster
expansion of Sect. 8 to each term inside the sum in (A4.2) taking X1 = Y1 equals the
first lattice cube in A ~X =X\ if non-empty. After cluster expanding we resum
over h as in Sect. 9.0 and the result is

Z'(Λ,X) = £ 3ίf(X' ~X}Z'(A,Xf) . (A4.3)
X'

Jf( ) is defined in (9.02). The sum is over allX' which are unions of lattice cubes
inside A with X' containing X(j first cube in X°.

Define X* by

X* =χ ~ last cube in X . ( A4.4)

We rewrite (A4.3) (with X replaced by X*) in the form

Jf (X ~X*)Z'(Λ,X) = Zf(A,X*)

- £ jfr(X'~X*)Z'(A,X'). (A4.5)
X'

X^X'

We divide through by J#"(X~X*) and rewrite this as an equation on a Banach
space. The Banach space 38 is all complex functions on subsets of A which are
unions of lattice cubes. The norm is

(A4.6)
x

and α will be chosen below. Define an operator Q on & by

QQ(X)= y^gg*)- Σ
Ji (A ~Λ ) \ x'

I XξX'

provided ZΦ0. Set Qρ(0) = 0. If the sum over X' is vacuous set the sum equal to
zero. Equation (A4.5) can now be written in the form

(A4.8)
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where δ is defined by

(5(0)- 1, (500 = 0 if X Φ 0 . (A4.9)

and

ρ&) = Z'(Λ,X)9 ρ(0) = Z. (A4.10)

In order to prove the bound in the lemma it is sufficient to show that for some α

|| β|| £1/2 (A4.ll)

because then (A4.8) has a unique solution

ρ = (l-QΓ1Zδ = Z ΣQ"δ (A4.12)
« = 0

and the bound in the lemma comes from unravelling the definition of the norm in

||ρ||^ZΣ||β||" = 2Z. (A4.13)

We return to(A4.11). It is easy to show that

(A4.14)

We pick α so that

e~a^%. (A4.15)

We use Lemma 9.12 with X replaced by X' ~X* and X1 =X~X* to bound the
second term in the curly brackets by |. It now remains only to show that if β is
sufficiently small

) = J dμ(φ)eE(Δ} + G(Δ} ( A4. 1 6)

is bounded below in absolute value uniformly in Δ by 1/2. First we note that

E(Δ\ G(Δ)-*Q as β-*0 (A4.17)

so that by dominated convergence 3C(A) tends to one. This argument does not
quite prove the required lower bound because of the lack of uniformity in A. We
note that if the co variance CΛ of dμ in (A4.16) is replaced by the infinite volume
co variance CR3, uniformity follows immediately from translation in variance of
dμc 3. Thus it suffices to prove that

(ldμCΛ~\dμc^(eE^G^} (A4.18)

tends to zero uniformly in A as β— »0. Define dμ^ to be the normalized Gaussian
measure with the interpolating covariance

(A4.19)

We use the change of covariance formula to write the difference (A4.18) in the form

(A4.20)
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(see Sects. 8 and 5). The prime denotes differentiation with respect to t. We bound
(A4.20) in absolute value by

(A4.21)
x,yeΔ

The 0 subscript on the absolute value sign means that the absolute value is to be
taken inside the integral (over the positions of the two functional derivatives) and
inside the sum obtained by performing the derivatives via Leibniz' rule. We show
that the dμ integral tends to zero uniformly in A, A, t by the estimates of Sect. 9 [It
is of the form (9.22) with F1,F2,h zero, j/ = l and dμs altered harmlessly.] This
completes the proof of the bound in Lemma A4.1.

We now turn to the existence of the infinite volume limit. By (A4.12) it is
enough to prove that Q = QΛ is convergent in operator norm and uniformly
bounded by 1/2. The uniform bound has just been established. By Lemma 9.12 we
know that the sum over X' is uniformly convergent so norm convergence is
implied by convergence of 3ίf(X) for eachX. We refer to (8.4) to see that if A strictly
contains X, J#"(X) depends on A only through the covariances

which occur in dμs and κ(y, s). In particular R(X) is independent of A and E(X),
G(X) are independent of A because the translation g when restricted to X is
independent of A. To analyze the A dependence replace C by C(ί) defined in (A4.19)
throughout κ(y, s) and in dμs so that

(A4.22)

(A4.23)

κ(y, s}-*κ(t\y, s),

Then by the fundamental theorem of calculus it suffices to show that

1 d_

Idt ^ sup >o

as yl—»IR3. We evaluate the derivative by Leibniz rule using the change of
covariance formula

(A4.24)

Therefore we must estimate quantities analogous to (9.22) where covariances CΛ in
K and dμs have been replaced either by C(ί) or C and each term has one C in it. The
estimates of Sect. 9 are insensitive to this replacement. Furthermore, since the
estimates of Sect. 9.8 involve the norm

Λ*\χ-y\jΛ,=supf|C(x,
xcX

with α <1//D, || C^ || 5 is bounded uniformly in s,t,A and

||CJδ->0 as Λ->IR3

(A4.25)

(A4.26)

(by the method of images) we obtain (A4.23) and thus complete the proof of our
lemma.
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