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Abstract. Following a recent investigation by Pearson [23] on scattering
theory for some class of oscillating potentials, we consider the Schrδdinger
operator in L2(R") given b y \ H = - e ~ υ V e2υVe~υ+ e~2Ό(F + (V Q)\ Here U
and F are real functions of x, and Q is a Revalued function of x, such that:

(1) U is bounded, and the local singularities of F and Q2 are controlled in a
suitable sense by the kinetic energy,

(2) 17, β, and F tend to zero at infinity faster than |x|~1. We define H by a
method of quadratic forms and derive the usual results of scattering theory,
namely: the absolutely continuous spectrum is [0, oo) and the singular
continuous spectrum is empty, the wave operators exist and are asymptotically
complete. This enlarges the class of already studied strongly oscillating
potentials that give rise to the scattering and spectral properties mentioned
above.

1. Introduction

The spectral and scattering theory of the Schrodinger operator H = H0 + V where
H0=—A, and F is a real-valued function of x (xeIR"), has been shown to extend to
potentials of the form V=(V W} where W is a Revalued function of x, and where
all assumptions on local behaviour and decrease at infinity are made on W2

instead of |F| [2, 8, 20, 28, 31]. One of the main interests of this result is that, while
W2 is chosen so as to behave like a good short-range potential, V=(V W) can be

wildly oscillating either locally or at infinity for example V= — 2 1+ε e
1/r

cos£1/r,ε>0 in such a way that important cancellations occur between its

positive and negative parts, so that asymptotic completeness between H0 + F and
H0 holds. On the contrary, in the example found by Pearson [21] of a very
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singular potential violating asymptotic completeness, the positive and negative
parts of the potential do not compensate.

As an operator acting on L2(IRM) = $e,V takes the form V W- W F, so that H
can be written:

H = (— V — W} (V — W}— W2'= — e~uV'e2VVe~v — W2

if W is the gradient of some IR-valued function U. H is therefore a special form of
the general case

But if U is bounded, e~u is a bijection in 2tf, so that H "resembles" H1 in a sense to
be made precise; furthermore if U(x) tends suitably to zero when |x| tends to
infinity, we expect — V-e2υV to behave for large |x| very much like the free
hamiltonian H0 = — V2 it will then be enough to make on V the usual
assumptions imposed on the potentials. This has been recently pointed out and
studied by Pearson [23]. He assumes V = V1 + V2 is a radial potential such that:

dW , , „

H can therefore be written in the form (1.1) with:

V=(V1-W2)e2U.

Pearson studies the asymptotic behaviour of positive energy generalized eigen-
functions of H, either near r = 0 or near r=oo, and then relies on results on
differential equations [10, 13] to conclude in favour of asymptotic completeness
under the following assumptions :

(α) either there exists ε > 0 such that

[7 = 0(r-ι-β)
as r->oo

Q=0(r-1~ε)

and similar estimates for the convergence at infinity of the integrals defining their
Fourier transforms, where Q satisfies

dr

(β) or there exists β : f < β rg 1 such that :

U = 0(r~β) as r-+oo

and some additional conditions on the convergence at infinity of the integrals
defining the Fourier transforms of L7, U2, V.
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This allows him to find a wide class of oscillating potentials leading to
asymptotic completeness, among them :

sinr
V= - , (1.2)

'

V=—β- with )8 + 2(α-l)>l and f<β + α<2, (1.3)

(1.4)

and stranger and wilder ones like :

-(l-fi)e ( 1-e ) rcose r, ε>0 (1.5)

(for similar results in situations of the type (1.2) and (1.3) see also [11] and [33]).
In this paper, we extend the result (α) of Pearson to the n-dimensional case,

recovering potentials (1.3) to (1.5) as particular examples, but not (1.2) which relies
on result (β) of Pearson. We consider hamiltonians H of the form (1.1) with the
following assumptions :

(a) l/eL00^11),
(b) the local singularities of V are controlled in a suitable sense by the kinetic

energy H0,
(c) there exists a IR"- valued function of x denoted Q, and a 1R- valued function

of x denoted F, so that

where Q and F both tend to zero at infinity suitably.
(d) [/, β, and F decrease faster than r"1 at infinity.
The results are as follows :
(1) H can be defined as a self-adjoint operator in L2(IR").
(2) The essential spectrum σe(H) of H is the positive real axis.
(3) The (negative) discrete spectrum of H is finite.
(4) The singular continuous spectrum of H is empty, and the positive point

spectrum of H (if any) has 0 as the only possible limit point.
(5) The wave operators Ω± exist as strong limits:

Ω+= s-limeitHe-itH° (1.6)
~ ί-> ±00

and are asymptotically complete.
All these properties are derived by standard Hubert space methods. In

particular, under assumptions (a), (b), and (c) only, we define the hamiltonian by a
method of quadratic forms, we derive (2), and we use the method of Birman [4]
and Schwinger [29] to prove (3). We then assume conditions (a)-(d) to hold, and
use the method of Agmon [1] based on a priori estimates in weighted Hubert
spaces to prove (4), and the method of Kato [14] and Lavine [18] of smooth
operators to prove (5). As an alternative route, we slightly modify Enss' time-
dependent method [12] on the more abstract form given by Simon [30] to recover
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results (2), (4), and (5). In this last point, the results and proofs have some analogy
to a recent study by Cotta-Ramusino, Krύger and Schrader [7] of quantum
scattering on a Riemannian space with asymptotically flat metrics, and Yang-
Mills potentials vanishing at infinity.

The paper is organized as follows: Section 2 contains results (1), (2), and (3),
together with the definition of auxiliary operators occurring in what follows.
Section 3 contains a proof of (4) based on Agmon's estimates of resolvents, and
Sect. 4 contains a proof of (5) using the results of Sect. 3 and the method of smooth
operators. In Sect. 5 we give an alternative proof of (4), (5), and (2) by Enss' time-
dependent method.

2. The Hamiltonian : Its Essential and Discrete Spectra

Let J^ = L2(IR"), and let & = 2tf ®C" be the space of square integrable functions
from IR" to <C". Let || || and < , > denote the norm and the scalar product in both
of them. We denote by V the operator φ-^d φ from 2tf to &. Let U be a real
locally integrable function on IR", and let W be its gradient :

W=(VU). (2.1)

Then multiplication by W defines an operator from 3? to ffl, also denoted W.
Similarly, let Q be a real locally integrable function from 1R" to IR", and let (V Q)

n

denote multiplication by the real function ]£ djQr We define the real multipli-
j= 1

cative operator V by :

V = (?.Q) + F, (2.2)

where F is a measurable function from IR to R We choose H0= —A, and we want
to define the hamiltonian H which is formally :

In all that follows we shall make the following assumptions on the local
behaviour of 17, Q, and F:

l7eL°°(IR") [more precisely - oo<μ^ U(x)^v< + oo] . (2.3)

For any α>0 there exists b and b' finite such that:

(2.4)

(2.5)

(Restrictions on the behaviour at infinity of U, F, and Q will be made when
necessary.)
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Remark 2.1. Sufficient conditions on Q and F for (2.4) and (2.5) to hold are:
β2 and FeLfoc(IRn) with uniform bound, i.e.

(2.6)
y\£i

J \F(y)\Wy = r(x)£M (2.7)

with M not depending on x and with

p=ί for n=ί

p>l for n = 2

p = - for n Ξ> 3 .

(2.8)

For n = 3, this condition can be weakened to a uniform local Rollnik condition (see

[8]).
The case of oscillating potentials studied in [8] is the particular case

V=-W2e2U = F, β = 0. In that case the local condition (2.5) is therefore a
condition on the local behaviour of W. On the contrary, in the general case studied
here, no assumption is made on W itself (except that it is the gradient of a bounded
function). In particular U may contain a strongly oscillating factor, so that strong
local singularities may appear in W2 that are not if Abounded, for example:

W=~e1/rsmellr (r = \x\).

Since \U\ is assumed to be bounded, multiplication by the functions eu and e~υ

define positive self-adjoint operators in 2tf . [We recall that there is a one-to-one
correspondence between positive self-adjoint operators and closed positive qua-
dratic forms, such that the domain Q(A) of the closed form associated with the

operator A is @(\/~A) ([16], Chap. VI). We shall in general use the same notation
for the operator and the associated quadratic form.] From this and from the
assumptions (2.3) to (2.5) we can set the following definition:

Definition 2.1. H1 is the semi-bounded self-adjoint operator associated to the
closed semi-bounded quadratic form :

-V e2VV+V Q-Q V + F (2.9)

defined on Q)(P] where P is the self-adjoint operator —IV.

Remark 2.2. In order to check that (2.9) is a semi-bounded form it is enough to note
that, if H0 = P2

because of (2.3), and for any
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so that V *Q — g P + Fis small with respect to —V e2UVm the sense of quadratic
forms.

We are then naturally led to the following definition :

Definition 2.2. H and H0 are the semi-bounded self-adjoint operators associated
respectively with the following semi-bounded closed quadratic forms :

H = e-vHίe-v, (2.10)

H0 = e-uH0e-u (2.11)

defined on

Q(H) = eu@(P) = {φ:e-uφe®(P)}9 (2.12)

and let

H'0=-r e2U7. (2.13)

Remark 2.3. H0 will be used in Sect. 4, as an intermediate operator between H and
H0.

Once H is defined as a self-adjoint operator, a very convenient tool for
studying its spectral and scattering properties is its resolvent R(λ) = (H — A)"1,
defined as a bounded operator at least for /le(C\R But:

H-λ = e-u(H1-λe2U)e-u (2.14)

so that studying the family of operators

Hί(λ) = Hί-λe2U (2.15)

will give information on R(λ).

Lemma 2.1. (i) Let leC and assume (2.3) to (2.5) hold. Then H^λ) defined by (2.15)
is a m-sectorίal operator with form domain Q)(P\

(ii) // Ae<C\IR, H^λ) is invertible, and

\\H,(λΓ 1 1| ^llmλΓ1*-2*.

Proof, (i) As e2L/ is bounded, this follows from the general result on perturbation of
forms (see [16], Theorem 3.4, p. 338).

(ii) From (2.14), we have

λ) = je' if ImlφO

because H is self-adjoint and eu is bijective. Furthermore:

MllfΓ^ii^^
This implies that H^λ) is invertible, with \\Hί(λΓl\\^\Imλ\~1e~2 μ.

We now turn to the study of the essential spectrum of //, σe(H). Under very
weak decrease conditions on Q and F (but not on U !), we prove that σe(H) is what
we expect it to be for ordinary potentials :
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Proposition 2.1. Let U satisfy condition (2.3) and let in addition Q and F be such
that :

QR0(λ)Q and \F\^2R0(λ)\F\112 are compact operators
(respectively in 2tf ana in ffl) for some λ<0.

Thenσe(H)C[0,co).

Remark 2.4. One can give sufficient conditions on Q and F that ensure compactness
of QR0(λ)Q and |F|1/2jR0(/)|F|1/2 for /l<0. For instance it is sufficient that Q2 and
F belong to Lfoc(IR") with the same p as in Remark 2.1 and where in addition the
q(x) and r(x) defined in (2.6) and (2.7) tend to zero as x tends to infinity. It is clear
that the assumptions of Proposition 2.1 are stronger than conditions (2.4) and
(2.5).

Proof of Proposition 2.1. It immediately follows from the relation (2.10) between H
and Hί and from the following two lemmas :

Lemma 2.2. Let H^ be as in Definition 2.1 and let Q and F satisfy the assumptions of
Proposition 2. 1. Then

Proof. It follows from the assumptions that V Q — Q V + F is a relatively form
compact perturbation of H0 and therefore of H'Q. Then from [27, p. 116]

But

σβ(H'0)Cσ(H'0)C[0,oo).

This completes the proof of Lemma 2.2

Lemma 2.3. Let H' be a self -adjoint semi-bounded operator, and let Abe a bounded
with bounded inverse operator. Then if H" is the self -adjoint operator A*HΆ with
domain A~VQ)(H'}, σe(H") is contained in [0, oo) if and only if σe(H'} is.

Proof. We only prove

because the converse is shown similarly, due to the symmetry between
H' = A*~ 1H"A~ 1 and H". Let H'_ (resp. H'+) be the negative (resp. positive) part of
H'. Now since H' is semi-bounded H'_ is a bounded operator; furthermore, it is
compact if and only if σe(JT)c[0, oo). Let

H±=A*H'±A. (2.16)

Then if σe(£F)C[0, oo), H'_ and therefore H~ is compact. This implies

This completes the proof of Lemma 2.3.
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We now turn to the study of the negative spectrum of H. From Proposition 2.1
we already know that it is discrete. We prove that if in addition Q2 and F tend to
zero at infinity faster than r~2, then the discrete spectrum of H is finite.

Let R0(λ) denote the resolvent operator (H0 — A)"1.

Proposition 2.2. Assume U satisfies (2.3) and assume in addition that

ββ0(0)β and \F_\1/2RQ(0)\F_\112 are compact, (2.17)

where F_ = min(F,0). Then the number of non-positive eigenvalues of H is finite.

Remark 2.4. For n ̂  3 one can easily give sufficient conditions on F and Q that
imply assumption (2.17). For instance it is sufficient that F and Q2 belong to
L"/2(R"). For n = 3 this can be weakened to the condition that Q2 and F belong to
the Rollnik class (see [8]).

For n = 1, or n = 2, (2.17) cannot hold even for smooth Q and F with compact
support. However, the argument of Proposition 2.2 can be slightly modified, and
the result recovered in these cases, under the following assumptions:

n = l, β2 and FeljJR),

and

limr J dx(Q2 + \F_\) = Q,
r~>°° \x\^r

n = 2,Q2 and FeLfoc(lR2), with p > l ,

and

Q2 and jF = o(|x|log|x|)~2 as |x|-»oo (see [5]).

Proof of Proposition 2.2. The proof is an easy extension to the present situation of
the well-known argument of Birman [4] and Schwinger [29] which proves the
finiteness of the discrete spectrum for ordinary potentials that decrease faster than
r~2 at infinity (see for example [27, Chap. XIII.3] for details). The result is an
immediate consequence of the following two lemmas: [for each self-adjoint
operator K, we denote by P (_0 0 Q)(K) the spectral projector of K on the interval
(-oo,0)].

Lemma 2.4. Let H1 be as in Definition 2.1 and let Q and F satisfy (2.17). Then
dimP(_^ί0](Hf) is finite.

Proof. From (2.3) and (2.9) we have

H^e2μHQ + F Q-

which implies

). (2.18)
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But a very simple extension of Schwinger proof (see for example the proof of
Proposition 3.2 in [8]) shows that due to (2.17) the R.H.S. of (2.18) is finite. The
inclusion of the eigenvalue zero is standard. This completes the proof of Lemma
2.4.

Lemma 2.5. Let H', A and H" be as in Lemma 23. Then

dimP(_^}(H') = dimP(_^0](H'').

Proof. Due to the symmetry between H' and H" we only prove

But as

Furthermore one checks easily that the zero eigenvalues of H' and H" are in one-
to-one correspondence, which completes the proof of Lemma 2.5.

3. The Positive Spectrum of H

In this section, we shall prove that the singular continuous spectrum of H is empty,
and that positive energy eigenvalues (when they occur) can only accumulate at
zero. We use Agmon's method of a priori estimates in weighted Hubert spaces, and
this will provide us an estimate of the resolvent on the positive real axis, which will
be useful for proving asymptotic completeness in the next section. Since this
method applies to the present situation with very few modifications, the exposition
will be sketchy and some of the proofs omitted; we refer the reader to [27],
Chap. XIII.8 for details.

We first introduce some notation :

^-{^MIφllM-||(l+H0f
2(l+x2)α />||<cx)}, (3.1)

where || || denotes the norm in jj? = I?(Rn).
We recall that £$( Jf ) denotes the set of bounded operators in Jf\ The results of

this section are as follows :

Proposition 3. Let δ>\ and suppose that :

(7(l+x2)^Lco(IR'1), (3.2)

Q(l+x2)δR0(- 1)(1 +x2)δβe^f), (3.3)

(3.4)
Then :

(1) The positive point spectrum of H is a discrete subset $ of (0, oo) (with
possibly 0 as an accumulation point). Each eigenvalue has finite multiplicity.
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(2) The continuous singular spectrum is empty.
(3) For any compact interval [α,fe]C(0, oo)\^, the operator e~υR(λ)e~u is a

bounded operator from ffl?~v to Jtiflδ with norm uniformly bounded in λ for
^b, \lmλ\^l.

Remark 3.i. Intuitively, 17, β, and F have to decrease faster than \x\~l at infinity.
From Remark 2.1 one easily obtains sufficient conditions on Q and F to imply
(3.3) and (3.4). For instance it is enough to take:

Q2(l+x2)2δ and

with uniform bound, and with the same value of p as in Remark 2.1.

The main tool in the proof is a control of R(λ) for real positive λ. As already
announced in the previous section, we shall first study the family H^λ) defined in
(2.15). Lemma 2.1 has already shown that, away from the real axis, its inverse exists
and looks like a resolvent. We now show that in fact, H^λ)" 1 obeys some sort of
resolvent identity that allows us to approach the positive real axis under suitable
decrease properties of 17, g, and F.

=H0-λ+ ΣA*BJ (3.5)
j=ι

with

(3.6)AZ=B2 B,=A2

x5 = -A1/Vt'-i)1/2 β5=A1/VC7-i|1/2,

where /1/2-

The A?s and B?s are operators from J^ to ̂  or 2tf. For any non real λ in a
compact K of (C, (3.5) implies :

H^λΓ^RoW-RoW Σ AJBjH&r1* (3.7)
j-i

Thanks to the factorization in AJBp we are in a position to proceed as in the proof
of [8, Proposition 4.1] by writing (3.7) as an integral equation with a symmetrized
kernel, hopefully compact, in & ' = &®&®&®3?®2f, whose elements are
B^Q^AJ. But we easily see that if i=j = l, this element is not compact because it
lacks a negative power in P= — iV. We overcome this minor difficulty by writing :

H^λΓ^^.W + zΓ^z^^+zΓ^^λΓ1, (3.8)

where — z is chosen sufficiently negative to be in the resolvent set of all m-sectorial
operators H^λ) for λeK. We then insert (3.8) in (3.7), and we want to prove that,
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up to an exceptional set $ of values of A, (3.7) is equivalent to:
5

rj / Q \ — 1 E> { 1\ E> f Ί\ \^ / l * D / ' I - Γ /^ΓI^^ΛJ —J\Q\A) — I\Q{A) /_j ^i^/v-^il
7=1

-zR0(λ)(A*,...9A*)(ί + F(λ)Y

(3.9)

where

IBΛ
(3.10)

is a compact operator in & . The key of the proof is the following property:

Lemma 3.1. Let δ be determined by conditions (3.2) to (3.4) and let δ' be such that

£<<5'<min(<5,l). Then:
(i) R0(λ) is a bounded operator from ffl^ 1 to ffl-δ> uniformly for λeK (K is any

compact o/(C\{0}) and is norm continuous in λ for ΛΦO.
(ii) Aj are bounded operators from ffl^b to ffl .

(iii) Bj are bounded operators from 3?^δ to &.
(iv) Let —zreal belong to the resolvent set of all H^λ] for all λeK (K compact

in (C). Then (H1(λ) + z)~1 is compact from 3tfΊδ> to ffl_b and is continuous for λeK.

Proof, (i) is a well-known result (see [27], Sect. XIII). (ii) and (iii) easily follow
from (3.3) and (3.4) (see for example [8], Lemma 4.2 for the proof of a similar
result).

We now prove (iv). It is enough to check that the operator

(l+HoJ^ίl+x^-^ίffj^ + zJ-^l+xY^ίl+JFίo)- 1/ 2 (3.11)

is compact in 34?. But (3.11) can be rewritten as:

(3.12)

As <5><5', the factor (1 +x2Γ (1/2)(^<n(l+Ή0Γ
1/2 in the first term of (3.12) is

compact, and the first factor is bounded and continuous by Lemma 3.2 below.
The second term of (3.12) can be rewritten as

-ι/2 (313)

Now since :

(3.14)
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and since (F(l +x2)δ'/2) is a bounded function of x because δ' < 1, compactness and
continuity of (3.13) easily follow from compactness of (l+x2)~α(l +H0)~1/2 if
α>0, and from Lemma 3.2:

Lemma 3.2. Let K and z be as in Lemma 3.ί(iv). Then:

(l + #0)
1/2(#1(/ί) + z)~1(l+#0)

1/2 is bounded in 3P and is norm continuous with
respect to λ in K.

Proof. This easily follows from Lemma 2.1(i). We omit the details.
Let C denote the closed cut plane, i.e. the complex plane cut along [0, oo),

including the cut counted twice. Lemma 3.1 then immediately implies:

Corollary 3.1. Let F(λ) be defined by (3.10) and (3.6). Then for any compact K of
C\{0}:

(i) F(λ) is a bounded operator in ffl and is norm continuous w.r.t. λ for λeK,
with norm uniformly bounded for λeK.

(ii) F(λ) is analytic w.r.t. λ for λe(C\[0, oo)
(iii) F(λ) is compact for all λeK.

We are now in a position to apply the analyticFredholm theorem ([24], p. 201)
to invert the operator i + F(λ) :

Lemma 3.3. Let $k be the set of positive λ in K for which the homogeneous
equation :

[l + F(λ)]Φ = 0 (3.15)

has a solution in &, and let £=\J $κ. Then :

(i) $ u{0} is a bounded closed set of Lebesgue measure zero (general result of
Kuroda [17];

(ii) For any compact interval [α, b]C(0, oo)\<f, H^(λ}~1 is a bounded operator
from ^δ~

l to 2tf^b with norm uniformly bounded in λ for a rgRel fgb, |ImA|:gl.

Proof of Proposition 3. From (2.14) and (2.15), we have

for all /le(C\]R where both members are analytic. Therefore Lemma 3.3 (ii) is
Proposition 3 (3). For the proof of Proposition 3 (1) and 3 (2), one first shows that
solutions of (3.15) satisfy a suitable vanishing property on the energy shell. (We
denote by 3F the Fourier transform and fe the momentum variable.)

Lemma 3.4. Let Φ = (Φl9...,Φ5)ε& be a solution of (3.15) with A>0. Then:

Proof. Let A>0 be in S. We suppose that z is chosen sufficiently large in order that

:1 (3.17)
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as an operator norm in Jf7. As F(λ) is continuous with respect to λ in C\{0}, we
have:

- Φ = F(λ) Φ = lim F(λ + iε)Φ .

Then if we replace z(//1(/l) + z)~1 by

in the definition of F(λ\ we get:

/ IB \
l imji- i 1 {#!<

lBλ, (3.18)

But, from (3.17), the operator in the first factor of (3.18) has a limit as ε j O which is
invertible, and therefore :

Φ=-lim : \R0(λ + iε)(A*,...,A*5)Φ (3.19)

(where ε is set equal to zero in A^ and B5).

Let s(f)= — for every real non zero /, and s(/) = 0 if/=0.

Then (3.19) implies:

s(U)

0

0

, 0

\o

0

0

1

0

0

0

1

0

0

0

0

0

0

s(F)

0

° \\
0 I

0

0 ,

-s(U)/

= lim (Φ, iε)(A*,...,A*)Φ]

Therefore taking the imaginary part of both members of (3.20) yields:

(3.20)

(3.21)

Now (3.16) is deduced from (3.21) by the standard argument (see [25], Chap. IX.9).
The end of the proof of Proposition 3 (1) and 3 (2) is almost identical with

Agmon's for ordinary potentials and we only sketch it. Once Lemma 3.4 is
satisfied, we use Agmon's bootstrap argument (see [25], Theorem IX.41) to prove
that:

R0(λ) Σ A*Φj (3.22)
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is in some J °̂ with ε>0, and that:

(3.23)

uniformly for λ satisfying 0 < a ̂  λ rg b.
But from (3.22) the following relation holds between elements of ffl :

(H0-λ)Ψ=- Σ
7 = 1

which implies by (2.14):

This says that eu Ψ is an eigenvector of H with eigenvalue λ. (Each point of δ is an
eigenvalue of H.) Furthermore (3.23) says that the set of eigenvectors of H with
eigenvalue λ in the interval [α, b] (0 < a < b < oo) is compact and therefore finite
dimensional. This completes the proof.

4. Existence and Asymptotic Completeness of the Wave Operators

In this section we prove the existence and asymptotic completeness of the wave
operators (1.6) by using Proposition 3 and the method of smooth operators of
Kato [14] and Lavine [18]. The results are as follows:

Proposition 4. Assume conditions (3.2) to (3.4) to hold with δ>^. Then the wave
operators (1.6) exist and are asymptotically complete.

Proof. We use H0 defined by (2.11) as an intermediate hamiltonian between HQ

and HI by the chain rule [16, Chap. X] the result follows immediately from
Lemmas 4.1 and 4.2 below.

Remark 4. 1. We first notice that under assumption (3.2) alone, the analog of
Proposition 3 can be shown for H0 instead of H. Therefore there exists a discrete
subset of (0, oo) denoted / such that <ίu{0} is closed, H0 is absolutely continuous
away from δ, and (l + x2Γδ/2 and

(l+x2Γδ/2(H0 + l)1/2e-v (4.1)

are #0-smooth on any interval [α, b] C (0, oo)\<f . [We recall that δ > \ is the number
occurring in assumption (3.2).] Furthermore from theorems on the absence of
positive eigenvalues [27, Chap. XIII. 13] and from assumption (3.2) one can show

As a first step enabling one to go from H0 to H0 we have:

Lemma 4.1. Assume U satisfies (3.2) with δ>^. Then the wave operators

± °' ° ί-^±00 ^ ' '

exist and are asymptotically complete.
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Proof. As \e±u- 1| ̂ |l/| Max (e\e ~ μ), it follows from assumption (3.2) that e~u- 1
is ίf0-compact. It is also # 0-compact because :

+ iΓ1. (4.3)

By a standard approximation argument [26] this implies :

s-]im(ί-eu)e~itH° = 0
ί-> ± oo

and similarly for H0. Therefore it is enough to prove the existence of the limits :

s-]ime*tS°eue-ίtH° (4.4)
ί^±oo V '

and

s-limeitH°e-ue~itS° (4.5)
f-> ± oo

(because #0 is absolutely continuous by Remark 4.1), and if the limits (4.4) and
(4.5) exist, they are equal respectively to Ω±(H0,H0) and Ω±(H0,H0)*. But as
sesquilinear forms on @(H0) x @(H0) and on @(H0) x @(H0) respectively, we have :

H0e
u-euH0 = (e-v-eu)H0, (4.6)

H0e-u-e-uH0 = (eu-e-u}H0. (4.7)

Now by assumption (3.2) there exists a constant C< oo such that:

.

As (1 +x2)~δ/2 is HQ- and #0-smooth, this implies the existence of the limits (4.4)
and (4.5) on the dense sets 0t (EHo(IJ) and ^ (Egjίl)) respectively [where / goes
through the set of compact intervals of IR and EG(I) denotes the spectral projector
of G on the interval /]. This completes the proof.

The second result allows one to go from H0 to H :

Lemma 4.2. Let U, Q, and F satisfy (3.2), (3.3), and (3.4), and H and H0 be defined by
Definition 2.2. Then the wave operators :

Ω±(H,H0)=s-limeίtHe-itfio

f-> ± oo

exist and are asymptotically complete.

Proof. As quadratic forms on Q(H] = Q(H Q] = ev Q(H 0) we have:

where A and B. are defined in (3.6). It is clear that :

2>(H)t2(A.e-Ό) and @(H0)C@(Bje-u), ; = !,. ..,4.
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Moreover Proposition 3 (3) shows that the expression (4.1) is ίΓ-smooth on any
interval [α,fr]c(0, oo)\<? and therefore, so are Aje~ufoτj=l,...94. Furthermore it
follows from Remark 4.1 that Bje~υ are H0-smooth on [α,b~\. But the absolutely
continuous spectra of H and H0 are exhausted by a denumerable union of such
intervals. By application of the 77-smoothness theory, this implies the result.

5. Time-Dependent Methods

In this section, we recover results (2), (4), and (5) of the introduction by an
extension to the present situation of Enss' purely time-dependent method [12], in
the following directions:

(1) H is defined by means of quadratic forms rather than as an operator
perturbation of H0.

(2) Here, H and H0 are not in general "mutually subordinate" in the sense of
Birman [6]. Instead, we have an "identification operator" (see [3] and [15]) J = eu

that sends Q(H0) onto Q(H) and that is close to one when \x\ is large.
But these extensions are precisely contained in great part in the abstract form

of Enss' result given by Simon [30] namely, extensions in the directions (1) and (2)
are considered respectively in Sects. 4 and 6 of [30] (see also [34]). We stick them
together in the following theorem:

Theorem 1. Let H0= —A, and H be a self-adjoint operator, such that:
(a) There exists bounded operators J and J' with 1 — J and 1 — J' H0-compact.
(b) For any fixed interval J0

||E(R\/) JE0(/0)|| ->0 when the interval I tends to oo , (5.1)

where E(I) (resp. E0(I0)) is the spectral projector of H (resp. H0) on the interval I
(resp. I0).

(c) J' is invertible, and for any fixed interval I

||E0(1R\/0)JΈ(/)||->0 when the interval 70 tends to oo . (5.2)

(d) For bounded intervals I and 70, let:

h(r)= \\E(I)(HJ-JH0)E0(I0)E(\x\^r)\\ (5.3)

be such that:

00

h(0) < oo and §"drh(r)<co,
o

where E(\x\^.r) is the characteristic function of the set {x : |x|^r).

Then:
(i) The wave operators (1.6) exist.

(ii) H has no continuous singular spectrum.
(iii) &(Ω+) = &(Ω_) coincide with the absolutely continuous subspace for H (i.e.

Ω± are asymptotically complete).
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(iv) Any strictly positive eigenvalue for H has finite multiplicity, and the only
possible limit point for the positive point spectrum of H is 0.

(v) σβ(fl) = σβ(fί0) = [0,oo).

Remark 5.ί. The general case of a "vaguely elliptic" H0 works as well, although we
do not write it down for simplicity.

Remark 5.2. As we will show in part (α) of the proof of Theorem 1, assumptions (a)
and (c) imply that E(\x\^R)E(I) is compact for / a bounded interval in IR, This
expresses the absence of local absorption for H, which is a preliminary to
asymptotic completeness (see [9, 22]). In this respect, the invertibility of J' plays an
essential role: namely if H = H0 + V with V the potential of [21] which is highly
singular at the origin, and if J' is zero in some neighborhood of the origin, and one
outside, the condition (5.2) that "H0 is subordinate to H through J'" is fulfilled,
whereas absorption at the origin occurs, so that asymptotic completeness is
violated.

Before giving, for completeness, some hints on the proof of Theorem 1, we give
the result of this section which is an application of Theorem 1 to the case under
study :

Proposition 5. Let U9 β, and F satisfy (2.3), (2.4), and (2.5) and suppose in addition
that :

] dr\\(eu- l)E(\x\^r)\\ < oo , (5.4)

(5.5)

$dr\\(l+H0Γ
1/2F(ί+H0Γ

1/2E(\X\^r)\\<co, (5.6)
0

where E(\x\^r) is as in Theorem!. Let H be defined by (2.9) and (2.10), and
H0=-Δ.

Then all the conclusions of Theorem i hold.

Remark 5.3. Conditions (5.4)-(5.6) are weaker than (3.2)-(3.4) for obtaining results
(4) and (5) of the introduction (no explicit \x~δ decrease at infinity with δ>l is
required, but only integrability at infinity). But on the other hand, conditions
(5.4)-(5.6) are much more restrictive than the assumptions of Proposition 2.1 as far
as the localization of the essential spectrum is concerned. This is one reason why,
all along the previous sections, we have sliced the various spectral and scattering
properties of H according to the various properties of U, <2, and F they require.
Furthermore, the purely time-dependent method of this section does not provide
the detailed estimates of the resolvent of H contained in Proposition 3 (3).

Proof of Proposition 5. For J = eu, J' = e~u, assumption (a) of Theorem 1 follows
from (3.2) and (5.4) : namely the integrand of (5.4) is monotone decreasing and
integrable with respect to r, and therefore tends to zero as r tends to infinity, which
implies that (1- J)(H0 + l)"α and (l-Jr/)(#o + 1Γα(α>0) are norm limits of the
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compact operators E(|x|^r)(//0 + l)~α. Furthermore, Q(H) = eu Q(H 0) implies (b)
and (c) [J' = e~u is obviously invertible from (2.3)]. Now assumption (d) of
Theorem 1 easily follows from (2.4), (2.5) and from (5.4)-(5.6) because of the
relation :

(e~u -eu)H0

(5.7)

(We omit the details).

Hints for the Proof of Theorem 1

We only mention the points where Theorem 2.2 of [30] is modified in order to
accommodate the assumptions of our Theorem 1.

(α) Let us first notice that assumptions (a) and (c) imply that (1 — J)E(I),
(1-J')E(I\ and E(\x\^r)E(I) are compact for / a bounded interval of R

(β) Now it easily follows from assumption (d) that :

£(/,) (φ(H) J - Jφ(H0)} E0(/0) (5.8)

is compact for φ a smooth function, and I± and J0 bounded intervals.
(y) But (α) and (β) imply that (5.8), with E0(/0) replaced by £(/), is also

compact; which in turn implies that E(I1){φ(H) — φ(H0)}E(I) is compact from
assumption (a) and from (α) again.

This is enough for yielding the decomposition

With | |Φn f W | |-*0 H-KX),

for Φn the sequence of Theorem 2.2 in [30] such that E(I)Φn = Φn for some /, and
Φn weakly converges to zero.

(δ) Now it remains to be shown that :

nJ| (5.9)

tends to zero as n tends to infinity. But from assumption (a) :

Ω+ = s-limeίtHJe~ίtH°
ί-+±oo

and 1 can be replaced by J in (5.9). Furthermore from assumption (b) it is enough
to control:

±00

£(/!) j dteίtH(HJ-JH0)e-itH°ΦniΆ (5.10)
o 'out

for II an interval of IR sufficiently large. Now the support property in momentum-
space of Φn £ makes it possible to use assumption (d) in order to complete the
estimation of (5.10) along the line of Theorem 2.2 of [30].

Remark 5.4. As already mentioned in the introduction, Proposition 5 bears some
resemblance with what is done in [7], (see also references quoted therein). The
authors consider quantum scattering by an external metric g and a Yang-Mills
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potential A. The analogy with our Hamiltonian (1.1) is suggested by following
correspondence:

g corresponds in a certain sense to our bounded function eu,

A would correspond to a purely imaginary vector field Qe2u.

Under the assumptions that A and its first x-derivative, and the matrix 0—1
and its first and second x-derivative go to zero at infinity faster than |x| ~1 ~ε, they
prove the existence and completeness of the wave operators. Moreover they point
out the connection between such hamiltonians and positive energy bound states
like the Wigner-von Neuman example [32]. Similarly, as far as Hamiltonians (1.1)
are concerned, the examples (1.2) and (1.3) of allowed potentials in [23] suggest
the existence of such positive energy eigenvalues (see for example [19, 10]).
However, (but this may be only a technical point) an important difference with
what we do in this paper is the regularity conditions imposed on A and g in [7]
under these regularity conditions, that do not allow for too wild oscillations, H
and H0 are mutually subordinate, so that Enss' method applies directly.
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