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Abstract. In this paper we prove Bardeen's conjecture that the anomaly of
the Adler-Bardeen-Bell-Jackiw-Schwinger type in gauge models are defini-
tely absent if they are cancelled at the first order of the h perturbation expansion.
Our analysis develops within the regularization independent B.P.H.Z. renor-
malization scheme. We discuss the possible appearance of anomalies in an
enlarged class of gauge models admitting soft violations of the Slavnov-Taylor
identities which prescribe the gauge transformation properties of the Green
functions. By a repeated use of the Callan-Symanzik equation we conclude
that the lowest non vanishing contributions to the anomalies must necessarily
correspond to the first order in the h perturbation expansion, hence if they are
cancelled at this order the theory will be definitely anomaly free.

I. Introduction

One of the main reasons of the general interest in the Adler-Bardeen-Bell-
Jackiw-Schwinger [1, 2] anomaly to the Ward Takahashi identities for the axial
vector current (A.B.A. for short) is its peculiar property of being free from radiative
corrections or, in other words, that the anomaly is completely determined by its
one loop contributions. The phenomenological implications of this fact are widely
discussed in the literature [3].

It is also well known that a necessary requisite for the renormalizability of
the gauge models is that the corresponding Slavnov-Taylor Identities (S.I.) [4],
prescribing the wanted gauge transformation properties of the Green functions,
be free of anomalies. This, at the one loop level, sets a precise constraint on the
fermion fields content of these models. The conjecture that this constraint is
sufficient to kill also the higher order contributions to the anomaly would be a
direct consequence of the absence of radiative corrections to the anomaly itself.

The validity of this property for the P.C.A.C. anomaly was first suggested
in a paper by Adler and Bardeen [5] and later on confirmed, by regularization
independent analyses, in some models of phenomenological interest [6, 7] along
the lines first proposed by Zee [8]. The method is based on the Callan-Symanzik
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[9] equation which for the coefficient of the anomaly assumes, by the power
counting constraints, the form of a linear homogeneous partial differential equation
of the first order. One then proves that the only solution of this equation, analytic
in a neighbourhood of the origin in coupling constant space, is a homogeneous
polynomial whose degree corresponds to the one loop contributions.

The anomalies arising in gauge models need a separate discussion. The goal
here is to show that a gauge theory is free from anomalies to all orders of pertur-
bation theory provided it is so at the one loop level.

This possibility has been first discussed by Bardeen [10] in the framework
of a special regularization procedure. Bardeen's argument is that, in a dimen-
sionally regularized scheme, the only sources of anomalies appear to be the
fermion loops hence if the contributions of such loops cancel, the anomaly is
definitely absent.

More recently Costa et al. [11] have proposed to approach the question
via the Callan-Symanzik equation. Even if this strategy is of general applicability,
many steps of their proof are explicitely based on the particular regularization
employed and the analysis itself is developed completely only for some special
models.

A general and regularization independent proof that the condition for a gauge
model to be anomaly free reduces to the one loop constraint, to our knowledge,
is still lacking our task in this paper is to try to fill this gap.

The method we employ is based on the Callan-Symanzik equation and
follows in some aspects the approach chosen in [11]. The general strategy is to
study the properties of the coefficients of the A.B.A. at their lowest non vanishing
order in perturbation theory. Our analysis will develop within the B.P.H.Z. [12]
scheme and will not need any particular regularization procedure. We shall use
the known results on the renormalizability of gauge theories and extend them to a
larger class of models whose Slavnov identity admits soft violations, i.e. breakings
which can be neglected in the region of large Euclidean momenta.

We shall analyse the anomalous softly broken Slavnov Identity (S.B.S.I.) and
show that the A.B.A. at its lowest non-trivial h order does not depend upon any
dimensional parameter including the ones which characterize the soft breakings
to the Slavnov Identity. This agrees with the expected result that the anomaly
is exclusively related to the short distance behaviour of the models. We shall
also prove that the lowest order contributions to the anomaly are independent
from the gauge parameters of the theory. Furthermore by selecting among the
models with anomalous S.B.S.I. the special ones without any superrenormalizable
coupling we will be able to prove that the coefficients of the A.B.A. are polynomials
in the coupling constants associated with the gauge invariant vertices and obey a
"natural" factorization property in the charges defining the gauge field couplings.
Owing to the independence of these coefficients from the dimensional parameters
this result will also hold in the whole class of models under consideration.

The functional dependence of the anomaly on the gauge invariant coupling
constants will be further discussed by means of the Callan-Symanzik equation
of the theory along the lines suggested in [11]. This analysis will enable us to show
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that if the A.B.A. appears in the Slavnov Identity of a given model, this must
happen at the first order of the h perturbation development.

Therefore we may conclude that if the anomaly is suitably cancelled at this
order, it will never appear again.

The paper is so organized:
In Sect. II we analyze at the classical limit the models with S.B.S.I., whose

renormalizability is proved in Appendix A;
In Sect. Ill we describe a suitable parametrization of the renormalized theories

and derive their Callan-Symanzik equations. We also prove that the coefficients
of the anomaly are independent from any dimensional parameter;

In Sect. IV we prove the gauge invariance of the lowest order anomalous
terms

In Sect. V we show the polynomial character of the anomalies which may
appear in the models with S.B.S.I.; some technical aspects of this proof are in
appendix B;

The final analysis involving the Callan-Symanzik equation, some steps of
which are given in Appendix C, is developed and concluded in Sect. VI.

II. The Softly Broken Slavnov Identity at the Classical Level

The renormalizability of a general class of gauge models has been widely discussed
in the literature [13,14,15]. The focal point of all these analyses is the validity
to all orders of perturbation theory of the Slavnov Identity.

The general framework is as follows: it is given a compact group G (gauge
group); a set of gauge vector fields £#*μ(x) and anticommuting scalar fields c%x)
and c%x) (Faddeev-Popov ghosts) in one to one correspondence with the
generators of the Lie algebra ^ of G; a set of spinless and spin ^ matter fields
which carry a fully reducible representation of .̂ The further assignment of a
vacuum expectation value for the scalar fields φt and the choice of gauge functions
of 'tHooft type 8μ^

a

μ + p(ί

ίφi with suitable conditions on the p"'s uniquely identifies
the Slavnov transformations [4, 14]. With respect to these transformations the
classical Lagrangian is then defined as the most general invariant polynomial
compatible with the power counting constraints.

The possibility of extending the Slavnov invariance of the theory to the quantum
level is analyzed by introducing in the Lagrangian a set of external fields coupled
to the Slavnov variations of the quantized ones and by discussing the stability
under radiative corrections of the ensuing S.I.

The results thus far obtained insure that in models involving only massive
quantized fields the only obstruction to the S.I. is the A.B.A. [14].

In the presence of massless particles the Feynman amplitude are ill defined
if the involved couplings do not satisfy a suitable set of I.R. dimensional constraints.
Assigning an I.R. dimension to all quantized fields by giving it the value two for
the massive fields, the naive dimension for the massless ones and dimension
one to each space time derivative, such a constraint is that the global infrared
dimension of any coupling be greater than or equal to four. Now I.R. pathologies
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may arise [16] in gauge models with massless fields if the S.I. develops a breaking
whose compensation requires the introduction of counterterms violating the I.R.
constraint, in much the same way as the A.B.A. is not compensable without
violating the ultraviolet (U.V.) power counting rules.

Following the lines given in the introduction, the first step of our analysis
is to enlarge the class of gauge models under study by allowing the S.I. to be softly
broken (S.B.S.I.) by terms with naive dimension lower than five. At the classical
level the Lagrangian of these models are identified by the most general hard,
four dimensional, terms invariant under Slavnov transformations and by all
possible soft terms compatible with the I.R. constraints which may arise
from the presence of massless particles. For example in the completely massive
case one can add to the hard Lagrangian any term with naive dimension smaller
than or equal to three.

The field content is specified by the quantized gauge vectors jtf*(x\ the scalars
φ.(x), the left fermions ψL(x) and right ones ψR(x)9 the Faddeev-Popov cα(x), ca(x)
and the external fields y"μ

s(x\ yt(x\ f/L(x), ηR(x\ ζas(x). The components of the
fields jtf*μ(x), c\x\ d*(x) are identified by the index α labelling a basis of ^ the
fields yΛ

μ*(x\ ζ"s(x) are restricted to the semisimple factor &s of & while φ.(x),
yt(x)l^L(x\ ηL(x)lΨR(x), ηR(x) define three different representation spaces for <&.
The fields are also characterized by a conserved Faddeev-Popov charge which is:
0 for j*«(jc), 9i(x\ ψL(χ), ψR(χ) , + 1 for c\x\ y£(x), y.(x), ηL(x), ηR(x), +2 for £«•(*)
and - 1 for c%x).

The hard classical action Γ'1 obeys the following hard S.I.:

o , ό , o , , o
I JΠC1 Γ-cl j Γ'ClΓ-'Cl

_ι r'clr'cl j r clncl
"T" c + / \ ^ I ι ί ι c - / / \ I c i + x \ - * ί > - * I ι

(x) » " δηR(x)

" <?

" " δηL(x) δc«(X)

r-'cl r->cl

and the supplementary condition

δ , Λ

where the gauge parameters AΛβ are given as an arbitrary real, symmetric, positive
definite matrix.

In order to describe the general solution of Eq. (1) it is useful to introduce
the charge matrices involved in the couplings of the gauge fields J#Λ(X). First of
all we specify the symmetric, invariant, positive definite charge tensor eaβ on the
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algebra 0. Clearly eaβ has no elements connecting the semisimple factor &s of
^ to the abelian one &A. Furthermore the restriction of e"β to each simple compo-
nent ό is proportional to the Killing form. Choosing a basis in ̂ s such that the
Killing form becomes the identity matrix we have eΛβ\ϋ = eόδ

Λsβs, thus identifying
the simple charges e^. Concerning the restriction of eΛβ to the abelian factor &A,
the only requirement is the symmetry and positive definiteness.

Secondly we introduce the infinitesimal generators ία, T", T£ of the gauge
group in the scalar, left and right handed spinor fields representations respectively.
They obey

( t γ = - f , (τ$ = τι (T«)t = -r«, (3a)

(3b)

where the matrices ία are real and/α/?y are the structure constants of ̂ . Moreover
the basis in the abelian factor 9A is chosen so that

f τr\_(Ίypτξf + (TtfTft + 1 rr[(^)V^] = y*>* (4)
This can be made without any loss of generality since, for any choice of the basis
in &A, the matrix in the l.h.s. of Eq. (4) is real, symmetric and positive definite
except in the trivial case where free abelian photons are present.

The couplings of the gauge fields j/*μ(x) can now be expressed in terms of the
tensors

(efΓfi 1m = eβΓ
f " (5a)

for any simple factor 0 of &s, and of the matrices

f = e"β Tβ

R (5b)

and the general solution of Eq. (1) can be given up to the following [17] field
transformations

μ with Zα ̂  = Z'Λ = 0 , (6a)

φ. -» σtjφj, (6b)

ψL^ZF

LψL, ΨR-+ZF

RψR (6c)

c" -> z«βcβ, with *« *β* = Z° Λ*, (6d)

cα -> Z^c", (6e)

^-^(Z-y^ yf , (6f)

7t-^(ff~%7j, (6g)

^^(i-1)7"""'^1, (6h)
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which leave Eq. (1) invariant, as

W, (7)

where

(8a)

(8b)

(8c)

(8d)

The couplings between the scalar fields φ. and the spinors in Eq. (7) are des-
cribed by the matrices / which due to invariance, satisfy

/^-τy = ςy (9)
and the quartic couplings among the φ. fields are given by the real symmetric
tensor άijkl whose invariance condition is

^C + 4.«C, + ^y/C* + ̂ C = °

Finally we spend a few words on the parameter content of the hard Lagrangian
in Eq. (7); let us recall that the matrix eaβ is assigned by the simple charges eό

and the abelian matrix elements eaΛβA with aA ^> βA (according to an ordering
of the basis of 9). The coupling matrices ̂  and the tensor άijkl will be parametrized
by means of the coefficients of their development on suitable bases, which will
be explicitely given when necessary. All these charge and coupling parameters
will be denoted by the collective symbol {λa}. No explicit parametrization of the
gauge matrix Λ*β will be needed in the following.

III. The Renormalized Models with S.B.S.I.
and their Callan Symanzik Equations

In the previous section we have characterized at the classical limit the hard part
of the Lagrangian of the models with S.B.S.I. The analysis of the renormalizability
of these theories is compared, in Appendix A, with those of models with exact
S.I. [14, 15]. The result is that, as in the exact S.I. case, the S.B.S.I. is implementable
to all orders of perturbation theory (h expansion) except when the A.B.A. appears.
Furthermore, while the exact S.I. may be affected with the LR. pathologies men-
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tioned in Sect. II, this is not the case for the S.B.S.I. since the breakings which are
not compensable without violating the I.R. constraint are indeed soft.

We shall explicitly write the above results by means of the functional language
which we now briefly recall. Let Z(J, τ) be the functional generating the Feynman
graphs of the model, where J(x) stands collectively for the sources J*μ(x\ Jt(x\
ξ«(x\ ξ\x\ FL(x)9 FR(x) of the quantized fields s/*μ(χ), 9i(x\ c\x\ c\x\ ψL(x), ψR(x)
respectively and τ(x) denotes the external fields y*s(x), y.(x), ζ*s(x\ ηL(x\ ηR(x). We
shall indicate by Zc(J9 τ) the connected graphs generator and by Γ(Φ, τ) its Legendre
transform which gives the proper vertices. The variable Φ(x) is conjugate to
J(x) and stands collectively for all quantized fields.

We shall also use the following

Definition. The vertex functional Γ(Φ, τ) and Γ'(Φ, τ) are "hard equivalent",
in symbols

Γ(Φ,τ)~Γ(Φ,τ), (11)

if the corresponding proper graphs have the same leading behaviour in the region
of large Euclidean momenta, non exceptional in the sense of Symanzik [18].

We can now express the S.B.S.I. as(^Γ)(Φ, τ) - 0, where (^hΓ)(Φ9 τ) is given
in Eq. (1). The situation which we shall be concerned with in this paper is when
the A.B.A. appears and the S.B.S.I. modifies into the anomalous form

, τ) ~ A(Φ) + 0(hA) (12)

where the symbol A denotes the local functional

A = tf^ί
~|

I = 1. (13)
J i

with

F xβyδ ΓϊG βλί ~f\λyδ _ι_ nayλ ϊ.~f\λδβ _ι_ r\aδλ/ f\λβγ C\Λ\*' = D^ (ej) + L>i (ej) + L>i (ej) (14)

and D*βy are rank three invariant symmetric tensors on the algebra .̂ This expres-
sion of A is the well known form of A.B.A. [2, 19] at the lowest non vanishing
order hn(n ^ 1) and 0(hA) in the r.h.s. of Eq. (12) denotes all the higher order
breakings induced by A.

Our program is to discuss the possible appearance of the A.B.A. analyzing,
by means of the Callan- Symanzik equation, the functional dependence of the
coefficients r. in Eq. (13) on the parameters of the theory; in this line we choose
now a definite parametrization for our renormalized models.

A theory to be interpreted as an operator theory in Fock space requires that
the physical and unphysical parameters of the model be identified by the mass,
wave function, coupling constant normalization conditions in our case we adopt
an intermediate renormalization scheme where, these normalization conditions
being not yet imposed, we are free to choose our parameters in the way best
suited for later developments.



246 G. Bandelloni et al.

For this purpose, let us recall shortly that our analysis is carried out within
the regularization independent B.P.H.Z. scheme as extended by Zimmermann
[21], Clark and Lowenstein [12, 20] to include massless particles. In this scheme
the Feynman and subtraction rules are assigned by means of an effective
Lagrangian which is a Normal Product Operator (N.P.O.) in the sense of
Zimmermann [21]. The subtraction rules are defined by assigning to each field
an U.V. dimension, which in our case coincides with the naive one, and an I.R.
dimension according to the prescriptions given in Sect. II and equipping each
N.P.O. with appropriate U.V. (<5) and I.R. (p) indices (explicitely indicated in the
Zimmermann's symbol N%) which for the effective Lagrangian will be chosen
equal to four.

In this formalism the parameters of the renormalized model are all contained
in & ff which is a polynomial in the fields and their derivatives whose coefficients
may be considered as formal power series in h.

The effective Lagrangian of our model is so identified: its hard part (with
U.V. dimension equal to four) is obtained from the Slavnov invariant expression
in Eq. (7) parametrized with λa , Λ*β, by performing the field transformations
φ -+ Zφ, τ -> (Z~ 1)ττ given in Eq. (6) and adding the non-invariant hard counter-
terms needed to satisfy the S.B.S.I. The soft part of the Lagrangian consists of
the most general polynomial of U.V. dimension ^ 3 compatible with the I.R.
constraints and parametrized with the dimensional coefficients μ. of its single
terms.

In the renormalized models thus defined, the Callan-Symanzik equations
can be derived by means of the Lowenstein's Quantum Action Principle (Q.A.P.)
[22] and the Zimmermann's reduction formulae connecting N.P.O.'s with different
subtraction indices [20, 21].

Lowenstein's Q.A.P. states that, in any given renormalizable model, the
partial derivative of a Green function with respect to any parameter is equivalent
to the insertion into the Green functions of an internal vertex (integrated N.P.O.)
with subtraction indices equal to four. Now the very structure of the B.P.H.Z.
method makes it clear that the correspondence between parameters and insertions
is one to one if the parameters are completed to describe all the models with the
same field content and the same U.V. and I.R. rules, thus neglecting any symmetry.

Referring to the case at hand, we shall denote collectively by the vector σ
the parameters λa, Λ*β, μ., Z of the theories with S.B.S.I. and by the vector θ the
ones needed to accomplish the above mentioned completion. In this parametri-
zation we can write

Ξ4Γ(σ, θ) = [X*(σ, θ)Vσ +Xf (σ, 9)VjΓ(σ, S) (15)

where the l.h.s. means the insertion of the vertex Ξ4 with subtraction indices
equal to 4 in the functional Γ(σ, θ) and Vσ, V# are gradient operators.

The Zimmermann's reduction formulae enable us to reduce to a soft (Λφ
N.P.O. the hard insertion corresponding to a derivative with respect to any
dimensional parameter of the theory. This reduction yields both soft and hard
radiative correction terms: the last ones can be rewritten as derivatives with
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respect to the parameters using Eq. (15). In our case we have:

5) (16)

where Qf is an integrated N.P.O. with subtraction indices equal to 3.
The softness of the g(

3° insertions, allows us to restrict Eq. (16) to the models
satisfying the S.B.S.L as in the following:

Proposition I. In models with S.B.S.L to any dimensional parameter μ. there
corresponds an integrated N.P.O. Q^ whose insertion in the vertex functional

generates an infinitesimal transformation of the parameters σ according to:

\_μtdμί + h\«\σ, 0)V JΓ(σ, 0) = QfΓ(σ, 0) . (17)

Furthermore this translation does not affect the A.B.A. at its lowest non vanishing
order since we have

and therefore, if the S.B.S.L is anomalous:

[μ^ + hXVfrOWjA-WίA). (19)

To prove Proposition I, let us consider the functional Γ(σ + εX(*\σ, 0), εX%\σ9 0))
obtained from Γ(σ,0) by an ε translation along the vectors X(ί} as in Eq. (16).
By a straightforward substitution from Eq. (16) we have

Γ(σ + εX£>(σ, 0), εXf(σ, 0)) = Γ(σ, 0) + εβ«Γ(σ, 0) -h 0(ε2)^ Γ(σ, 0) + O(ε2).

(20)

The last line in Eq. (20) follows from Weinberg's power counting theorem [23]
and the softness of the β(

3

ί} insertion. Likewise from Eq. (12) we have

£ 0)] + ε$dx\ (β(

3

0Γ)(σ, 0) Γ(σ, 0)

e c ς

/ x w"" x /f,0) + δuc
α^( x

- ̂ Γ(σ, 0) + 0(ε2) ~A + 0(hA) + 0(ε2) (21)

where we have used a short hand form of the r.h.s. of Eq. (1) with the collective
variables τ and Φ.

The last line in Eq. (21) shows that the translation along the vector εX(ί)

preserves to first order in ε the S.B.S.L, together with the possible anomalies
at their lowest order. From the renormalizability itself of the models with S.B.S.L
it follows that the X(l) vector has vanishing components in the 5 space, thus
proving Eq. (17). Now Eq. (18) and Eq. (19) follow directly from Eq. (21) by selecting
the first order terms in ε. Proposition I is thus proved.

To complete the derivation of the Callan-Symanzik equations we have to
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express the derivatives with respect to the Z parameters appearing in the hard
part of JS?eff, in terms of the generators of multiplicative renormalizations of the
fields.

Let us denote by pa an element of a basis for the Lie algebra of the group
of transformations given in Eq. (6); a derivative with respect to Z can thus be
written as a linear combination of the Lie derivatives Lα's corresponding to the
generators pα's.

Conversely we denote by 9?a a generator of the infinitesimal transformations
Γ(Φ,τ)^Γ(ZΦ,(Z~1)Γτ) induced by the substitutions Φ-+ZΦ,τ -*(Z~^)ττ
shown in Eq. (6). For example the operators

^ Ί
(22a)

(22b)

(22c)

are elements of the set {^fα}.
The Jδf rt and Lα operators, which by their definitions act in distinct ways on

the functional Γ(Φ, τ), can be connected by the Q.A.P. and Zimmermann's reduc-
tion formulae. Indeed, according to the Q.A.P., the action of an j£?α operator
on Γ(Φ, τ) is equivalent to the insertion of an integrated N.P.O. as

J^Γ(Φ,τ) = Ω«Γ(Φ,τ) (23)

In theories without massless particles the r.h.s. of this equation can be written
as a derivative with respect to the σ parameters only, since the transformations
generated by the j£?α's leave the £fh operator invariant. However, if massless
particles are present, the Ωa

4 insertion corresponds to a N.P.O. with I.R. index
equal to 3(Λφ which cannot be directly reduced to the hard (JVj) N.P.O.'s consi-
dered in Eq. (15). In this case the wanted reduction involves the addition of soft
(Nl) terms yielding

9 τ} = ώa VσΓ(Φ, τ) + Q^Γ(Φ, τ) . (24)

In the tree approximation the <£a and La operators have the same action on the
hard part Γf(Φ, τ) of Γcl(Φ, τ), so that

JS?αΓcl(Φ, τ) - LαΓcl(Φ, τ) + βj cl(Φ, τ) (25)

where Qa

3'
 cl(Φ, τ) is an integrated local functional of naive dimension ^ 3.

Taking into account the above relation, the r.h.s. of Eq. (24) can be rewritten as

JSP«Γ(Φ, τ) = LαΓ(Φ, τ)

) . (26)
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Now, solving this equation for LT(Φ, τ) and Eq. (17) for μ.dμ Γ(Φ, τ) we get

= β'3

<Γ(Φ,τ)~0 (27)

where we have distinguished the contributions of the parameters λa,Λ
Cίβ and

Z explicitely.
Defining the scaling operator:

and setting

(28b)

(28c)

(28d)

(28e)
i

we finally obtain the Callan-Symanzik equation

{μdμ + fttfΛ + &ΛVΛ + yΛ<?*)}Γ(Φ, τ)

= β3Γ(Φ,τ)~0. (29)

The last step is the translation of the parametric equations thus far obtained
into differential equations for the r . coefficients in Eq. (13).

First of all we select the n-th order terms in h on both sides of Eq. (19) getting

0 (30)

from which we have

Proposition II. The coefficients r. of the A.B.A. at their lowest non vanishing order
are independent from any dimensional parameter of the theory.
This Proposition formalizes the expected result that the A.B.A. only depends
upon the short distance properties of the models and it will be a basic ingredient
of the analysis to follow.

To exploit Eq. (29) let us remark that if the A.B.A. appears at the order ft",
as shown explicitely in Eq. (13), the anomalous S.B.S.I. can be extended to order
hn+ίas

(^Γ)(Φ, τ) - hn(AΓ)(Φ, τ) + hn+1B(Φ, τ) + O(hn + 2 ) (31)

where the first term on the r.h.s. is the generator of diagrams containing the vertex
corresponding to the A.B.A. and B is a local functional of U.V. dimension 5 collect-
ing only the hard breaking terms appearing at the order hn+1 . At this order any
contribution of lower dimension can be transferred into the soft breaking of the
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S.B.S.I. Now, writing explicitely Eq. (18) we have

(μdμ + h(βλ VΛ + <ZΛ VΛ + γa^")} (yhΓ) (Φ, τ) ~ 0

so φat the substitution of Eq. (31), selecting the order hn+1 terms, yields:

1

(32)

1 loop

• μdμB(Φ, τ)

, τ) ~ 0 (33)

where the first term on the l.h.s. stands for the generator of the one loop diagrams
containing one A.B.A. vertex and β(χ\^\ yj,1* are the well known one loop
contributions to the coefficients βλ,άΛ,ya of the Callan-Symanzik equation.
Taking now into account that μdμB = 0, since the local functional B has U.V.
dimension equal to five and the coefficients of its terms are dimensionless functions
of the parameters, and employing the gauge invariance of the A.B.A., which will be
proved in the next Section, we obtain

1
-μdμ(AΓ)(Φ9τ) (34)

1 loop

Recalling that the functional ^J"}A. depends only on the fields .s/Λ, cf, (compare
i

with Eq. (15)) we can write the last term on the Lh.s. as

~ 1 T
)Tτ)ϊ (35)

so that Eq. (34) becomes

+
1 loop

Finally introducing the test operators

1 jUy/9<7 r\ r\ β\
Cι (J (J O

2-4! η2 (37)

where denotes the functional derivative with respect to the Euclidean

Fourier transform of the field stfβ

μ(x), and observing that from Eq. (13) it follows

, ηq) Σ^(Φ,
= τ = 0 j

we can derive the wanted system of partial first order differential equations for the
coefficients r . Indeed by acting on Eq. (36) with the operators X"βy(ηp, ηq) in the



Cancellation of Hard Anomalies 251

limit η -» oo and noticing that, as denoted by the hard equivalence symbol, the
r.h.s. of Eq. (36) vanishes up to terms which can be neglected in the deep Euclidean
region and are therefore killed by these test operators we get:

1
i lim Xaf1(ηp, ηq)μdμ(AjΓ)(σ Φ, τ) 1 loop

Φ = τ=0

de«

" Σ r .(λ)D*β"» + y,1*"' Σ r {λ)Daβy' = 0 (39)
^— ' J J £ ^—^ J J

i i

where we have distinguished the contributions of the parameters eXAl>A, ea, #\ a.
The first term on the l.h.s. of Eq. (39) can be directly computed in terms of the

following Feyman graphs

-1- -2- -3- -4-

where the dashed lines and the solid ones denote respectively the ,sίΛ and cβ fields.

IV. Independence of the Anomaly from the Gauge Parameters

We analyze here the dependence of the coefficients r. in the expression of A.B. A.
from the gauge parameters Λ*β. The method is based on the use of the Quantum
Action Principle of Lowenstein, already employed in Sec. Ill, according to which
the functional Z(J, τ) satisfies

-ih-^rβZ(J,τ) = Ξ^Z(J,τ] (40)

where the r.h.s. denotes the insertion of an internal vertex (integrated N.P.O.)
with U.V. subtraction index equal to four. The vertex Ξ^β can be described as a
field dependent local functional with coefficients formal power series in ft, whose
zeroth order contribution is the term proportional to Λ*β in the classical action
in Eq. (7).

The structure of the N.P.O. Ξ*f in its fully quantized form can be analyzed
along the lines indicated by Lowenstein and Schroer in ref. [7]. To this end we
introduce the bilocal operator:

4\ ^δJ^x + ε) vδJβ

v(x-ε) δξ°(x + ε) δΣ\x - ε)

δ δ ^_
~ δξ'(x - ε) δΣ\x + ε) + (ε^~

(41)
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where we have set

= δ^d h δacίA Π (42)
δΣ«(x) "δγ^x) δξ*A(x) v ;

We further define the modified functional

Z\ J, τ, p) = (1 + ih^dxp^WPf (x))Z(J, τ) + 0(p2) (43)

where p^(x) is a set of external commuting fields coupled to the bilocal vertex
generated by the Ff(x) operator. The connected graphs generator Zε

c(J, τ, p)
corresponding to Z\ J, τ, p) is given by

Zl(J, τ, p) = Zc(J, τ) + ih$dxp«e(x)P?(x)Zc(J, τ)

(44)

It is now straightforward to verify that in the tree approximation, the Pf(x)
operator at ε = 0 introduces into the Green functions the vertex corresponding
to the term proportional to Λ^ in the classical Lagrangian.

One can also verify by direct computation that the introduction of the p*^
external fields does not alter the anomalous S.B.S.I., which for the connected
functional Zc( J, τ) writes as

' τ)

~-(AZe)(J,τ) + 0(hA). (45)

Indeed, taking into account only the leading terms in the deep Euclidean region

and recalling (from Eq. (2)) that the dominant contribution to ^.Zc(J, τ) is
oΣ (x)
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(A~lΓξ\x) we find,

&hZ%J, τ, p) - - (AZC)(J, τ) + ^dxp*β(

0(/L4,p2). (46)

where we have used the fact that Pf(x) commutes with the hard Slavnov operator
5^Λ. To show that Z*(J, τ, p) satisfies Eq. (45) we observe that the first two terms
in the r.h.s. of Eq. (46) describe, up to contributions of order hA or (p2)α/?, the
insertion of the vertex A into Z*(J, τ, p).

We can now define, up to first order in pΛβ the functional Zc( J, τ, p) as the
ε->0 limit of Zε

c(J9 τ, p) by deleting the singular contribution in the Wilson
expansion of the bilocal operator Pf(x) in the second term on the r.h.s. of Eq. (44),
all others being clearly convergent. The singular terms which have been so dropped
are annihilated by the ί?h operator at least up to the order hA; indeed all the
terms in the r.h.s. of Eq. (46) are regular at s = 0. It follows that the anomalous
S.B.S.I. in Eq. (45) is maintained for the functional Zc( J, τ, p) and the A.B.A. at
its lowest non vanishing order is left unaltered by the introduction of the p"β(x)
fields.

We can now put together the various pieces of information so far collected.
First of all we can write

dΛΛβZc(J9 τ) - ldx—I^Zc(J9 τ, p)\p = Q = D<*ZC( J, τ, p)|p = 0 = 0(h). (47)

Furthermore, since both /Lα/? and Jdx Λβ commute with the Slavnov operator,

we have, from Eq. (45):

D*β(AZc)(J,τ,p)\p=sQ + 0(hA) - 0. (48)

Rewriting the l.h.s. of Eq. (48) in terms of the vertex generator Γ(Φ, τ, p), which
is the Legendre transformation of Zc( J, τ, p) we find

δj

P, τ, p))|p = 0 + \dx D"βZc(J, τ, p) (̂ (Φ, τ, p))

+ 0(hA) - 0 "' (49)

and hence, substituting from Eq. (47)

£°%4(Φ, τ, p))|p = 0 + 0(hA) - 0. (50)

Finally recalling that the A.B.A. is, at its lowest non vanishing order, indepen-
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dent from the fields p*β, we conclude that the coefficients r. satisfy

dΛ*βrj = ° (51)

which is the desired gauge independence property.

V. The Polynomial Character of the Adler Bardeen Anomaly

Summarizing the results thus far obtained, the coefficients r. in the expression
of A.B.A. (Eq. (13)) depend only on the parameters λa defining the hard gauge
invariant part of the Lagrangian, and therefore they do not change if we consider
models built with an exact S.I. or else models where we allow soft breakings to
the S.I. itself.

From a naive point of view one could conjecture that the Feynman amplitudes
of these theories, and in particular the coefficients r. which to Feynman ampli-
tudes are related, are polynomials in the λα's. The ansatz that the coefficients
r. are polynomials in the Aα's has been fully exploited in the analysis of the radiative
corrections to the A.B.A. given in [11]. This point is also central to our study
and will be proved in this Section.

The proof begins analyzing the special class of the models in which all the
couplings with naive dimension less than four are absent, so that the soft part
of the Lagrangian is reduced to the mass terms, and the gauge parameters Λ*β

are in diagonal form

A« = -V. (52)

Within this special class we can prove the following sequence of properties:

Property 0. The fields CΛΛ(X), caA(x) corresponding to the abelian factor 0'A of
the gauge algebra ^ are free, their couplings being restricted only to the ones
with the external fields %>f? L 5^, *//,,*?£•

This property is of course true at the tree approximation and can be straight-
forwardly implemented to all orders of perturbation theory. Consequently the
supplementary renormalization conditions corresponding to Eqs. (A.I) (A.2)
in Appendix A, become

-A-Γ(Φ,τ)=-K-

h.c.] + Z^y.(x) + fβ dμγ
β

μ (x), (53)

'τ) = D "°A(x} + μ*Λβδβ(x)9 (54a)

) = 0. (54b)

Let us remark that, as shown in ref. [15], Eqs. (53), (54) uniquely fix the couplings
of the Faddeev-Popov fields with the quantized ones.
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We now introduce the following

Definition. A proper amplitude Γ .̂..̂  ,cβι...cβj ',cvι...cy°',γδ

v

ι...γδ

v

ι,ζpί...ζl>n,... where with

the subscripts jtfΛί ... ζpn we have explicitely labelled the amputated external legs
of the diagram corresponding to the fields j^j . . . ζpn and the dots indicate possible
amputated external legs corresponding to scalar or fermion matter fields, is said
to be charge factorized if:

The coefficient Λ/**'1...^"... being a polynomial in the parameters λa which
vanishes with λa if matter fields external legs are present.
Using this definition we have also :

Property 1. If the Lagrangian contains only invariant couplings
(a) the Feynman amplitudes are polynomials in the parameters λa

(b) among these amplitudes the proper non trivial ones, i.e. those corresponding
to diagrams with at least one loop, are charge factorized;
(c) the same factorization property also holds for the diagrams which give leading
contributions in the deep Euclidean region to the functional (^hΓ) (Φ, τ) defined
in Eq. (1).

Properties la and b follow directly from the restriction to the invariant coupl-
ings and from the results given in Appendix B. In particular the validity of Eq. (55)
depends strictly on the fact that Γ^« 1 ζPn ... is a proper non trivial diagram. For

instance, each ^(x), c*s(x\ γa

μ

s(x), Cαs(x) external line emerges from a trilinear
vertex proportional to the parameter eό and whose remaining two lines are neces-
sary internal to the diagram.

Concerning the diagrams contributing to (£fhΓ)(Φ,τ) one sees, making
use of Eq. (55), that the factorization property can be violated only by

) and d x Γ ( φ ' τ ) Γ ( φ ' τ ) lf the

δ δ
contributions to JΓ(Φ,τ) and — — -~Γ(Φ, τ) arise from mass terms, i.e.

s(X) OC *(X)

.Γ(Φ,τ) = M* βjιfβ

μ(x) andj^ΓΓ(Φ,τ) = μ«sβcβ(x). It is however clear
(X) OC S\X)

that these terms are non leading in the region of large Euclidean momenta.

Property 2. In the hypothesis that, up to a given order in h the counterterms in
JSf eff are charge factorized, the same holds true for
(a) any proper nontrivial diagram;
(b) the leading contributions to (S?hΓ) (Φ, τ) in the deep Euclidean region;
(c) the counterterms needed to compensate the hard breakings both to the sup-
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plementary renormalization conditions in Eq.s (53) (54) and to the S.B.S.I. at the
same order.

Statements 2a and b are obvious extensions of Property 1.
In order to prove 2c, let us remark that, according to the analysis developed in

Appendix A, the coefficients of the hard breakings are computed as infinite momen-
tum limits of suitable terms in (^hΓ) (Φ, τ) and in the l.h.s. of Eq. (54b). It hence
follows from property 2b and the analysis in Appendix B, that the coefficients of
the independent breakings do satisfy Eq. (55). Now the factorization property of
the counterterms necessary to implement the supplementary condition (Eq. (54b))
can be easily deduced looking at the analysis in ref. [14].

Finally we must unfold the relation between the compensable hard breakings
to the S.B.S.I. and the corresponding non invariant counterterms. From the de-
dailed discussion in refs. [14-15], it turns out that the counterterms At(x) are
obtained from the breakings At(x) by solving a chain of equations of the type

a) $dyd?(y)-Ai(x) = Aί(x) (56a)

or
b) dA.(x) = A.(x) (56b)

where At(x) and A .(x) are local polynomials in the fields and their derivatives. The
operator d in Eq. (56b) is given by

d = R^c"(x) + -2(efY^c«°(x)^(x) ^̂  (57)

where RΆ is the infinitesimal generator of a global gauge transformation on the
fields .^μ(x\ 7;*(x), Cα'W, Sμc"(x), 9i(x)9 ψL(x), ψR(x), n^(x\ ηR(x\ ̂  (x), ̂  (x), ?,(*)
and their derivatives considered as independent variables. Recall that the fields
j3Γ(x), yJJ"(x), Cαs(x), dμc

α(x) transform according to the adjoint representation,
thence for example the contribution to R* from the gauge vector fields and their first
derivative is

while the scalar fields contribute with:

Wa^J (58b)

and so on. Now any dependence from the charges eα/?, and consequently from the
whole set of parameters λa in the operator d, can be reabsorbed by the field trans-
formation

(59)
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After this transformation the coefficients of the breakings At(x) remain poly-
nomials in the parameters λa due to charge factorization (Eq. (55)). Furthermore
the solutions of Eqs. (56) obtained as in ref. [14] by deleting the invariant contribu-
tions, yield counterterms, in the primed fields, whose coefficients are λa independent
linear combinations of those of the breakings. The back transformation to un-
primed fields restores the charge factorization property of these counterterms.

Making use iteratively of Properties 1 and 2 it is straightforward to verify the
following

Proposition III. Within the special class of models whose effective Lagrangians do
not contain any coupling with dimension less than four, the coefficients of the hard
non invariant counterterms possess the charge factorization property given in
Eq. (55).

This result is readily extended to the coefficients of A.B.A. since the anomaly is a
hard breaking to the S.B.S.L and, on the basis of Proposition II in Sect. Ill, we
have the stronger formulation:

Proposition IV. In any model with anomalous S.B.S.L the coefficients of the Adler
Bardeen Anomaly at their lowest order are charge factorized according to Eq. (55).

VI. Analysis of the Anomaly by the Callan-Symanzik Equation

On the basis of the results obtained in the previous sections we can conclude the
analysis of the anomalous S.B.S.L exploiting the Callan-Symanzik equation for
the A.B.A. (Eq. (39)).

In order to discuss Eq. (39) it is convenient to consider separately the following
possibilities :
a) The indices α, β, y all belong to the abelian invariant factor <&A of $ .
b) The index α belongs to <& A , while β and y are in the same simple component 4

of the semisimple factor ̂ s of ̂  .
c) The indices α, β, y all belong to a simple factor 0 of $s .

By the invariance and symmetry under permutation of the indices of the tensor
D"βy we can reduce any other non trivial possibility to one of the mentioned cases.

Starting with case a), we notice that there are as many rank 3 invariant sym-
metric tensors on & A as the choices of the indices α, β, y with α rg β ̂  y . We thus
parametrize the tensor

^rjDy = r^βy (60)

with its components for α ̂  β ̂  y. Furthermore the contribution of the graphs in
Fig. 1 to the first term in the l.h.s. of Eq. (36) vanishes for α, β, γin&A, hence, from
Eq. (60), we obtain

rα/?τ _ Q
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Observe now that in the abelian factor <&A we have the following relations [7] :

so that the substitution

reduces Eq. (61) to the form

i) S (i) d -U)~ ID * \-*βy

<z'Aa'A o /

We emphasize that, according to Proposition IV the coefficients r*βy are charge
factorized (Eq. (55)) so that P^ is a polynomial in the parameters.

Concerning case b) we note that there are as many rank 3 invariant tensors
with one index (α) in <§A and the remaining (β, γ) in &s as the couples made with an
abelian generator and a simple factor o of <$s. This follows from the fact that the
only rank 2 invariant tensor on ̂ s is its Killing form. We can thus parametrize
£ r.D°?y for this choice of the indices as
j

j

where δβy is the restriction of the Kronecker symbol (the Killing form) to the
simple factor 0. Now Eq. (39) becomes

-Tr/X) lim X"βy(ηp, ηq)μdμ(AjΓ)(σ Φ, τ)
j f?~'00 1 loop

= o (66)
where y(^™' obeys Eq. (62a) and y(

2

1)/?7 is given explicitly by

(67)

with

(68a)

*)t ΓJ), (68b)

(68c)

and the gauge parameter K chosen as in Eq. (52). Furthermore in the l.h.s. of
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Eq. (66) the function β™ is (see ref. [24]) :

(69)

and the first term, which receives contributions only from diagrams 1 and 4 in
Fig. 1, is computed to be

i£r/ί) lim X f(ηpt ηq)μdμ(A.Γ) (σ Φ, τ)| , /oop

j »?-»00

,)rα^. (70)

Now substituting Eqs. (70), (69), (67), (62a) into Eq. (66) and setting

we find that rα/<J satisfies Eq. (64). Remember that by the charge factorization
property rα/ί3 is a polynomial in the parameters.

Concerning case c) we recall that, up to a normalization constant, at most
one, invariant, symmetric rank 3 tensor can be built on any simple Lie algebra.
Therefore the restriction to a simple factor 0 of the tensor ^r.Dγy is written

j
rϋD^βy and parametrized by the coefficient r^. Then in case c) Eq. (39) becomes

- £ r j ( λ ) lim X*βy(ηp, ηq)μdμ(AjΓ) ( σ ' 9 Φ , τ ) \ 1 loop

d Λ / 1 Λ S

1' = 0 (72)

where y(

2

1)W' is given in Eq. (67), and the restriction oίγ^""' to the simple factor o is

(73)

The first term on the l.h.s. of Eq. (72), which now receives contributions from all
four graphs in Fig. 1, is computed to be

I Σ r j W 1™ XΛβy(nP> ηcύμdμ^jΓ) (σ, Φ, τ)| ί loop

e2

= 7-̂ 7 r W D*βy (6 + 4 K) c2 (d). (74)
(8π)2

1 We shall exclude the pathological cases where the representation content of the model is such
that some of the functions β(

e

1} do vanish for eϋ ^ 0



260 G. Bandelloni et al.

Substituting Eqs. (73), (74) and rό = e\ rύ into Eq. (72) we find that fό obeys Eq. (64).
Also in this case one should remember that,4ue to the charge factorization property
proved in Section F, rύ is a polynomial in the parameters.

We have thus arrived at the final step of our analysis, that of finding the general
polynomial solution f(e,p, A) of the equation

(75)

The method relies on the coefficients of the differential operator being them-
selves polynomials in the parameters; in particular β(

e

l) and β(1) are cubic
ϋ &<* A$A

homogeneous in the charges eϋ9eΛ βΛ

 and do not depend upon the remaining

parameters. The vector coefficient β(1) depends only on the parameters e, # and
decomposes two terms

P? = S,(?) + t,(?,e) (76)

where b (#) and c (#,e) are homogeneous of degree 3 and 1 respectively in #.
Likewise the components of β4 decompose into two terms

ft>=bΛ(Λ) + cΛ(4,e,f) (77)

where B#(a) is homogeneous of second degree and c4(ά, e,p)is at most linear in A.
The analysis proceeds along the lines suggested in ref. [1 1]. Selecting the highest

degree contributions in the A variables to the l.h.s. of Eq. (75) yields

(MW/, = 0 (78)

where fA is the highest order part of/in the same variables.
We shall show in Appendix C, by a detailed study of the coefficient bA, that

Eq. (78) admits no polynomial solutions except a constant; from which
we immediately conclude that/ is independent from the variables A.

Applying now the same procedure to the ̂  variables one gets

(fe>)V#)/# = 0 (79)

with/ the highest order contribution to /in these variables. Here again the dis-
discussion of Eq. (79) in Appendix C shows that / can only be a constant and
hence /is also ^ independent.

At this point Eq. (75) reduces to the following partial differential equation
in the eό,

 e

aABA variables only:

(80)

which is obtained by substituting into Eq. (75) the explicit form of the coefficient
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β(

e^ given in Eq. (69) and β^ as computed from

1
f<?/? ( 1 ) 4- /? ( 1 )βΐ — -( e p +p e ' ~

(81)

taking into account the condition in Eq. (4).
Equation (80) can be analyzed by the same method illustrated above; indeed,

by selecting the highest order terms /^ and /6α β in the variables e^ and e β

respectively we get

« 1 Ί g
-Λd = 0 (82a)

(82b)

From equation (82a) we easily derive that, provided β^ ^ 0 (see Note (1)), fe is a

constant and identical conclusion is reached for/e in Eq. (82b) by employing a

procedure analogous to the one used for Eq. (79).
Thus the result of our analysis of the Callan-Symanzik equation is that the

coefficients r. are cubic homogeneous polynomials in the charges e^ e

ΆAβΛ'

Our final task is to connect this result with the order of the Feynman diagrams
contributing to these coefficients. This is achieved by referring to the models
without soft couplings introduced in Sect. Ill and recalling that in these models
all radiative corrections to the couplings satisfy the charge factorization property
(Proposition III). As a consequence the radiative corrections to the tree approxima-
tion vertices have an higher order in the λa parameters.

Now one can easily deduce2 that the only Feynman diagrams whose contribu-
tions to r. are compatible with the behaviour fixed by the Callan-Symanzik
equation are the single loop ones built with the vertices of the classical Lagrangian:
such diagrams have order one in h. On the basis of the results in Sect. Ill (Proposi-
tion II), the above conclusion is seen to hold in any gauge model.

Acknowledgements. We would like to thank professor R. Stora for constant encouragement.

Appendix A

Our task in this Appendix is to show that the renormalization program for models
with S.B.S.I. leads to the same results obtained for an exact S.I.; in particular we
shall prove that the only non compensable breaking term to the S.B.S.I. is the
Adler-Bardeen anomaly (A.B.A.).

We shall illustrate the renormalization procedure in the framework of the

2 The analysis is obviously simplified by the admissible choice A = $- ~ 0
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B.P.H.Z. scheme [12] only up to the point where it completely overlaps with the
one for the exact S.I. given in ref. [15] thus yielding the same results.

As a simplifying hypothesis, after refs. [14, 15], we shall assume that all the
quantized fields are massive the extension of our discussion to models involving
massless fields can be straightforwardly obtained by employing the formalism and
techniques developed by Zimmermann, Lowenstein and Clark [12, 20, 21]. We
recall that, as already mentioned in Sect. Ill the theories with S.B.S.I. are free
from infrared (LR.) pathologies.

Our models are specified by assigning an effective Lagrangian as a normal
product operator (N.P.O.) [21] with ultraviolet (U.V.) subtraction index equal to
four and requiring that the corresponding Green's functions satisfy to all orders
of perturbation theory (h formal power series) the S.B.S.I. together with two systems
of supplementary renormalization conditions. The first system fixes the equations
of motion of the c*(x) fields and the second one expresses the super-
renormalizability of the couplings of the CΛA(X) fields (i.e. the ones corresponding
to the abelian factor of ̂ ) with the quantized ones.

The classical limit of the effective Lagrangian of these models is described in
Sect. II. Denoting the quantized fields collectively by Φ(x) and the external ones
by τ(x), we can write the equation of motion of the c*(x) fields in terms of the vertex
functional Γ(Φ, τ) as

, τ) - Λ « S » . Γ ( Φ , r) -

= (J«(x)Γ)(Φ,τ) (A.I)

where the r.h.s. means the insertion in Γ(Φ,τ) of the N.P.O. N2[zlα(x)] which
accounts for the effect of the super renormalizable couplings corresponding to the
soft breakings of the S.B.S.I. Likewise the super renormalizability requirement for
the c*A(x) couplings is written as

) τ) + fΛβ(Λββ D Cβf(χ} + δ^d^βs(x)) + 7i(x)(etff φj(x)

+ (ηϊR(x)(eTL)«-ψL(x) + ηl(eTRY*ψR(x) + h.c.) = (Δ'2*
A(x)Γ)(Φ9 τ) (A.2)

where the matrix /^, which is δ*Aβ at the classical level, is kept free for adjustments
at the higher orders and the r.h.s. means the insertion in Γ(Φ, τ) of the N.P.O.

To discuss the implementability to all orders of perturbation theory of
Eqs. (A.I) (A.2), which obviously hold at the tree approximation, we first need
their complete functional translation. This is accomplished by coupling the soft
breakings ΔΛ

2(x) and Δ'^A(x) to external fields ^α(x) and <% *A(x) which are assigned
U.V. dimension equal to two and -f 1 and — 1 Faddeev- Popov charge respectively.
By introducing these new vertices into the Lagrangian, thereby defining a new
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generator Γ(Φ, τ, #, $), we rewrite Eqs. (A.I) (A.2) as

(A.3)

*ψR(x) + h.c.) + &*^&(x) (A.4)

where the last term on the r.h.s. of both equations accounts for the corrections
induced by the ̂ α(x), $ *Λ(x) couplings and satisfy Θ"Aβ + Θβ"A = 0.

The proof of the renormalizability of Eqs. (A.3), (A.4) can now be performed by
following verbatim the procedure described in details in ref. [15] .

From now on we shall consider only those effective Lagrangians which satisfy
the supplementary conditions in Eqs. (A.I), (A.2).

The second step of the analysis is to discuss, within this restricted class of
«5f eff the renormalizability of the S.B.S.I. which we shall write for the connected
generator ZC(J, τ) as

*(J' τ) + Z<(J> τ)

) = Sdx(Δ4(x)Ze) (J, τ) (A.5)

Here the r.h.s. denotes the insertion in ZC(J, τ) of the integrated N.P.O. $dxA4(x)
with U.V. subtraction index equal to four. We introduce an external field σ(x)
with U.V. dimension equal to zero and + 1 Faddeev- Popov charge, coupled to
the soft breaking Δ4(x). The addition of this new vertex to the Lagrangian allows
us to define the connected generator Z (J, τ, σ) so that Eq. (A.5) becomes

, τ, σ) •—}*δσ(x)
Zc(J, τ, σ) -0. (A.6)

The analysis of this equation is based on the Quantum Action Principle
(Q.A.P.) [22] according to which for a generic choice of J5?eff, which we will
however choose in agreement with the supplementary conditions, Eq. (A.6) is
affected by breaking terms with U.V. dimension uniformly bounded by five.
Hence we have in general

&*hZe(J, τ, σ) = \dxσ(x)Σ5(x)Zc(J, τ, σ) + $dxA5(x)Zc(J, τ, σ) (A.7)
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Here the σ(x) independent breakings of naive (U.V.) dimensions equal to five
have been isolated in A5(x) and possible lower dimensionality ones are reabsorbed
by a suitable redefinition of the σ(x) field coupling. The insertion Σ5 (x) summarizes
the breakings deriving from the σ(x) coupling itself.

Now our aim is to prove, order by order in ft, that the breaking A 5 ( x ) may be
compensated by a suitable counterterm to be introduced in the effective Lagrangian
without violating the supplementary conditions in Eqs. (A.I) (A.2).

At the classical limit (i.e. the h independent contribution) Δ5(x) vanishes and
the proof proceeds inductively by considering the first non vanishing contribution
A(£}(x) of order hn(n ̂  1). The compensability of Δ(^(x) by an appropriate choice
of J^"}

f is deduced from the consistency conditions which A(£\x) must satisfy
in order to meet the supplementary renormalization requirements in Eqs. (A.I),
(A.2).

The explicit form of these consistency conditions is obtained by the same
functional method employed in ref. [14]. We introduce an external field β(x)
with U.V. dimension equal to — 1 and + 1 Faddeev- Popov charge, coupled
to the breaking zJ(

5"
} and the modified effective Lagrangian

JSf eff (Φ, τ, σ, β) = j?βff(Φ, τ, σ) + β(χ) A<ζ\x) . (A.8)

The application of the Q.A.P. yields, for the corresponding connected func-
tional ZC(J, τ, σ,]8),

&σ

hZc(J9 τ, σ, β) = $dxΣ5(x)Zc(J, τ, σ, β)

+ Idx ̂  Z ( J, τ, σ, β) + $dxβ(x)A'6(x)Zc(J, τ, σ, β) + O(β2)

(A.9)

where the β(x) proportional term on the r.h.s. summarizes the corrections (to
first order in β(x)) arising from the coupling of the β(x) field. By direct computation,
via the identity (&"ff = ̂ , we find, employing Eqs. (A.6), (A.7), (A.9),

c ( J, τ, σ, β)\σ=β=0 = ̂ 2Zc( J, τ) = - $dxΣ5(x)Zc( J, τ, σ, β)\σ=β=0

and the further substitution of Eq. (A.9) into the last term of the r.h.s. yields

<?2

hZc(J, τ) = - ldxΣ5(x)Ze(J, τ) - $dxΔ'6(x)Zc(J, τ) (A.I 1)

At this point we are ready to impose the constraints derived from the supple-
mentary condition in Eq. (A.I). By direct computation we find:

, τ) = - fΛtfM a, ~ + ̂ D z c ( J , τ)

so that comparing Eq. (A. 11) with Eq. (A. 12) and translating the result in terms
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of the vertex functional Γ(Φ, τ) we obtain

= f dx[(Σ5(χ)Γ)(Φ, τ) + (Δ'6(x)Γ)(Φ9 τ)] (A.13)

where the l.h.s. has been reduced by means of Eq. (A.I) and the property

---~
δc*(x) δcβ(y)

Now an analysis of Eq. (A. 13) in the deep Euclidean region leads to a constraint
for ]dxΔ'£n\x\ i.e. the contribution of order hn to fdxJ'6(x).

Let thejsymbol Xat(x) stand collectively for all fields quantized or external
ones, and X (p) for the corresponding Euclidean Fourier transform; we define
the test operators

where the momenta pί -pn are non exceptional in the sense of Symanzik. Let
Furthermore

with da. the U.V. dimension of the field Xa(x) With these definitions, on the
basis of Weinberg power counting rules, we obtain for all choices Daoaι Λn ̂  6

lim pDaoaι an-6χ (pp) fdx——-—/Ύφ, τ)(Δ"(x)Γ)(Φ, τ) = 0 (A.lόa)
_^ Γ ao«i...«nv r r /J δc (x)

lim PDa°aι-an~6Xaoaι.. an(ρp)$dx(Σ5(x)Γ)(Φ, τ) = 0 (A.lόb)
p->oo

- 1 ) (A.16c)

where on the r.h.s. of Eq. (A.lόc) we have isolated the contribution §dxΔ'£n\x).
This result can now be substituted into Eq. (A. 13) to yield at the order hn :

for all test operators with Da a ^6 and hence

which contains all the algebraic constraints on Δ(^(x) implied by the supple-
mentary condition in Eq. (A.I).

The link between A'^\x) and A(£\x) can be obtained by decomposing Δ(£\x) as

JW(X) = Δa(x)τa(x) + Δ°(x) (A.19)

where Δ^(x) is independent from the external fields, and then proceeding along
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the lines given in ref. [14] to get

SdxA'W(x) = Jώc[^(M)^<°>(Φ, τ) + op(0)A%\x)] . (A.20)

The substitution operators in Eq. (A.20) are defined by

^ = Sdx( - lΓA*(x) ^— (A.21a)
έΛ '

_J__ (A22a)

where na is the Faddeev- Popov charge of the external field τa and P(°\x) is the
tree approximation Slavnov variation of the field Φa(x).

We conclude by noting that the algebraic consistency conditions obtained
substituting Eq. (A. 20) into Eq. (A. 18) are exactly the same as the ones given in
refs. [14, 15]; these coupled with the super renormalizability requirement in
Eq. (A. 2) allow us to repeat verbatim the algebraic and power counting analysis
of A(£\x) performed in ref. [15] and therefore to reach the result that only the
presence of the Adler Bardeen anomaly may spoil the renormalizability to all
orders of the S.B.S.I.

Appendix B

The purpose of this Appendix is to prove that in models with S.B.S.I., renormalized
according to the B.P.H.Z. scheme, if all the coupling constants are polynomials
in the parameters λa , the following properties hold :

a) any Feynman amplitude is a polynomial in the parameters λa

b) if in an open neighborhood of a given choice of the parameters λa , a Feynman
amplitude has a finite limit at infinite Euclidean momenta, then this limit
is a polynomial in the parameters.

We first notice that, within the B.P.H.Z. renormalization scheme, any Feynman
amplitude D is given by an absolutely convergent integral [12] of a rational
function of the type:

PD(p,k)
D Π('?(p. *) + *??" ( '

i

where k and p denote the internal and external momenta respectively, /.(p,fe)
are linear combinations of p and k and mf ^ 0.

Secondly we remark that in models with S.B.S.I. the masses m. do not depend
on the dimensionless parameters λa (the situation being quite different in a model
with exact S.I. where these masses may be generated by the Higgs- Kibble mecha-
nism) so that the only dependence of ID from λa is contained in its numerator
PD which is a polynomial in the coupling constants.

We can decompose the numerator PD and make explicit its dependence from
the parameters λa as

)X"(p,k) (B.2)
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where Mα(/lα) is a set of independent monomials. The corresponding Feynman
amplitude factorizes according to

(B 3)

where the single integrals in the r.h.s. are absolutely convergent as shown in
ref. [25]. This proves property a).

It is also straightforward to verify that, due to the independence of the mono-
mials Mα(/lα), the existence of the limit

i

is an open neighborhood around λa, insures that of

(B 4'

(B.5)

from which we obtain

/B(A,) = ΣΛW*D (B.6)
α

thereby proving property b).

Appendix C

In this Appendix we shall first show that the only polynomial solution of Eq. (78)
is a constant, and then reach the same conclusion concerning Eq. (79).

The first step in the analysis is to choose a suitable basis in the real linear
space 3f of the symmetric rank four tensors ft describing the quadrilinear coupling
of the scalar fields (with components £ijkl). These tensors are invariant on the
real completely reducible representation of the gauge group carried by the fields.

In the space 2tf we introduce the scalar product:

ijkl

and the tensor product:

..,ι / -- n n ίjkl /-(V ijmn mnkl ' ιfem«

We now choose a basis {φ.} for the scalar fields completely reducing the
gauge group representation into a sequence of irreducible components labelled
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with capital latin letters A, B, C ... and whose dimensionalities are nA, nB, nc ... .
The decomposition of the representation on the basis {φ.} automatically induces
a reduction of Jtf into subspaces 3f (ABCDϊ which are contained in the symmetrized
tensor product of the components A, B, C, D. It is clear from the very definition
that these subspaces, some of which may be empty due to the in variance conditions
in Eq. (10), are mutually orthogonal; hence an orthonormal basis in 3ί? may be
given by the union of those for the subspaces j^(ABCD\

We now select some special elements of these bases. For each component A
and subspaces #P (AAAA) we can choose the tensor

where the δί is the usual Kronecker symbol if both indices i and j belong to the
component A and vanishes otherwise. Similarly for each couple A,B(A< B) we
identify as an element of the basis in ^(AABB^ the tensor

and for each triple ABB' with the representation B equivalent to B', we introduce
in jjf(AABBn> the tensor

γABB'
=

where [7̂ ' is the matrix intertwining the representation B and β' normalized to

The remaining basis elements in jf , obtained by completion of the ortho-
normal sub-bases in each subspace, will collectively be denoted by Z*, χ = 1,
2, . . . , N. For notation convenience we shall assume that the tensors Z* in Jί? (ABCD^
with A < B < C < D correspond to values of χ in the range N ̂  χ ̂  N.

We now give some relations among the elements of this basis which will be
useful in the following. From Eq. (C.2), (C.3), (C.4), (C.5) we get

8)
ijki fc — - ΓOΛ W

V 3n>A + 2)

CD\ _ HA + 2 ($AC yAD , τAD γAC \
-

(C.6a)

Moreover

(C.7)
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with cAχ ^ 0. To derive this last relation we observe that its l.h.s. vanishes for
any A unless Zχ is of the type A(AABC} (i.e. belongs to jή?(AABC)) for any choices
of B and C; in this case we compute from Eqs. (C.2), (C.3)

ijkl /Λ / Λ \ \ ' J lj ""' "tun*

>V 3nAnA ~f~ 2) \ /all permutations\
\ of ijkl ) \

+ Σ 2δfmδA

nά
(A

n

ABC) ) (C.8)
/all permutations1! /

V of ijkl /

and remark that Eq. (C.7) is immediately recovered provided the first term on the
r.h.s. vanishes. Now the invariant rank two tensor 5^w^^BC) can be nonzero
only when the representation B and C are equivalent; and in this instance the
orthogonality of Z* with XA, XAB, XABC also ensures its vanishings.

In complete analogy with Eq. (C.7) one can derive

(C.9)

where

CXΛB= —2—

^/6nAnB

ifZχ is of the type $ABCD) for some C and D, and c/Aβ = 0 otherwise.
Having given an orthonormal basis in ffl, the tensor A decomposes as

A — y x x^4 4- y x x^β

yl A<B

A<B<B' χ

where the coefficients xA,xAB9xABB>,*χ give the wanted parametrization for the
quadrilinear scalar field couplings.

We now go back to Eq. (78); by direct computation one can show that, for
any choice of an orthonormal basis in Jtf^ the vector coefficients BΛ in Eq. (77)
is given by

ζι = V^B (C.ll)

with

1
f> ( Λ β^\ \ i/~^ 1 Λ\

&){*">&}) (C.12)

so that in our case Eq. (78) becomes

Γ dB δ γ 8B S dB
/ ,~λ "^ i /, -Γ -r h / , —

Ά <• D Ao AD A <-£><• D ADD

SB_^_
x κ χ. *ϊ. -
Σ̂ ( , *> * » * = °
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In order to discuss the general polynomial solutions of this equation we first
isolate the terms of B depending on XA . Substituting into Eq. (C.I2) the expression
in Eq. (C.10), taking into account Eqs. (C.6) (C.7) and the orthonormality of the
basis, yields:

R( }~ l ίv 2Kι + 2) ..a
ϋ(XA, XAB, XABB', Zχ) - <W Q _X2 1 L

Σ K + 2) .. ..* , v^ K + 2)

A,B

_l V c^/ V z2

""" Zj ^ χ
Λ,χ

wherejB(x^β, x^Bβ,, ^χ) is x^ independent.
Now substituting Eq. (C.14) into Eq. (C.I3) and selecting the highest order

contributions in XA yields:

d d
A - _ _ i " X Aτ>~ϊi I

= 0

where// denotes the highest degree terms in XA oϊf^ . From this equations, recalling
that the coefficients cAχ are nonnegative, we immediately conclude that f\ is of
degree zero in XA and/^ is independent from xA, XAB, XACC, for any A, B and CC
and from the zχ parameters for which the coefficients cAχ in Eq. (C.7) do not
vanish (i.e. χ ̂  N).

After these specifications we are left with the equation

Σ - - f * = <> (^
The substitution of Eq. (C.9) into Eq. (C.I 2) yields the following decomposition
for the function B defined in Eq. (C.14),

B= X c*ABxABz2

χ + B (C.17)
A,B,χ
X>N

where B is independent from the parameters XAB . Inserting Eq. (C. 17) into Eq. (C. 16)
and selecting the terms linear in XAB, gives

X>N *X

which implies that/^ is also independent from the parameters zχ,χ>N since
for any such χ there is at least a choice of A and B with cχAB > 0.

This shows that the only polynomial solution of Eq. (78) is a constant.
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We turn our attention to Eq. (79) employing a technique quite similar to the
/>_\

one already used. Introducing the spinor representation space ψ = I L 1 the
\vW

Yukawa type couplings are specified by matrices

satisfying the invariance condition given in Eq. (9) which is written here as :

[yUα] = ς.rj (c.20)
with

(Tα i 0_L __ J ___ Y.
o ! ιϊ

Let us consider the real linear space of the solutions Ϋ (with components Yl)
of Eq. (C.20) equipped with the scalar product

(Ϋ, y/) = Σ'Wy") (C.22)
ί

let us further choose in this space a basis {Ϋλ} orthonormal with respect to this
scalar product, and parametrize the Yukawa coupling matrices by the coefficients
yλ of their expansion on the basis {Ϋλ}

r' = Σ3Ά (c.23)
λ

With this choice of the parameters the components by λ of the vector coefficient
bg in Eq. (79) are given by

where the function F, as shown in ref. [26] is the following quartic homogeneous
positive definite polynomial:

We then perform the polar-like change of variables:

p = F1/4 (C26a)

θλ = θλ(yη) (C.26b)

for a choice of the variables θλ satisfying

Σ|̂  = O (C.27)
7^, 8yη

After this change of variables and setting /(p, θ) =fy(y(p, θ)) we rewrite Eq. (80) as

-̂
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from which it follows that/(p, θ) is independent from the parameter p.
Since/is a homogeneous polynomial in p whose degree is equal to that of/

we conclude that/ is necessarily a constant.
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