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Introduction

In this paper, we study the following problem: Given a one-parameter family of
continuous maps of the interval [0, 1] into itself, how many of these maps show
aperiodic behaviour? For a particular family of maps containing a quadratic part
we are able to show that for many values of the parameter (in fact for a set of
positive Lebesgue measure) these maps do present aperiodic behaviour.

The parameter in question will be called δ (and is always supposed to be small,
positive) and the particular family of functions is defined by

c if

if

where Eδ = {x\ \x — ^\ <δ}, so the graph of fδ is

x _ 1 _ δ - ( χ J / 2 ) 2 / δ

Fig. 1. The function fδ for <5 = 0.15
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We shall analyze in great detail the successive iterates xn = //(f) of the point f, and
in particular the derivative Dn δ = fδ'\x=fδ(^i2γ We shall show that for a large set of
(5, \Dn ίδ\ diverges exponentially, i.e. \Dn ̂ ό\>2n/1. This implies together with the fact
that j70 does not return with a strict period to Eδ that fό has sensitive dependence
with respect to initial conditions in the sense of Guckenheimer. Namely, this says
that there is an ε > 0 such that for every x there is at least one (in fact very many) y
arbitrarily close to x such that \fδ

l(x) — f£(y)\ >e for some n>0. We thus conclude
that the "aperiodic" behaviour, observed numerically for many such maps, is a
quite "common" thing. Such a result has been predicted, based on experimental
evidence by several authors, cf. in particular Shaw [1] and Lorenz [2].

Fix a small δ >0. We analyze the function f = fό. Let x = ̂  + μί_ίδ, with Ift.J
<1. Define nt to be the smallest value of n for which \f"(x)-^\<δ, and let δμi
= fnί(x)—2 We shall establish a relation between μ , μ._ί and «.. From the
definition of / we have

/(*) = ! -<$(!+ ft2-!)

f\x) = 2δ(l+μlJ.

We claim that for 2 ̂  n g ni9 fn(x) can be written in the form

with σ=±ί and AeZ.

(Proof. The assertion is true for n = 2. If it is true for /", then with y = fn(x\

f»+lω=ί2(2^)+σ2"(1+/1?-1)
δ' if

J l ' \2-4A-σ2n(l+μf_1)δ, if

so that the assertion follows for n+ 1.) Let

This also reads

or

where β. = σ^ — 2^4f) e N— \ (since 5 > 0, and |vj < 1, 5f must be positive) and vt

— σ^. We are interested in /"(f), so that we set μ0 = v0=0, i.e.

JVoίe. Given B;eN—5, σ; and Aί are defined uniquely by

Aί = n+\,σi=-\ if B; =

if H ~ " (03)
II ΰ — *
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These numbers (they are all functions of δ\ are related to the derivative by

k

= H2n'\vj\ 2m'9 (0.4)
j=ι

where k is defined by

k k+l

Σ nj
J = l 7=1

fc

and mf = m— £ wj (The factor |vj is absent if w' = 0.) Since we are interested in
J = l

large derivatives, we must be especially careful when a Vj is near 0. In particular, if
v7 = 0 for;>0, we are in the presence of a stable periodic orbit for the value of δ in
question, and we discard this value of δ, together with a small interval around it.
The problem is to choose these intervals sufficiently small so that their union has a
relatively small volume, and sufficiently large so that Dn δ diverges exponentially.
The main content of this paper is that these two conditions are compatible. In the
study of the excluded volume, we learn a lot about the "typical" behaviour of an
aperiodic map, and this section is written in a self contained fashion so that the
general ideas of the proof should be more easily grasped.

As an example of what is not a "typical" δ, we show that there is an
uncountable set of δ for which fn(^)φEδ for all n>0, [so that |/fl/(/®)| = 2π], but
that this set of δ has Lebesgue measure zero. Namely \et2~q~1^δ<2~qbQ such
that the binary representation of 2qδ does not have q — 2 consecutive zeros, nor
q — 2 consecutive "Γ"s. Then

and since AneΊL, we have from the condition on δ, that the fractional part of /"(^)
— \ cannot have more than q—1 consecutive zeros, hence \fn(^} — ̂ \>δ. On the
other hand, the measure of the set of δ without q — 2 consecutive zeros or Γs in
their binary representation is zero since it is a subset of the numbers without
"digit" 0...0 and 1...1 in their 2^~2-adic representation.

^P~2 ^2
As a first step in describing the excluded volume, we standardize the

description of orbits and introduce "resonances" (values of p for which vp is very
near to zero) and "blocked positions" (the returns to Eδ after p in which the
images o f f and of x = ̂  + μpδ have not yet separated).

Definitions

I. The set F of primitive resonances depends on δ through the numbers nt, Bt, v . It is
defined by

1 = n1 and Bp+1=B, and v*<2-"M
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where J = |log<5|,

L(n)= Π (1+Γ3).
j = n+ί

(We shall see in Lemma 1.4 below that the condition Bp+1=B1 above is
redundant.) The intuitive meaning of a resonance is that it is a return to Eδ which is
a) very near to vp = 0 and b) sufficiently near to v0 =0 so that the trajectory to the
next return takes the same number of steps (np+ί=nί) and the same left-right
sequence with respect to the maximum (Bp+ί=Bί). Note that l<L(n)<33.

II. When peP, then vp is near v0 = 0 and this means that we have almost
encountered a stable periodic orbit. We shall now devise a test which finds the first
q >p for which the orbits starting from vp and from v0 separate again (provided we
exclude a "small" set of δ). By definition, the test T(p, p) is true (passes). Then T(p, q)
is recursively defined by

Ύ(p,q) i s t ruei f [ng+1=nβ_J,+ 1 and Bq+ί=Bq_p+ί

and T(p,g — 1) is true and signvq = signv q_ p

and [if geP then

This test says first of all that the two orbits are considered to be blocked if they
return simultaneously to Eδ and have the same left-right sequence. Furthermore if
q is a resonance, then |vj must not be much smaller than \vq_p\. We shall see in
Lemma 4.1 below that, vaguely speaking, vq~vq-p when q is a blocked position.

III. We now define the resonance set P'.
1) Let p0 be the smallest element of P. Then p0 is the smallest element of P'.
2) If peP', define t(p) as the smallest integer after p for which T(p,£) does not

hold, i.e.

£(p) = inf{s|s>pandT(p,s) is not true}.

Then the element of P' following after p is f(p\ where

f(p) = mf{s\seW and s^t(p)}.

As an example:

Pθ ί(P0) P2 t(p2) N

I I blocked ι ι blocked ι

Po , *(Po)

ί(Pι)

Po, PI, p2eP, p2=f(Po)
P0,
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IV. The function q counts the number of "unblocked" positions between t(p) and
/(p). The formal definition is

q(t) = t if ί<p0,

q(t) = q(t-ϊ) if p <; t < t(p) for some pe IP' ,

q(t) = q(t-ί)+ί if ί(p) g ί < /(p) for some pe IP' .

The function r counts the number of pelP

r(s) = card {p|peIP,p<s} + l.

V. We next describe five situations in which we exclude a set of δ. Recall that all
the quantities Bi9 nt, ... are functions of δ and that A = |log<5|.

For everyyeN, we define

^<5^<50 and \Vj\^A~*j and

(/' - 1 or j ̂  PO or ί(p) <y ̂  /(p) for some pe IP7)}, y = 1, 2, . . . .

Of course, one of the problems will be to describe this exclusion as a function of δ.
The idea of excluding Ij is to avoid for the unblocked positions and for yeP' and
fory'=f(p), when peP' that |v7 | gets too small. The larger the number of returns
already encountered, the smaller we choose the excluded volume. No exclusion
is necessary when j is blocked, because we shall derive from v7 ~v7 _ p [where
p<y<£(p)] that |vj| does not become too small, since | v y _ p | does not.

For every ye N, we define

I? = {<5|0^<5^<50 and l-|v, |^ A~15j

( i f j=l replace -15 by -3)},j=l,2, ... .

This exclusion has the purpose of avoiding v7 (for ally) to be too near to ± 1. The
problem with which this is connected is the following. We would like to argue that
when nq+ ί φ nq_p+ 1 then vq — vq_p is not too small. What may happen, however, is
that after nq_p+l steps the image of f + <5μ0=^is near to the boundary of Eδ while
fnq~p + 1(^ + δμp) just very nearly "misses" Eδ. In fact, the exclusion I? handles the
case nq+l>nq_p+l while the exclusion I? below deals with the case when nq+i

<nq_p+ί and prevents fnq + ̂  + δμQ)$Eδ from approaching Eό too much from the
outside.

and

compatible with n, δ, 3βe{l, — 1}, such that

Here, a number B is called compatible with n, δ, if there is an orbit of fδ for which
the pair B, n actually occurs in a first return. The precise definition is :

A number Be N— \ is compatible with n, δ if there is an x, 1 ̂ x <2, such that
1) \xδ-B2-n+1\<2-n+1δ,
2) For all ri <n and all JB'eN-£ ,
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We shall now define a further set of δ which will be excluded. Let ]Γ be the sum
over the blocked indices ^5, i.e. over b>s

{j\j^ s and for some peJP',p^j^t(p)-1}. (0.5)

Then we define

ΣM";+ι>10000^)
7

This set excludes in essence those δ for which a non zero fraction of positions is
blocked or for which long returns are blocked. We shall see on p. 123, that on the
complement of I4, one has

s<q(s)(l+ε)

for some small ε > 0. Therefore a "typical" orbit is unblocked most of the time. We
shall also derive, in Lemma 4.4, the inequality

which says that if a resonance occurs after p returns, a "typical" orbit is not
blocked for more than p returns. On the other hand, it seems to us that if we single
out those δ for which only a finite number of blocked positions occurs, or for
which only blocked sequences of bounded length occur, then the Lebesgue
measure of these δ is zero.

Our last exclusion is the set If (which has in fact zero Lebesgue measure among
those δ remaining after the other exclusions). It is essentially

^δ^δ0 and sNc{mJ. = 1 2 , where

i= Σ
fc=l

see Sect. 7 for a precise definition. This excludes those δ for which fks(^)eEδ for
fc=l,2, ..., i.e. for which the image of the maximum periodically returns to Eδ.

Results

Define now J(δ0) = {δ\Q£δ£δ0 and δφll

s, s = 0, 1,2, .., /-1, 2, 3, 4, 5}. Our results
are

Theorem A. For <50>0 sufficiently small, the Lebesgue measure ofJ(δQ) is at least

Theorem B. For <50>0 sufficiently small and for all δeJ(δ0) one has

(1) l/Λ=/<s(1/2,l>2"/7.
(2) fs is topologically conjugate to a piecewise linear map gfτ:x->τ(-|— |χ — ||), with
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(3) fδ is sensitive to initial conditions : i.e. for every xe [0, 1] and small ε >0 there is
in every neighborhood Uofxay and a number n such that \ff(x) — f£(y)\>ε.

The proofs of these facts take up the remainder of our paper and we outline
here the main steps.

In Sect. 1, we warm up with some easy observations, among which the most
farreaching is that some minimum time is required between two returns to Eδ;
namely

2";><Γ1/8. (0.6)

In Sect. 2, we prepare the tools for the comparison of v^ with vq_p when q is
blocked. The main observations are :

If qφW then

\vq\^2- n* + ί/2A-2, (0.7)

(i.e. non-resonant v's are not arbitrary small). Also, as long as q is blocked, due to
the basic identity (0.1),

q~l 1 Iv — v I
2= Γ _ - __ q q~p

_ -
* ι2"'-Hlv,| + lvP|) 2— '

(i.e. vp, which is resonant, can be estimated through the square root of \vq — vq_p\).
In Sect. 3, we bound the quotient

'ri IV/V P I~J-*,
j = P+l

and we give bounds on \vq — vq_p\, using the exclusions. This serves in Sect. 4 to
bound recursively the derivative as follows. From the calculations on p. 117 we
see that a quantity of interest is

J =l

Assume we have already bounded Rp-^ Then the main result is that, essentially
due to (0.8),

R, * <~A~SR (2nιR, W 2 Iv , —v I1 / 2

t(p)—l i vp-lv^ i vί(p)-p-l/ I vt(p) t(p)-p\ •>

i.e. we have absorbed the potentially dangerous factor vp into the last two factors.
Using now the bounds on vq — vq_p\ established in Sect. 3, we get in Sect. 5 the
exponential divergence of Rn, i.e. Theorem B 1.

In Sect. 6 we bound the excluded volumes. The idea is to measure how fast a
resonant interval is traversed when δ varies (very little). The relevant bound shows
that

dv,
dδ

and then we use the formula

dδ Λ Γ -i,-— card[vs

 x(v
αv0
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to bound the integrals. We need a relatively fine decomposition of Q<δ<δ0 in
order to get the desired bound of Theorem A.

In Sect. 7, we use the exclusion of If to reduce the discussion to the analysis
done by Guckenheimer [3], and this yields Theorem B2 and B3. In particular
there is a homeomorphism h (which is not necessarily absolutely continuous) such

It seems to us that most of the preceding results carry over without much
change to similar families of functions which are suitable small perturbations of
the special family we have chosen. Note that our particular choice has been
motivated through the following consideration: the often studied maps
xH->4sx(l — x), with s=l — π2δ2/4 are conjugated [through x = sin2(τry/2)] to
y\-+(2/π)s,ϊcsm(slf2sm(πy))=fδ(y). Then fδ is similar to fδ in that for small

Note. Similar results have been announced by Jakobson.

I. Preliminary Remarks

Lemma 1.1. We have

Proof. By definition, with j>l, and Nk= £ nl9
1=1

so that

/^-1 + 1(ϊ)^l-2<5

and

//°-1 + k+1(i)^2fc+1<S, /c>0,

as long as 2kδ<^ — δ. For <50 sufficiently small, this implies

Lemma 1.2. We have

Proof. From

we deduce

The assertion follows from Lemma 1.1.
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Lemma 1.3. //j>l, then with

β = B/2"Y(B12">),

one has |^Q^3.

Proof. By (0.1), (0.2),

The assertion follows, if <50 is sufficiently small, from Lemma 1.1.
We next present two simple consequences of the absence of a resonance

condition.

Lemma 1.4. // ns+ 1=nt+l and Bs+ 1 φ£ί+ 1? for some s, t ̂ 0,

/ By Eq. (0.1), we have with n = ns+ί=nt+ί,

vl-vΐ = (Bs+l-Bt+

By Lemma 1.1, we find

|v2 - v2| ̂ 2'n(δ~ 1 -

Lemma 1.5. // ns+ ί>nt+ί, then

Proof. From Eq. (0.1), we have

i.e.,

Since Bs+ί is compatible with ns+l,δ, we have for all n<ns+ί with x=

but this implies the assertion of the lemma.

Lemma 1.6. For δφl* and ε>0 one has for δ0<δ0(έ),

Proof. From ^^1^ we have

ΣM rcj+1^ 10000 4(5) Iog2zl.
j

But, by Lemma 1.1, nj+ί>A/2. Therefore
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Thus

Δs/ 2 < q(s) (A/2 + 10000 Iog2 A) ,

and the assertion follows for sufficiently small δQ.

II. First Consequences

In this section, we collect several estimates which are relatively straightforward
consequences of the definitions in particular, we defer the recursive bounds to a
later section.

We define

and

Lemma 2.1 l. Let δ>0.
(1) I/peF then

v^K-v^J/2"'^-1.

(2) 7/peP' and p<s<t(p) then

K-v s_pH|v s+1-v s_p+1 |/(2«--1(KI + K_p|)).

(3) //peF and p<s^t(p) then

v2=^f^ ΓI (2"-1(|v,| + |v j_p|))-1.
Z j = p + l

Proof. (1) is an immediate consequence of np+ 1 = nv and Bp+ 1 = B1 and of (0.1). To
prove (2), we note that p<s<t(p) implies ns+1=ns_p + 1 and Bs+1=Bs_p+ί.
Therefore (0.1) implies

and the assertion (2) follows now because p < s < t(p) implies v sv s_p>0. (3) follows
now by induction.

Lemma 2.2. Given (5>0, let peW and p<p+j<t(p) andjeP. Then either

\vp+j\^\vj\(l+±j-2), (2.1)

or

|vj|. (2-2)

Proof. Suppose the contrary of (2.1). If p+ 'elP, then due to the condition

This and the contrary of (2.1) imply (2.2) since vp+JVj>0. If p+jφlP, then since
np+J+l=nJ+1=n1 and Bp+J+1=BJ+1=Bί, we must have

1 Empty products are defined to be equal to 1
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Since LQ')^1 for all 7^0 we find

But Π (! + k~ 3) ̂  exP(Γ 2/2), so that
k = j+ί

|vp +jl>|vjl(i-ir2).
Therefore one of the two alternatives must hold in this case, too.

Lemma 2.3. //<5eJ4 and qφW, then

where A = |log<5|.

Proof. We distinguish four cases.

Case 1. nq+ί=n1 and Bq+1=Bv By the definition of IP, since qφP, we have

and the assertion is evident.

Case 2. nq+ί=nί and Bq+ ί Φ B^. Then the assertion follows from Lemma 1.4, and
from v0 = 0.

Case 3. nq+ί<nί. By Lemma 1.5, we have

|vβ+1+2"« + 1-1vβ

2 |^l.

Assume now vq<2~"q + i + 1A~3. Then we have for ε = l or for ε= -1,

\vq+1+ε\^A-ι.

But this implies, by (0.1),

δ = Bq+1/(2n "-1+e

with |^|^2zl~3, so that

\δ-Bq+ J(2n« + ί+ε)\^2A " 3δ/(2n« + 1 - 1) ,

and since 2ng + 1^0(<5~1), by Lemma 1.1, this is in contradiction with δe J4 (since
δφll). This implies (1) in this case.

Case 4. nq+1>n^. Applying again Lemma 1.5, we have

|v1-2n ι-1vβ

2 |^l.

Assume now vq<2~nq + 1 + ίA~3. Then we have, as before

and this is in contradiction with δe J4 (since δφl^). Hence the assertion follows in
this case.
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Lemma 2.4. Let <5eJ^, let peΨ and q = p+j<t(p). Then

Proof. By Lemma 2.1 (2), we have

If p+jφW and if we assume

η^<Λ-3, (2.3)

then (since np+j+1 = nj+ί), we have

2nJ+ί\Vj\2>2nJ+ί\vp+j\
2A6^A2,

by Lemma 2.3, since p+j^P and (5e J*+7 . Hence it follows

which is in contradiction with (2.3). If p+ eP, since p+jή=t(p)9 the test implies

IWv,.|>(i-ir3)>Λ-3.
Lemma 2.5. // δe J^, ί/ien /or 5>0,

Proo/ By induction on s. The lemma is obvious for s=l by δφl{. Assume the
bound for all s' < s. If s is such that for some pe P' we have t(p) ^ s ̂ /(p) (or 5 ̂  p0),
then the bound follows from δφl^. In the opposite case, we use Lemma 2.4 and
obtain

and the bound follows.
We now start the estimates which show that at the point t(p\ the values vί(p)

and vί(p)_p are "well separated". This is of course due to the exclusions we have
performed. Note however, that our procedure of "waiting" with the exclusion up
to ί(p) instead of excluding the resonance condition at p altogether is crucial in
obtaining a sufficiently good bound on the volume of the excluded <5's.

Lemma 2.6. Given p and s>p let δeJ*_p+ί be such that pel?' and s = t(p).

(2) Ifns+1=ns_p+1 andBs+1φBs_p+1 and vsvs_p>0 then

K2-vs

2_p|^2—V^

(3) Ifns+1>ns_p+1 and v sv s_p>0 then
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(4) Ifns+ί<ns_p+1 and v sv s_ p>0 then

K2-vs

2_^2-^M-15^-^-3.

(5) Ifns+ί=ns_p+1 and Bs+ί=Bs_p+ί and vsvs_p>0 then s=f(p) and

Proof. We distinguish five causes for which the test T(p, s) can fail.

Case i. vsvs_p<0. Then

v —v l = lv l + lv l > l v Ivs vs-p\ I vs\ ~ I vs — p\ = I vs-p\ •>

and the assertion follows from Lemma 2.5.

Case 2. v sv s_ p>0 and ns+1 =ns_p+l and Bs+ί ή=Bs_p+ί. By Lemma 1.4, we have

K2-vJ

2_p |^2-"^-1δ-1.

Case 3. v sv s_ p>0 and ns+ί>ns_p+1. By Lemma 1.5, we have

|v s_p + 1 + 2«— -'(v^-v^l.

Assume the contrary of the conclusion of (3). Then we must have

and this contradicts δφl2_p+1.

Case 4. v sv s_ p>0 and ns+ί<ns_p+ί. From Lemma 1.5, we have

Assume again the contrary of the conclusion of (4). We find again

l-K+J^'15*5"^"3. (2.4)

From the Eq. (0.1), we derive, with ε= +1 or — 1

~ ε

(vs+1-ε) Bs+1

2" s+1~1 2"s+1~1

and from (2.4), we find μ|^4δ2~n s + 1zl~1 5 ( s~p )"3, and this contradicts <SeJs

4_p (i.e.

Case 5. v sv s_ p>0 and ns+1=ns_p+1 and Bs+1=Bs_p+1. Since s = t(p) the test
T(p, 5) must have failed. The only remaining possibility for this to occur is that
(actually in IP') and

Therefore \vs — vs_p\^\vs_p\(s — p)~3, and the assertion follows from
Lemma 2.5. This completes the proof of the lemma.
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Corollary 2.7. Given p and s>p, let δeJ*_p + 1 be such that pel?' and s = t(p). Then

This is just the worst possible combined bound of Lemma 2.6.

Note. A direct calculation, using Eq. (0.1), and δφ \J 1̂  shows that
s = 0

for m between return j and return j+ 1.

III. Comparison of Blocked Sequences

In this section, we bound the quotient

.7=1

from below, where pelP' and s — t(p). This bound will express the fact that as long
p

as the orbits of xp=/^(|), where N"p= Σ np an(l °f i are verY near to eacn other,
7=1

s~p

the derivatives -j-(fN\ where ΛΓ+1= ^ n^, taken at x=f(xp) and at x = /(^)
ΛX j = p + l

should be about equal. In fact, due to the conditions T (.,.), and by the chain rule,
we find

d
te(

while

s-p-l

= ±2"-< Π vp

= ±2nι Π v.2"J'+1.
r = /(l/2) 7=1

Now our interest in |vp+yv7 | should become obvious from nj+1=nj+p+1(j = Q,
1, ...,s —p—1). We next prepare the necessary tools to perform bounds when s
satisfies p^s^ί(p) for some peP'.

Define t0=p and denote by t19 ...9tm the elements of {πeN|π —pelP and p<n
^s} in ascending order. In the next two lemmas we only consider values of δ
which produce this set.

Lemma 3.1. Let δeJ*k_p. Let I satisfy tk_ l<l<tkfor some k, l^k^m. Then

where A = \\ogδ\.
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Proof. By Lemma 2.1 (2) we have

πΐrV = '\V 'ft <2"J+ 1 " ̂  + i V,DΓ 1

l V / - p l \Vl-p\ j = l

^K-vίk_p|(2"— -Sf^)-1 ίkΠ (2"'-*+' -Ίv.lΓ1.
.7=1+1

Since / — p^P, Lemma 2.3 implies,

while; — p^P implies through Lemma 2.3 and 1.1,

for sufficiently small <50>0. This proves the assertion.
We next want to include the terms tk in our product.

Lemma 3.2. Let (SeJ4, let peF and p<s<t(p). Then

ιi jίW .
ί = p+ι |v z_ p |

Proo/ With tk defined as before, we have*-k
tk-1

Π ^=ΓΠr^ Π rpy Π r^
l = p+ί \Vl-p\ k=l

From v Iv ί_^>0 and from Lemma 3.1, we have for ί / c_1 <l<tk)

l^^l-lί^^^l-K-v^l^^-'-^. (3.1)

Therefore,

ίk-l |v I oo

Π r^M Πd-c<5"/3),
/ = ίk-ι + l l V / - p l w = 0

where C = |vίk — v ίk_p |2zl4. Since 1— x>exp( — 2x) for O^x^^, the above product
is bounded below by exp(-2C(l-^1/3)~1) provided C<|.

We are now going to prove C<\. If ίfeeP, then

C^2J4(|vJ + |v,k_p|)g51'3,

by the definition of P (note tk — peP, too), and by Lemma 1.1. If f k£ IP, we have by
Lemma 2.1 (2),

so that by the definition of P and by Lemma 2.3, C^δί/3 in this case.
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Summarizing, we have found so far

\v

tk-p\ 1 = *-,+ l\vl-p\

^X-v*-,!).. (3.2)
\Vtk-p\

We now use Lemma 2.2. If the first alternative of its conclusion holds, then |v fj
>|v f f c_ p |and

=1 |

and since ίfc-peIP we have |v ίk_pΓ
1^z!23.3~12"1/2. Therefore, by Lemma 1.1,

Xk^(l + \Vtk-Vtk_p\δ-^)(l-5A*\vtk-vtk_p\)

^1, (3.3)

where the last inequality follows by simple arithmetic from 5J4<<5~1/3. If the
second alternative of Lemma 2.2 holds, then

Since tk — peP, |v ίk_p|<(51/3, by Lemma 1.1, and hence

*^i-f(ίk-pΓ2.
We next analyze the product

Y= Π lvΛ-,1-
/ = ίm+l

We distinguish two cases.

Case i. s<t(p)—l. As before, we find, of (3.3), [Lemma 3.1 holds for

ί(P)-2

Y^ Π (i-lv^-v^,.,,^

because C<^ for sufficiently small δ0, with

Case 2. s = t(p)—l, and 5 — pφW. We use Lemma 2.4. By multiplying the result for
the case s = t(p) — 2 with the bound for \vt(p)^ί/vt(p)_p_ί\ we get immediately
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Y ^ \A ~3. [Note that if s = t(p) -1 and s - pe IP then s = tm, by the definition of ίm,
so that we have exhausted all cases.]

We complete now the proof of Lemma 3.2 by multiplying the bounds for Xk

and Y. We get

This product is bounded below by

7=1

All this combined yields the desired bound.

Corollary 3.3. Let <5eJ* let peP' and p<s<ί(p). Then

Pro<9/ Let A, B > 0 and suppose \A - B\/B < ε < 1. Then we have 2A/(A + £) > 1 - ε,
as one can easily check. Using this inequality with A = |vz | and B = \vl_p\, we find by
Lemma 3.1, with the notation introduced there,

cf. the derivation of Eq. (3.2). If tkή=t(p), then we bound

WZEEWί2|vJ/(|vJ + |v ίk_p |)

as follows. If the first alternative of Lemma 2.2 holds, then

as in Eq. (3.3). If the second alternative of Lemma 2.2 holds, then

The result follows as in the proof of Lemma 3.1.

Corollary 3.4. Let <5eJ* let peF, and p<s^t(p). Then

A 2|v.-,l <c/ = U ι W + i v / - p i ~ '
/or some universal constant C.
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Proof. Let A, B > 0 and suppose \A - B\/B < ε < ̂ . Then we have 2B/(A + B) < 1 + e,
as one can easily check. Using 4 = | v ι l> B = \vl_p\, we find by Lemma 3.1,

^ 'n ΰ
cf. Eq. (3.2). The factors

W'= 'V fk-p' τl/
'Ίvj+lv ,!̂

are bounded, using Lemma 2.2. If the first alternative holds, then

while in the second case

We may now multiply over /c, when 5 < t(p\ as in the proof of Lemma 3.2, and the
result follows in all cases [even for s = £(p)], since 2|v fm_p |/(|v fJ + |vtm_p|)^2, if δ0 is
sufficiently small.

IV. Bounds on the Derivative

We now derive recursive bounds on the quantity

j=ι

which is directly related to the derivative, cf. p. 117

Proposition 4.1. The following relations hold, when

if p < n < t(p) for some

A~SR R112 2"1/2

if n = t(p) for some

Proof. The claim in the first case is equivalent to

Π iv,.|s^-4 π iv,ι.
j=p+\ j = P + l

Since n < t(p\ this inequality is an immediate consequence of Lemma 3.2.
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Let now n = t(p). In this case, the potentially small, resonant factor vp mil
disappear in the estimate and will be absorbed in the factor R^_p_ l |vί(p) — v r (p)_p |1/2.
The effects of the resonance at p are thus partially gone when the estimation has
proceed to t(p). From the definition of Rt(p), we get

t(p)

Kr<P) = Vi2ni> + 1M Π 2">*'|v,|
J = P+1

I _ |i/2 r(p)-p-ι
np + 1 t(p) *(P)-P' Π

^(IV.| + |V

by Lemma 2.1. By Corollary 3.3, this is bounded below by

7 = 1

(p)+ι | v \A~4

I vt(p)\

by Lemma 3.2. This proves the proposition, even in the case n^t(p)— 1, which is
an obvious consequence of what we have done for n = t(p).

We next show that when δe J4, then Rn is large.

Proposition 4.2. Let neN, let (5eJ4 and let pεW be such that p^n<f(p). Then

Rn^δ~1/8~q(n}/1°. (4.1)

//, in addition, one has t(p) ^n< f(p\ or n — t(p) — 1 = f(p) — 1, then

Rn^δ-M*-<ιw*. (4.2)

Ifn<p0, then (4.2) holds.

Proof. Note δ~ 1/8 >(5~ 1/10, so that (4.2) is a better bound than (4.1). First note that
q(ri)>0 when n>0 since from (5eJ4 and Lemma 2.5, pQ>l. We prove first the
result for all n<p0. Then we proceed by induction on n^p0, by assuming the
result for all ̂  when j < n.

Case ofn<p0. In this case, we use the equation

Since δε J4, we have 2"J + 1 |v7 |
2 ̂  zl ~4, by Lemma 2.5, and hence by Lemma 1.1, we

find Rn^δ~n/3. This proves the assertion.
We claim now that there remain four cases for n.
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Case i.

Case 2. t(p)^n<f(p).

Case 3. n = f(p)-l=/(p)-l>p.

Case 4. n = t(p)-l=f(p)-l=p.

That this is a complete set of possibilities is checked by inspection. We now
discuss the four cases which occur in the inductive part of the proof.

Case ϊ. For some peP', one has p^n<t(p). From Proposition 4.1, we have

Since q(n) = q(p—l\ we find

R >S~ί/8~q(n)/s

By Lemma 1.1, and by δe Jp (which follows from δe J4), we find from Lemma 2.5,

Therefore we find

R ><

For sufficiently small δ0 the last two factors are not smaller than 1, since q(n) = q(p)
>p(l—ε) by Lemma 1.6. This proves the assertion in Case 1.

Case 2. t(p)^n<f(p) for some pelF. This is the crucial case, in which we avoid a
factor Δ~4p which would occur had we not eliminated vp in Proposition 4.1. We
use the result obtained there :

R >A~8R R1/2 ?"1 / 2lv —v !1/2

J^n = Δ Kp-l*t(p)-p-l^ \Vt(p) Vt(p)-p\

' Π W2"'-.

By Lemma 1.1, 2.3 and since ίeJ4, we find |vz|2"z + 1^<Γ1/3, and 2"1/2^c5~1/3, so
that

>Λ~8R δ —
n = ̂  ^p-l° t(p)-p-ίt(p) t(p)-p

- 2

Next we use Corollary 2.7 (note (5eJ4 implies
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Hence we find

/? > ft R 1 / 2 *-(«-ί(p)+l)/3κn^.κp_1Jit(p)_p_1o
.^|-15(ί(p)-p-l)~40

We now substitute the recursive bounds and get

R >δ~1/8~q(p

Since n-ί(p) + l>0, we have <r(M-^)+1)/3^(Γ1/6-(n^)+1)/^ By definition,
g(p — 1) + n — t(p) + 1 = g(n). Therefore, we find

R >δ~lls~q(n)ls

Since (5^I4, Lemma 1.6 holds and we can thus make each of the last two factors
greater than one, by choosing 50 sufficiently small.

Case 3. n = t(p) — l =f(p)— 1 >p. Hence, we have t(p) — p—l >0, and thus

Rn = Rt(p}/(2"^ι\vt(p}\)

>A~8R Rί/2 2nί/2

= ̂  *p-l*t(p)-p-l^ -t(p) t(P)-p

- 8(ί(p)-p-

In the last inequality, we have used Corollary 2.7 and t(p) — p + 1 ̂ n, since p> 1.
We also have g(n) = g(f(ρ) — l) = #(p— 1). Since t(p) = f(p), we find n ί ( p ) + 1=w1 and
thus

.(^-«(ί(p)-p-D/20j-8(ί(p)-p-lh

Applying again the argument of Case 1, the last two factors in (4.3) are bounded
below by 1, and the assertion is proved in this case.

Case 4. n = t(p) — 1 = f(p) — 1 = p. We have

Rn=RP-ί\vP\2n*+l

= Rp_12«- + 1>/ 2 |vp + 1-v 1 | 1/ 2, (4.4)

by Lemma 2.1 (3), and since np+ί=nί. Since p+ 1 =/(p)eIP, we must have \vp+ί\
<δ1/4, by Lemma 1.1. On the other hand, <5eJ4cJ4 implies |vj> J~4. Hence we

find |v ; 7 + 1-v1 |
1 / 2>zl"3. Substituting into (4.4), we get

j^ >^-l/8-g(p-l)/82«ι/2j-3

and since q(n) = q(p) = q(p — 1) we have

Rn^δ-1/B-qW/S'(δ-1/3A-*).

This last factor is larger than 1 and thus the assertion follows.
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Corollary 4.3. Let neN, let <SeJ*. Then

This follows at once from Proposition 4.2 and from Lemma 1.6.

Lemma 4.4. Let n>0 and δe^. Let pelP' and p^n and t(p) — p — \^n. Then

Proof. The proof assumes Proposition 4.2 for n. From Lemma 2.1, we have

V ;= Π 2i-<|vj|+iv,ir
1

P~ 11 ^ VI "jl ' I ' j -pl/ 9«t(P)-l
7 = P+1 Δ

t(p)-p-l t(p)-l j\ I

^4 π 2-— ivr1- π urmfH-
7=1 j = P+l l V 7l + l V 7-pl

By Corollary 3.4, this is bounded by

v^CR-^^.
By Proposition 4.2 for s = t(p) — p— 1, this is bounded by

by Lemma 1.6. On the other hand, since pe IP, and δφl*, we have v^A~ 8p, so that
we find

i.e. ί(p) — p^p881ogzj/zl^p, since p>l and 881ogzl/zl <j.

V. Exponential Divergence

The purpose of this section is to improve the bounds on Rs so as to show that the
characteristic exponent of the trajectory of the critical point is strictly positive.

Consider the functions nf(<5), B (δ) and ρί(δ) = signvi(δ). It is clear from their
definition that these are piecewise constant functions of δ. On the other hand,
fixing ni,Bί,ρi for i=l, ...,s defines a set K({πί,JBI.,ρJί^s) of values of δ for which
nί(δ) = nί, Bi(δ) = Bi and ρi(δ) = ρί, for ΐ = l , ...,s. We next cast the classification of
the nt, Bt, and ρt into a more convenient form. Namely, we fix first the set P' and
the set {ί^lpelP'}. More precisely, given δ, define

and

(n<p0 or t(p)<n<f(p) for some

[the "unblocked" indices],

Γs((S) = {peN|peF and t(p)<f(p) and ί(p)^s},

[those peF for which ί(p)</(p)],

and ί(p)=/(p)^s},
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[those peF for which ί(p)=/(p)],

for some peP'},

[the last few indices, if they are "blocked"].
All possible sets Σs, Ts, Ts, and Qs can be obtained as follows.
1) Fix /^O, and 0<p0<p1<.. .<p/^s.
2) Fix tj ( = t(pj)) satisfying

Pj<tj^pj+1 for 7 = 0, ..,/-! and ί z>p z .

3) Now

l,. ,s}, if

i^s and

(n<p0 or tj<n<pj+i for some j<l or

As in the case of the K({n , Bi9 ρJ^J, we define K(ΣS, Ts, ZJ, Qs) to be the set of those
δ for which Qs(δ) = Qs etc. The next two lemmas adapt the factor Rs_ ί optimally to
the form of the sets Σs, Ts, TS9 Qs.

Lemma 5.1. //56Js

4nK(K,β,ρJ^s+1)nK(Zs? Γs, 7J,βs)5 then

Π Λ-82nιJ2nί/2 \ 1 1/2 jnt(p) + j i i
Δ Δ *t(p)-p-l\Vt(p) Vt(p)-p\ Z \Vt(p)\

peTs

Π Zj-82"t^^ z

peT's

, (5.1)

=!, if Ss=0,
42"Ίvp||-

SΠP'2^ + 1|vJ |
j = l

if Qs = {Pι,Pι+ι,> ~>s} and s^pz.

Proo/ We use extensively Proposition 4.1. Assume the result for Rp,1 where
pe IP'. We are going to prove it recursively for all 5 when p ̂  s </(p). The case s < p0

then completes the inductive proof.

Case L p^s< ί(p). Then we use first the inequality Rs^Rp_ ^(βj. If p equals ί(p;)
for some p'eF, then Z^^,^^, T^T^^T, 7J = 7
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= Tp.v {p'}. We then write

Vι=V ΐ ΐ 2"'+1K l
j = p'+l

= π -. π ... π ...
jeΣs qeTs qeT'p>

|I,2"ί+1N

*π' π ... π ...
jeΣs qeTs qeT'p,

I ' . 1 1/29*11/2 (ζ. 9\
' '

by an obvious variant of the second statement of Proposition 4.1. The formula
(5.1) follows now in this case. If pφί(p')» Vp'eF', then Σs = Σp_l9 Ts=Tp_l9

Ty = Tp_l9 and the assertion follows immediately from Rs^Rp_1R(Qs).

Case 2. t(p)^s<f(p). [The case s = ί(p)=/(p) has been handled in Case 1.] Then
we write

«. = «KP)-I Π 2^\vj\. (5.3)
J = t(P)

We have now

We now write

8 n l / 2 ι ι l / 2
Kt(p)-p-l\Vt(p)-Vt(p)-p\ '- t ( p ) t p - p '

If pΦί(p') we are finished, since then Tp=Tp_± and Tp=Tp_ί9 and the assertion
follows from (5.3) and (5.4). If, on the other hand, p = t(p') for some p'ePr, then we
have Tp = Tp_ ^{p'} and use instead of (5.1) the formula (5.2) for Rp_ i to arrive at
the result.

Case 3. s<p0. This case is trivial. This completes the proof of Lemma 5.1.
We next improve Lemma 5.1 as follows.

Corollary 5.2. //

(56Js

4nK({n.,β.,ρ.}.^+1)nK(Σs, Ts, Ts',βs),

then

Π / f - 8 9 n ι / 2 n l / 2 ι . _ | l/ 2 9 Λ t(p)+ ι|vΔ λ Kt(p)-p-l\Vt(p) Vt(p)-p\ * \Vt t(p)

peT's

R(QS)
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Proof. In view of Lemma 5.1, we only have to show that for pelP' and t(p)=f(p\

9»t(P) + 1/4-D 1/4 I | 1/ 2>1 (^ ^\
L Kt(p)-P-l\Vt(p) Vt(p)-p\ = !• ly 5;

If ί(p) = p+l then we argue as in Case 4 of Proposition 4.2. So assume now
t(p)>p+ 1. From Corollary 4.3, we find

> s:-l/32-(f(p)-p-l)/100

The inequality (5.5) will thus follow from

|vw-vi(p)_//22"<<^>'4^-8<*>-'+1\ (5.6)

Note that this is an improvement over Lemma 2.6. We distinguish four cases. Let
v=vt(P)>μ=vt(P)-P

Case 1. μv<0. Then \v- μ\>\μ\> A~4(t(p}-p\ by Lemma 2.5.

Case 2. \v/μ\ ̂  2, and μv > 0. Then | v — μ| ̂  |μ| and the result (5.6) follows as before.

Case 3. |v/μ|^, and μv>0. Then \v-μ\^\μ\ and the result (5.6) follows.

Case 4. ^<\v/μ\<2 and μv>0. Since ί(p)=/(p)eP we have nt(p)+ί=nί and

|v|^4 2-"1/2zT2,

and hence |μ|^^2~"1/2. Thus
/ | v 2 _ ί , 2 ι \ l / 2

[ v _ » [ l / 2 _ I V ^ I >2«ι/4|v2 2 | l /2V " V V

The assertion is now immediate from Lemma 2.6 and from nt(p)+ί=nl.
Define now the number N's of "unblocked" steps,

N's= Σ »j + l+ Σ WK

Then we have the more convenient reformulation.

Corollary 5.3. //

then

Proof. IfjeΓ s, we have by Lemma 2.3,

TJ + J |v | ̂  2nj + 1/2zl ~ 2 > 2nj+ 1/3 .

If pe Ts, then we want to extract a factor 2"t(p) + 1/4 from the corresponding term in
Corollary 5.2. This term is

A-8jnil2nl/2 I _ v (1/2 Λn t ( ί 7 ) + H I
^ Z *t(p)-P-l\Vt(p) Vt(p)-p\ L \Vt(p)\

> / j - 89111/2 n 1/2 /f-8(ί(p)-p-l) / j-249« t (p)+ι/4
= ̂  ^ ^(pj-p-l^1 ^ ^ '

(by the bound given at the end of the proof)
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[by Proposition 4.2, if t(p) — p> 1 (using again q(s)>s(l — ε)), and by Lemma 1.1, if
t(p)-p=l-\.

Finally, the term R(QS) is bounded below by zl~4s, using Proposition 4.2, and
(SeJs

4. From card (ΣsvTs) = q(s)^s(l-ε) and from 2^/1000>zl, we find

> ΓT 2»j+ι/ 3- nJ+ι/ 1 0 0 . ΓΊ
jeΣs peTs

and the assertion follows. We still have to provide the promised bound. We want
to show [with q = t(p)~]

Proof. Since peTs, we have t(p)φW. We distinguish three cases.

Casel. | v _ | /

so thatX^(2n«+ί/2\vq\)3l2/4^A-7 since qφW, by Lemma 2.3.

Case 2. |vJ>|Vp|/2 and vβvβ_p>0. Then

>1|V2_V2
= 2 l v g q-

The assertion follows now from qφW, by Lemma 2.3 and from Lemma 2.6 (2)-(4).

3. |vg |>|vβ_p |/2 and vqvq_p<0. Then |v^-v^_p |>|vj and we proceed as in
Case 1. The proof of Corollary 5.3 is complete.

00

Theorem 5.4. For δε P| j£ = J^, we have

(1) 2"iRs\vs+1\^n>+N*}IΊ,

(2) RS^2N*IΊ,

s

where Ns= ^ nj+1.
j=ι

Proof. Fix δe J^, and assume first, for some pe Pr, that t(p) < s ̂ f(p\ or that s <p0.
From Corollary 5.3, we have

since πJ.^|log2^|/2^zl/3. We rewrite this, using Lemma 2.5, as

where SS = NS-N'S. But
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cf. Eq. (0.5). The assertion (1) of the theorem will thus follow if

0 ̂  nJΊ - SJΊ + (q(s) - 1) J/900 - (Iog2 A)4(s + 1)

but this is obvious from δφl* and from Lemma 1.6. The assertion (2) is a simpler
variant and follows in the same way.

VI. The Excluded Volume

In order to bound the excluded volume, we need a lower bound on the "speed"
with which a resonant interval is traversed when δ is varied. This is done in the first
part of this section. These bounds are done recursively, i.e. when we bound the
excluded volume at "level" s, i.e. |J*_ ι\JsΊ, we shall use <3e JS

4_ lβ Let Is = JS

4_ ̂ J* if
s > 0. The volumes I? will be bounded in Sect. 7.

Theorem 6.1. The excluded volume, , satisfies

where AQ = \logδ0\.

We first give a general bound on the derivative of δ with respect to vs.

Proposition 6.2. Let 5^1 and δeJ^^. Then

dδ_ Λδ

d^s = P^2
Note that since by Proposition 4.2, Rs^1 is large, we see that \dδ/dvs\ is small, i.e.
\dvs/dδ\ is large. In other terms, the resonant interval is crossed rapidly.

Proof. We prove recursively a slightly better bound, namely

= 2nιR
-exp

s-l

s-1
\-20 (6.1)

This obviously implies the bound of the proposition provided δ0 is sufficiently
small. Since J51=ί(2πι"1 + v1)~1, we find

dδ
\-ι

so that

δ2~nι<
dv,

<3δ2~nι.

This implies (6.1) for s= 1. Assume now (6.1) for all i^s— 1, for some
the basic equation

(6.2)

(6.3)

.. From

l +
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1
1-

dv,

we find

dv-i =
dvs 2n*vs_ί

Using now the proposition for j = 5—1, and Eq. (6.3), we get

(6.4)

dv, dδ
dvs-ι

dδ

dv,
4δ

2nιRs_2 $

Substituting into (6.4), we get, using Lemma 1.3,

(\ _v M - I
dv.

where Zs=12-2~"1Rs1
1

2|vs_ir
1. By Corollary 4.3, and ίromδeJ^,, we find

and thus (l-Jf5)-1^exp(51/20/(s + l)20). The Eq. (6.1) follows now ϊoτj=s from

dδ dδ dv.

dv.

by induction. This completes the proof.
We now describe in more detail the order of the exclusions. Let Kq = {δ\2~q~1

}. Define V*q to be the volume

»£,= ί

The sum of these volumes is evidently an upper bound on the volume excluded at
step s, when δeKq. We shall exclude the volumes in the order I}, I2, Ij, I*, \\, I?,,...,
i.e., when we bound the volume of I*, we assume <5eJ*_ l5 when we bound I2, we
assume δ eJ^-ΛIJ etc. The estimates will, however, be presented in a different
order, namely first all V^q9 in great detail. The cases Fs

2^, and Vfq, V*q are then
variants and we present their treatment later.

Case of Vςq

We want to express the excluded volume through a precise version of

dδ
}dδ= j α v s — card(vs (vs)).

* s

We have already seen in Proposition 6.2 how to bound dδ/dvs. We now bound the
cardinality of v~^(vs\ i.e. the number of solutions to the equation vs(δ) = x, when

Recall the definition of the sets K([ni9 Bh ρj^s) of p. 136. We note the following.

Lemma 6.3. The equation vs(δ) = x, with xeIR has at most 2s solutions δ in

Proof. Rewrite the basic equation relating V y to vj_1 as

vJ = ,BJ.τ-2^-1(l+vJ?_1),

with τ = l/δ. Substituting recursively this expression, we see that for fixed nt,Bi9

i = 1, ...,5, the function vs is a polynomial of degree 2s in τ. The assertion follows.
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Next we observe that in the exclusion of I], for fixed 5 we exclude |vJ:gzΓ4s

(but only if s is not "blocked"). So this leads to a bound 2A ~4s for the variation of vs.
From Proposition 6.2, Lemma 6.3, and the bound on the variation of vs we have

' dδ
J 2zΓ4s

dv

* Σ"

where sup* is the supremum over the set J^_1nKqnK({wf, £ , ρf}^s)π{δ|s^p0 or
' such that t(p)^s^f(p)}9 and ̂  is only over those B{ compatible with nt

and some δεKq.
We proceed now to the correct description of the exclusion. The following

observations are very crucial. The numbers Bj+ί, nj+1, j = 0, 1, ...,s — 1 are
uniquely determined by the Bi+1, ni+1 with ieΣ s_1u7^_1u{0}. Similarly, by the
condition T(. ,.) in the definition of t(p\ the £j+1, j = 0, 1, ...,5—1, are uniquely
determined by the ρ.+ 1, with zeI' s_1uT s_1uT s '_1u{0}. Therefore, we may write
the precise version of the previous estimate as

v1 < y τq yV s,q= LJ Zj ^
β s _ 1 , Γ s _ ι , T ^ _ ι , I s - ι - B z + i , « t + i β ι + ι

iels - i u Γs - i u {0} ieΣs - i u Γs - i u Γ^ - i u {0}

(6.6)

where sup* extends over J^_1nKgnK(Z s_1, Ts_v jΓs'-ι> Qs_1)nK({n ί, Bt,
£?Jί^s)

n{Φ = Po or ΞlpelP' such that ί(p)^s^/(p)}. Substituting the bound of
Corollary 5.2, we have

Σ Σβz_j i—ί
Qs-ι,ι

Σ sup*2s2-tt l

βι+1 ^
I s _ i u Γ s _ i u Γ i - 1 u { 0 }

Π 2—|v,|-\

iΓ1. (6.7)

Lemma 6.4. For those δ which occur in F/^, one has R(Qs_ί)^.ί.

Proof. In order to be able to estimate ^(β^J, we consider four cases.

Case L s = t(pf) = f ( p f ) > p ' — l . Then we have

V -v |1/2 s-P'-1
v K γ K— n'\>Λ~42nίR — _ p _ Π= ̂  ^ ^s-p'-l o(«5-l)/2 11

2 J = l

by Lemma 2.1. By Corollary 3.3,
s-p'-l 9 l y / 2 s-p'-l
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Therefore,

^-'r^lv.-v.^R,-,^'' πV^iv Γ1'2

J = l

We now apply Corollary 2.7 and notice that ns+1=nί since t(p') = f(p') = s.
Therefore we deduce the bound

We now use Corollary 4.3 and Lemma 1.1 to obtain the estimate

Case 2. ί(p') < s ̂  /(p') We have in this case s— l^ί(p'), therefore Q s _ 1 = =0 and

-ι) = l

3. s = t(p')^f(pf). As in Case 1, we have

We have

by Lemma 2.5. Therefore

From this we deduce using Proposition 4.2, that

by the exclusion δφ!f(pΊ_p,.

Case 4. s = t(p'} = f(p') = p' +1. In this case we use |vx — vj > A ~5 and proceed as in
Case 3. This completes the proof of the lemma.

Hence we now have

Qs- i, Ts- i, T's- ι,Σs- i _ Bi+ι,rii+ι

oT^i δ
ίeΣs - iu Ts - juT' s - iu{0}

-^K i-Vf Π
' Ur.-i
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We now apply Lemma A. 3 and A.4 to sum over nt, Bt, and ρί? i> 1. From now on,
the variable δ in sup* has disappeared, and we use the symbols δ and A to denote
their worst possible values when δeKq. We obtain, using Lemma 1.6 to absorb the
factor 2s,

From Lemma 1.1 we deduce

V1 <
Qs- l,Ts- ι , T ' s - ι , Σ s - i

We now reexpress the sum over the choices of Qs_ 1? Ts_ 15 7 '̂_ 1? Σs_ 1? as explained
at the beginning of Section 5. We also use the estimate δllloo°A ^ 1 in some cases
to eliminate some factors A. In this way we end up with

L—ί s,q== L-ί L—i ί—t
s>0 1^.0 0<po<...<pι BI,ΠI

tι>pι

l-l
. ΓΓ ( ί.__p.)-2.2-»

7 = 0

Note now that \Σs_l\=(p0— l) + (pι — £0)+ •• + (P/~ ί/-ι) Summing over the
tj — pj, and over p^ — ί7 _ x and over p0, we get with some constant X,

Σ vs,^ Σ Σ" 2-» ιδj-1

s>0 ' 1^0 Bi,m

From the inequalities

we deduce

_

so that
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We may now sum over q and / to get the statement of Theorem 6.1 in the case of
the FV

Bound on V*q

We have again a bound of the form of (6.7), but with the factor A ~4s replaced by
zl~ 1 5 s and with sup* extending over the set

We again estimate ^(g^^ from below. If β s_1=0, we have R(Qs_1) = ί. If
β s_ιΦ0, we have

for some p,, pt<s. From Lemma 1.1, Lemma 4.2, and from <5eJ*, we deduce

RiQ^^A-'^s-pi)20.

Therefore we have from s^ply

The bound for V*q is now the same as that of V^q, apart from a factor (5 — Pj)~5 if
^ί(p). The end of the estimation follows as before.

o/ Fŝ

In this case we eliminate those δ for which

with ε= ±1. Consider now the function

We want to exclude an interval of radius ρ around x — B/2n~ 1. To bound it, we first
compute

dv " v / κ ' dv

By Propositions 6.2 and 5.2, we have, since v = vs and since we assume already
^(Ij-ulj) in the inductive process,

dδ

Therefore

dx
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The corresponding vs intervals which are excluded through I3 have therefore a
total length of at most

2 2 e
dx

We next discuss the number of solutions of (1 + v^ + ε2 "+1) = j;eIR. This is again a
polynomial equation. The function vs is a polynomial of degree 2s in τ = l/δ. Hence
the whole equation is of degree 2 2S +1 in τ, i.e. for every B, n, there are at most
2 2s +1 intervals of length 2 ~ "Δ ~ί Os which will be excluded. The bound for V*q is
therefore

F3 < yq y 2s4

We first perform the summation over B and n. Since B has to be compatible with n
and 5, we obtain

by Lemma A.2. The estimate is now similar to that of V^q.

Bound of V*q

s

We recall that Ns= n l * is the set of those δ for which

From the definition of 1̂ ", we deduce that there is an exclusion at t(p'\ where p' is
the largest element of IP' less than s. We want to exclude those δ for which St(pΊ is
so large that (6.8) is satisfied. We have to exclude at most a vt(p,} interval of length 2,
i.e. vt(pf)e(— 1, +1). As before we give an estimate on the measure of the set of
those δ for which a St(p,^ is too large in the preceding sense. The bound on V*q is
therefore :

<5: (6.8) holds

for some p'eP'l

When s = ί(pr)j we have from Lemma 4.3 and Lemma 1.1,
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From Corollary 5.2 we deduce

R8-^ Π 2 n j + ί \ v j \

Π A- 89711/4 p3/8 ι . I 1/ 2 !-*; |9«t(P)+ι
Δ L Kt(p)~p-ί\Vt(p)-Vt(p)-p\ \Vt(p)\Z

eTs-i

Π Λ~s2nι/8R1/8

^ Z ^t(P)-p-l

Π
peTs- iu

From Theorem 5.4 (2), we deduce

Note now that every blocked n j !+1 satisfies nj+1=nj+1_p. Since from the
hypothesis, we have St(pf)/200^.50log2A(q(s)+ί)9 we obtain

The end of the estimate is now as in the case of V*q.

VII. Sensitive Dependence on Initial Conditions

In this section, we use the information obtained in Sect. 5 and the theory of
Guckenheimer to establish that fδ has sensitivity with respect to initial conditions,
and that it is conjugate to a piecewise linear map, gτ i.e. for some homeomorphism
/ι, we have h°fδ = gτ°h.

00

Let J^ = P| j£ , i.e. the set of δ retained so far, and we have shown in Sect. 6
fc=0

that the Lebesgue measure of J^ is at least <50(1 — |log<50| ~
 x). We shall exclude from

00

J^ a further set (J 1̂  which we define below, and whose Lebesgue measure is
m= 1

\ oo

zero. Then the set J(<50) described in the introduction is J(<50) = jΛ (J 1̂  and has
\m= 1

measure (50(1 — llog^ol"1), as claimed in Theorem A.

Theorem 7.1 If δeJ^, fδ has no stable periodic orbit.
ftrr I f "\2

Proof. Assume / has a stable periodic orbit P. Since S(fδ)= -^- -\ V-^-Λ ^0, if

<5, we deduce from a result of [4] that x = | is contained in the basin of
attraction of P. However this contradicts our preceding result |/n'C£Q)|-*oo as
rc-* oo. We define {a,b}+ for α, beIR as [α,b] if a<b and [ί?,α] if b<a. We now
repeat some definitions of [3].

Definition. The fixed point p of f£, n>l, is called central iϊ fn'(p)>l and fδ is a
homeomorphism on the interval J = {p, ̂ } ± . The central point p is called restrictive
if fδ(J) C {p, p'}±> where p' = l — p. The point x = 0 is not considered a central point.
We also repeat two results of Guckenheimer [3].
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Theorem 7.2. // fδ has no stable periodic orbit, then fδ has sensitivity to initial
conditions if fδ does not have a restrictive central point. (Cf. Theorem B3.)

Theorem 7.3. If fδ has no stable periodic orbit, and no restrictive central point, then
there is a τe(21/2, 2)] such thatfδ is topologically equivalent to the map gτ defined by
0t(x) = τ/2-τ|i-4

Proposition 7.4. The set of preimages of x = ̂  is dense in [0,1] if δeJ^.

Proof. By [3, Theorem 2.6], since fδ has no stable periodic orbit by Theorem 7.1,
there is no non-trivial interval J on which fδ\j is a homeomorphism for all n.
Therefore

is dense in [0,1].

We now define some subsets of J^. For m, k, and q in N, q^q0 = [Iog2<5^ *], we
set

l~1 and (SeJ^ and

ί J }co }
{m,2m, ...,km}C j X πΛ L

m><!

Π ]£,«,*> if ™<2g/2,

{<5|/a has a restrictive central point of period m} nJ^ if m^2q/2,
OO 00

Lm,*= U ^.β.Λ and !m= U lm,q

\ oo

We recall that J(<50) = J^X (J 1̂ , and Eδ = (%—δ,^ + δ\ and E^its closure. We now
\m= 1

define two integers M and N which are functions of δ. M is the unique integer such
that ^ε[δ + 2M~1δ, δ + 2Mδ); N is the smallest integer such that there is a point

\ — δ^) such that/N(3/) = ̂  [notice that by symmetry,/N(l — j;) = ̂ ].

Lemma 7.5

(1) //i-<5^2M<5<i thenN =

(2) If^2Mδ<l-2δ,thenN = M.

Proof. We first remark that as long as fδ(Eδ)r\Eδ = & and 1 <n<N, we have

^T H )̂ ̂  D7+ '(iλ 2«+ ̂ ] = [2"ί, 2Λ+ ̂ ] .

(1) In this case, we deduce

Therefore ^ef^+l(Eδ\ and we have N = M+1 since

β(Eδ)nEδ = 0 if n^M-1, and ±φfδ

M(Eδ).
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(2) In this case ^ef™(Eδ) and we have N = M since

Eδnfδ

n(Eδ) = 0 if n<M.

Proposition 7.6. If δe3(δQ\ then fδ has no restrictive central point.

Proof. From the definition of J(δ0) we only have to focus our attention on those
restrictive central points of period less than δ~ί/2. We first show that there are no
restrictive central points in Eδ. Let x be such a restrictive central point of period n
and let K = {x, 1 - x} ± . We have β(K) C K and since \ e K, ^fδ

n(K) for any r in M
However, KcEδ implies a contradiction with δφl*.

We now concentrate on those restrictive central points which are outside Eδ9

and we first show that their period is less than or equal to N. Let xφEδ be periodic
with period n>N. Assume first x <^. By Lemma 7.5 there is a y such that x <y <\
and fδ

N(y) = ̂ . This implies //(y) = 0. However since S(/)^0 if xφi~<5, % + δ,
fδ

ί'(y) = Q implies that y is a local minimum or a local maximum for fδ, [4]. This
implies that fδ is not a homeomorphism on [x,|], therefore x cannot be central.
The case x>^ is similar.

We shall now exclude the remaining possibility, namely a restrictive central
point of period less than or equal to N, pnφEδ. We have fδ(^) = ί — δ, fδ

2(^) = 2δ,
fδn+ 1(ϊ) = 2"<5 as long as fδ(?)φEδ. We now compute the position of the fixed point
pn > \ oίfδ which is the nearest to \ for n ̂  N. Notice that this is the only candidate
for a restrictive central point of period n ̂  N. Since pnφEδ,fδ can be replaced by the
broken linear transformation defined by

2x if

yi-x) if ^x^

Let qn be the fixed point of gn which is the nearest to \ and greater than \. By a
direct computation, one obtains qn = ̂ (l — 2~n)~1. If 2<n<M, we have

Thus pn cannot be central and restrictive in this case, cf. Fig. 2.
It is easy to exclude directly the occurrence of a restrictive central point of

period one or two. The only remaining possible periods for a restrictive central
point are M and M+liΐN = M+l, and M if N = M. We investigate the two cases
separately.

Case 1. N = M+l. This case corresponds to Case 1 of Lemma 7.5. We have/0

M(|)
^ andfδ

M+1(±) = 2Mδ<± Since fδ^g and fδ

M(±-δ) = 2Mδ<^ we have
for xeEδ. From this we have \<pM<q_M and therefore pMeEδ. But

we have seen that such points are not central restrictive if δe J(<50). However no
other fixed point of ff can be central, and so //* has no restrictive central fixed
point. We now investigate fδ

M+1. We have fδ

M+ \pM) =fδ(pM) ^l-2δ>pM since pM

belongs to Eδ. Moreover //f+10<^, therefore by continuity there is a solution y
of //ί+1(x) = x such that pM>x>^. This implies pM+ίeEδ, and as before pM+ί

cannot be central and restrictive.
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0.25

Fig. 2

0.75

0.251

0.75

5=0075

Case 2. N = M. This case corresponds to Case 2 of Lemma 7.5. We have
= 2M~lδφEδ. Consider the equation for v,

This equation has a solution v with 0 < v < 1 since

For this v WQ have

Therefore

From this and the monotonicity of ff on [̂ ,̂  + vδ], we deduce

As before, this implies that pM is not central and restrictive.

00

Proposition 7.7. (J 1̂  has Lebesgue measure zero.
m = l

Proof. This will be an immediate consequence of the fact that every 1̂  has
Lebesgue measure zero. There are three cases.

Case 1. 2~q~1^δ<M(δ0,2~q) and ra<g-3, q^q0. In this case Lemma 1.1
implies that 1̂  = 0.
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Case 2. 2~q-1 <^<5<inf(<50,2~«), q-3<,m<2q/2, q^q0. We shall prove that
λ(l^q}k)^(9(l)2-kq/s 2. If δel^q>k, we define the numbers 119129 ...9lk by

h
£ n^m j for j=l,2,...9k.

i=l

From this we deduce that every n. is in this case less than δ~ 1/2. The bound on Z in
Lemma A. 3 is now

2<β+D/2 2 - α _ . , n

-'-— 2 " '

if α^f. Let W*q be the volume of the set of those δ in J^, for which 2~q~1 ^δ
<2~Λ and nl9n2, ...,ns<2(q+ί)/2, and vse(- 1, 1). We use again Corollary 5.2 and
bound R(QS_ J. We have ,R(βs_ J ̂  zl " 5s from Lemma 6.4. We now bound Ws*q as
in the case of V2

q. We obtain

Σ

8(5 Π (ί/-p/)-22-"1lτ - ι υ Γ i-1l / 8

Since

if ^fo=::P0§2^ό1] is sufficiently large. From I^= P) L^ k, we have
h

Case 3. 2-«-1^<5<inf(<50,2-ίO and m>2q/2(q^q0). Let

We shall prove first that ^ef^(Eδj^) for some n < 3 A. As long as fg(Eδ/Δ)nEδ = 0, we
have

fS(EΛIΔ) = {2An + σn2»δ, 2An + σn2»(l + A~2)δ}±9

where AneZ and σn= ± 1. We define αM and bn by f^(Eδ/A) = (an9 bn). We notice that
\an-bn\ = 2nδA~2 which implies /δ

Ml(£δ/Jn£5Φ0 for some smallest Ml<2A.
There are three cases.

Case 3.1. 26ΛMl(^/j)' then trιe assertion is proven.

Case 3.2. \φf™^(Eδj^ and aMιεEδ (notice that from M1>A — 3, we have
\bMί-aMi\^Φ(l)A~2^2δ). This implies

2 λ denotes Lebesgue measure
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However, i f j> l , we have

as long as 2j~ 1A ~ 3 <^- δ. Let j'0 be the smallest integer such that 2j°A " 3 ̂  J. We
have ^efj^E1), since from 2 jo"1J~3<^ we deduce 'δ2jo<%. Therefore

+ Mί + 1(EδlΔ). The assertion is proven in this case since 1 +j0 + Mt

3.3. $φfδ

Ml(EδlΔ) and bMiεEδ/A. This implies

£2 = β-/|-3,ί-δ]CΛMl(^)

However, if 7 > 1, we have

as long as 2j~lΔ~* <\-δ. This implies as in Case 3.2 that ^eflίί+jo+1(EδlΔ) for
somej'o such that 1 +70 + M1 < 3 A. Assume now there is a restrictive central point
p, of period greater than 5 A and such that pφEδJΔ. From the preceding argument,
there is a ye{%9p}± such that/n(y) = f for some n<4A - 1. This implies //G0 = 0 if
7 > 4 A Let <2 be the period of p9 since S(/) ̂  0 if x Φ ̂  - δ, \ + δ, //(y) = 0 implies that
y is a local maximum or a local minimum of /β. This is a contradiction with the
fact that p is central.

We now recapitulate the possibilities for central restrictive points.
(1) There is no central restrictive point outside Eδ (Proposition 7.4).
(2) In Eδ\EδjΔ, every central restrictive point is of period less than 5 A.
However the values of δ for which a central restrictive point occurs in Eδ\Eδ/A

belong to (J 1̂  ^ which is of measure zero (Case 2). Therefore, we only have to
m= 1

estimate the volume of 1̂  >q for m>2~q/2, and in the case where the restrictive

central point is in Eδ[Δ. Let p be such a restrictive central point for some δeϊ^. Let
K = {p,l-p}±,wQ have fδ

n(K)CKcEδ/Δ and since ±eK, /Γ(i)e£<5 for any r^l.
This implies |v rj< J"1. From this and

v,2

m(S, vrm+ ,) ̂  0(1) \B - Bc\

if Bή=B° (of Lemma A. 3) we deduce

|B|^δJ-12π' - + 1 .

The conclusion of Lemma A. 3 is therefore replaced by

Let M*M be the set of those 5,'δeJ^, 2"«~1^^<inf(2-«,(50), q>q0, and such

that KJ^zT1 for r=l,2, ...,/c. Let M^ f k= (J M^>kfβ, we shall now prove the
q = <io

following bound

00

This will imply λ(l^) = 0 since I^C f) M^ k by the preceding argument. Let V* k _
fc=ι ' ' 'y

be the Lebesgue measure of M£f M. vkm+ x is any number between -1 and +1. The
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bound for V£ k q is the usual one. However, in the summation we have to precise
those r for which r feP. We obtain

F5, < y 2~qί/2 y y* 2~nι
rm,k,q = L^t LJ LJ

rί<...<rk~i

I

Π (tj-pj)'2
J = 0

Since A(M^ Fm

5

jM, we have, for fc>40,

which ends the proof of the proposition.
Combining Proposition 7.5, Theorems 7.1-7.3 we obtain Theorems A and B.

Appendix

Lemma A.I. Letf(n,q) be the number of sequences of binary numbers with n digits
but not more than q — ί consecutive zeros. Then

/(n,ί)^3 2"exp(-n/2«+1), (A.I)

for q>ί.

Proof. The following recursive relations hold for n>q,

f(n+l,q) = 2f(n, q) -f(n - q, q) . ( A.2)

This can be seen by appending a zero or a one to every allowed sequence with n
digits and subtracting the number of sequences which end as 1 0. . .0, i.e. for which

"~~€
only n — q digits are arbitrary. No solution to (A.2) can grow faster than A(q)xn

0,
where x0 is the solution of largest modulus of xq+1 =2xq— 1. We find, for large
q, x0~2 — 2~q or x0^2exp( — (^)q+ί). In order to derive a bound on A(q) which is
uniform in q it is more convenient to consider

g(n, q) =/(«, q) -f(n -l,q).

Since f(j,q) = V for j = 1, . . .,q - 1 and f ( q , q ) = 2q - 1,

we find

ff(m?)^2»exp(-n/2«+1), (A.3)

for n^q+l. From (A.2), we have

n

g(n+l,q)= X g(j,q)
j=n-q+l
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and so we should verify for n > q,

j=n-q+ί
or

But this is true and thus ( A.3) follows in all cases. Since f(n, q)= Σ g(j, q) + 2, the
j=2

bound (A.I) follows by inspection.

Lemma A.2. Let g(n, q, Bc), Bc > 0 be the number of sequences of binary numbers B
with not more than q — ί consecutive zeros, satisfying

Then g(n,q)^ (9(1) 2nexp(-n/2q + 5) for q>5.

Proof. We reduce this lemma to the preceding one. Since Bc>0, we can write
Bc = 2"~2a + b with α,beN, b<2n~2. If B>BC, then we must have

which is satisfied if

Writing B = 2n~2a + r, we are asking thus how many r there are such that

2n~2<r<2n+ί

with not more than q + 4 consecutive zeros, (because the highest order digits of r
may be influenced through 2n~2a). But this is bounded through Lemma A.I, by

3 3 2"exp(-(n-2)/2ίZ + 5).

Substituting the result of Corollary 5.2 into the bounds for V*q, we see that it is
useful to have a general bound, for all jeΣs_1 (in particular j^P), of the quantity

Σq sup*|vJ.Γ
12~II / + 1 .

BJ + 1 > nJ + 1 δ

To be more specific, we extend the sum and the sup somewhat by introducing the
following set for which the bound will be proven. Let

Xq = {n,B\n^.q — 4, and B compatible with n and some δeKq} .

Lemma A.3. For some universal constant C, we have, for 1 ̂  α ̂  3/2,

ZΞΞ ^ SUP \Vj\~a2~nJ
W ί + i . B ί + i e X f l ίeKgnKαπi.Bi .ρOis j )
«k,Bk,ρk fixed ό such that j§t IP

f o r / c ^ j <5eJj

Proof. By the equality
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we find

Since, by construction, j<£ IP, we find by Lemma 2.3 that we have to sum at most
over the set v?^2~" J + 1zl~4. Therefore, we have to sum at most over the set (with

2«ι-ι

We consider, for fixed nl9 B19 . . ., nj+ 19 the function v? as a function of B = Bj+ 1 and
vj+1. In order to simplify the expressions, we consider B as a continuous variable,
but the correct argument must use difference calculus instead of differential
calculus. Then

dB
l + 1-

B dVi

and

1 B dvί

By the previous exclusions, and the method of p. 142, we find

f*[ι a.
L 1

Therefore

>
dB

and
dv?

Suppose now that for some value Bc of B and vc of v7 + 1? we find

Then for every Bή=Bc, the above bounds imply by integration

since |β — Bc\ ̂  1. In all these expressions, δ stands for its worst possible value. The
bound on Z is therefore

Σ 2-"β-«
-α/2
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where u = Θ(δ~1). For fixed n, we split the second sum over B into two parts
corresponding to

I D DCl

and 1 ̂  ———w^τ2, where τ2 will be fixed below. The first part is bounded by

9-n+l-α(2-π)/2 j θ f

l-α/2

For the second term we use the bound 2~ 2τ~α times the number of terms. The
number of choices of B, compatible with n, and some δeKq, according to Lemma
A.I, taking f(n — q, q\ is bounded by

We thus get the final bound

Z< Y~

Optimizing with respect to τ and using u = @(2q) we get

This completes the proof of the lemma.
Another typical sum in the final estimates is the one for which j = tl = t(pt\

when tt<pl+1, i.e. wheny'eT s. The expression obtained through Corollary 5.2 is
then, with fixed p( = pl).

Z'= Σ
nJ+ί,Bj+ιeXq δeKanK^n^B^ρ^i £_,-)
«k, Bk, βk, k ̂ j δ such that j = ί(p) < /(p)

fixed <5eJj

Lemma A.4

Proof. We first give a general bound on 2"J + 1 |v / | |v7 — Vj_p\
1/2. We distinguish three

cases.

Case 1. |v7._p|^2|v7.|. Then

Therefore
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Case 2. |v7_p |<2|v j | and VjVj_p>Q. Then

(\v I -I- Iv
= -«/ + ι i-lWj\ + \Vj-

W 2

V

2 -V 2
1 j j-p]

by Lemma 2.5.

Case 3. |v j _p|<2|v j.| and v jv j_p<0. Then

Combining the three cases, we obtain

For the term 2~"} + l\Vj\~ 3/2, the bound on the sum follows by Lemma A.3. We now
give the estimate for the other term. First of all, we fix nj_p+ΐ and Bj_p+ 1? and set
n = nj+i and B = Bj+1. We have

2nι

i i n~1'

We distinguish two cases.

p+ !. In this case, there is at most one value of B (call it B'c) such that

This is due to the fact that

l

B

where we have considered 5 as a continuous variable, as in the estimate of Z.
Therefore, since 7 ̂ F,

dB

as in Proposition 6.2. From this we deduce

Γ v , Bj_p+12
nί]\_Bj_p+l2

nί ~-nidv±

dB
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Therefore if B φ B'c, we have

where l = Πj_p+ί—n. From Lemma 2.6 we have (even if B = BC\

With u = δ ~ ί / 2 , Bc = 2~lBj_p+ί, α = l, the summation is now similar to that of
Lemma A. 3.

Case 2. n>nj_p+l. In this case, assume that for some B = BC we have

Notice that this eventuality always occurs. We have with l = n — Πj_p.+ 1,

.
V J - J > + 1 V J + 1

2n~1

= (B-Bc)2-nδ-1+(Bc-2lBj_p+1)2'nδ

We now separate the summation on B into two parts. The first one is over those B
such that |£-BC|>2*(5, the second one over those B such that \B-.B°\^2lδ. In the
case of the first sum, we obtain

B,neXq
\B-Bc\>2lδ

^ £ 2-"[\B-Bc\2-nδ-1:]-1/2.
\B-'&\>g2lδ

Define α = l, u = δ~i and ρ = 2~(n~l}/2. The summation is now similar to that of
Lemma A.3. Notice also that if 2lδ < 1, the second sum is zero. If 2lδ ̂  1, we have
for the second sum from Lemma 2.6,

Z-ί I j j-p\ = '
B,neXq ι

where 9 = Carά{B\B is (n,<5)-compatible, and \B-Bc\<*2lδ, δeKq}. From
Lemma A.2 and 2lδ>l, we obtain

γ<^2l(9(l)2~δ(l~A}δ2~n2nj-p+ίl2Δ8(j~p+1}

Summing over /, this is bounded by @(l)δ1/2AS(j~p+'ί\ and this ends the proof of
the lemma.
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