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Abstract. The notion of Feynman amplitude associated with a graph G in
perturbative quantum field theory admits a generalized version in which each
vertex v of G is associated with a general (non-perturbative) n -point function
H"™,n, denoting the number of lines which are incident to v in G. In the case
where no ultraviolet divergence occurs, this has been performed directly in
complex momentum space through Bros—-Lassalle’s G-convolution procedure.

Note for the Reader

The general introduction of this work and the necessary mathematical material
have been published in Commun. Math. Phys. Vol. 72, pp. 175-205. We now
present our result on the convergence of renormalized G-convolution. In Sect. 2, a
definition of our generalized renormalized integrand Ry is given : this definition
closely follows Zimmermann’s algorithm [ 7] and involves a sum of counterterms
which are associated with all the G-forests: a G-forest is a subset of “non-
overlapping” subgraphs of G.

In Sect. 3, we introduce the notion of “complete forest with respect to a nested
set of subspaces of E;’;c”)” (this is also an extension of a notion defined in [7]). This
notion allows to write new expressions of R, which are used in the following
Sect. 4. The latter contains the proof of our main theorem: R, satisfies Weinberg’s
convergence criterion, and thus the renormalized integral H;*™(K) is a well-
defined function in the Euclidean region.

2. A Generalization of Zimmermann’s Renormalized Integrand

2.1. The Unrenormalized Integrand I

Let us consider a general connected graph G with n external lines and m inde-
pendent loops. Let £ denote the set of internal lines of G, A" the set of its vertices,
X the set of its external lines: |X ] = n. Each internal line is considered as oriented ;
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it means that a sign ¢, is prescribed for each couple (ie £, ve A"), which is + 1
or — 1 according to whether the line i points towards the vertex v or not.

With each external line of G, we associate an “Euclidean” r-vector K JEE,
which is also represented! as:

K;=P,+iQf, PR~ QR (jeX) (2.1)

and whose norm is || K, || = [ ﬁj, ﬁj> +(Q9)*]"/?: each vector K, represents the
external momentum which is carried by the line j, and these vectors satisfy the
total energy-momentum conservation relation: )’ K, =0

jeX
We denote by Kegg)~ " the set:

K={K;eR™!'+iR, jeX; ) K,=0} (2.2)
Jjex
Definition 2a

i) For every vertex v of G, we call X the set of the lines of G which are incident to v,
and call their number n, = | X |.

If xe X, it coincides either with an internal line i€ # or with an external line
je€ X ; we shall then write: o = (i) or a(j).

With each vertex v, we associate a set of r-momenta:

K*={K’; aeX_; ) K.=0} (2.3)

aEX,

which varies in the Euclidean space &, with dimension r(n, — 1).
ii) With each internal line i€.#, we associate an r-momentum /, which varies in
the (r-dimensional) euclidean space &;.
iii) A set of independent “internal” (or “integration”) Euclidean r-momenta of
G is defined as a set of r-vectors

k= {ky,....k,}eEm

which satisfies the following property.

For every vertex ve 4 (resp. internal line i€ %) there exists a linear mapping
A, (resp. 4,) from the‘ space ERp=E Y x Ej) onto &, (resp. &) such that the
corresponding substitutions:

(K. k)53 K°(K k) (24)

(K, ) 1K, K) 2.5)
be solutions of the following system:

—VaeX K (K.k)=K;, ifoa=oaj) (2:6)

is an external line, i.e. jeX ;

1 This representation is inessential in the present work, but refers to the usual complex four-momen-
tum Minkowskian space C" in which E" is imbedded: analytic continuation problems in C" will be
considered in a further work.
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KoK, k) = & I(K,k), if «= (i) is an internal line, ie. i€Z; 2.7
Y KYK,k)=0 (see (2.3)).
aeXy

Definition 2b. With G we shall associate a function I (K, k) on é’:l;(’,k) by the follow-
ing procedure:

i) With each vertex v of G we associate a general n -point function defined on the
primitive analyticity domain of Q.F.T. (see introduction) contained in C'®~1
and denoted by H™)(K"). With each line i of G we associate a general 2-point
function H ‘2)(1) defined on the corresponding pr1m1t1ve analyticity domain
contained in C’ Here we shall only consider the restrictions? of the above functions
HE(K") and H{)(l,) to the Euclidean regions &, &, the latter being respectively
realized as the following subspaces of C"®~ 1 and c".

&, ={KeC™ Y:ImK =0 Re(K"°=0}
&,={leC:Im[;=0 Re l? =0} (2.8)
This is meaningful since, as it is known [2, 3], the Euclidean region &, (resp. &)

is contained inside the primitive domain of analyticity of H®(K") (resp. H}iz)’(l,.)).
We shall put:

(A*H™)(K, k)= H™ (K"(K, k)) (29)
(A¥HP) (K, k) = H?(I(K, k)) (2.10)
We moreover define the completely amputated general n -point functions by:
H®™(K?) = H®™(K") x [T[H? (e,K)] (2.11)
acXy
where ¢ is equal to + 1if o = a(j) with je X, and ¢, = ¢, if o« = (i) with ie £ :
We then also put: (A*H™)(K, k) = H™ (K*(K, k)) (2.12)

il) We assume that for each vertex ve A" (resp. line i€.¥), there exists a class of
Hu My
functions ) (resp Z) to which H™ (resp. H®) belongs; in the following
(r(nv—1)
u, and p, will be always considered as integers.

From (2.12) (resp. from (2.10) and Lemma (1.3) it then follows that

H"™(K(K,k))) (resp. H{)(I(K,k)) belongs to the class A% (resp. A%)) with cor-

responding asymptotic coefficients:
2(8)=0 if ScKer 4 (resp. «(S)=0 if S < Ker 4) (2.13)
o (S)=p, if S Ker A (resp. a(S) = p; if S & Ker 4,) (2.14)

iii) We define the function I; on é":ﬁ 4 called the unrenormalized integrand by the
following products:

I(K. k)= [T A™(K*(K. k) [T HP((K. k) (2.15)

]
vEN e

2 Inthe following we shall only consider these restrictions and omit for simplicity the subscript



210 Jacques Bros and Marietta Manolessou-Grammaticou

We show the following properties:

Lemma 2.1
a) H"(K"(K,k)) (resp. H?(I(K,k)) belongs to a class oG (resp. o G7+)
of admissible Weinberg functions. The set 6, (resp. o) is the set of subspaces S = Ej;
satisfying : S & Ker A, (resp. S & Ker 1)), o, o, are defined through formulae (2.13),
(2.14) and:

w,={S = &R S ¢ Ker A, n(S)ea,}

(resp. o, ={S< &, 'S & Ker 4,;n(S)€a,})
b) I4(K, k) belongs to a class =4g°5) of admissible Weinberg functions. The
admissible couple (wg,04) in &% ,, is given by:

v

og =(() o) (2.16a)
e
wg=1{Sc &}, S ¢ Ker 4,VieZ, n(S)ea,} (2.16b)
The asymptotic coefficient for each subspace S éafg’k) is:
wWS= Y m+ Y ok @.17)
S¢llé’er Av Sgtll{;er Ai

We remark that in (2.16a, b) the property S ¢ Ker /,Vie & automatically implies
(in view of (2.3) (2.7)) S & Ker 4 -Vve A

Proof

a) is a direct application of Lemma 1.7 to the case of the mappings 4 and 4,.

b) By taking the result of a) into account and applying proposition 1.3.b. and d.
to the product (2.15), the result is obtained.

In perturbation theory, Zimmermann [7, 9] has proved that for a Feynman
graph Bogoliubov-Parasiuk-Hepp’s method of renormalization in configuration
space can be worked out in momentum space independently of any ultraviolet
regularization. Let us denote by Rf the renormalized Zimmermann integrand
associated with a Feynman graph G, and Hg, the corresponding finite part of the
Feynman amplitude such that:

HE(K) = [RE(K k) dk, ... dk, (2.18)

The function R, is defined by Zimmermann’s method as a rational function of the
internal and external momenta which is obtained by subtracting appropriate
counterterms from the integrand I, of the divergent Feynman graph.

In the present work we shall extend Zimmermann’s prescription of renormali-
zation to the case of a general integrand I; defined by (2.15), and we shall show that
in the Euclidean region é”:};“ D a certain “renormalized convolution product”
H ; can be defined through an integral of the form:

Hy(K)= | Ry K. k)dk, ...dk,,, (2.19)

Erm

where R is a functional of the H"* and H{® obtained by the following procedure.
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2.2 Admissible Sets of Momenta for G and its Subgraphs

Let us recall some usual notions in the matter. A graph G is called one-particle
irreducible or “proper” if it is connected and cannot be separated in two parts by
cutting a single line. A graph y is a subgraph of a graph G, written y c G, if the
vertices of y form a subset A, of the set /" of vertices of G and if all the lines of y
are lines of G ending to vertices of y; moreover some of the internal lines of G may
be cut to form external lines of y. Two graphs y,,y, are called nonoverlapping
if* either y, Ny, = ory, <y, ory,=y,.

A G forest U is a set of non trivial nonoverlapping one-particle irreducible
subgraphs of a graph G. U may also be the empty set. AG forest U is called full if
GeU;if G¢ U then U is called a normal forest. If y is any subgraph of U then U(y)
denotes the set of all y’e U with y' =y (in particular U(G) = U). In the following,
all the momenta which we introduce belong to the Euclidean space E" = R" ! +iR.

Definition 2c
i) For any subgraph y of G, we denote by .4, the set of vertices of y, by £, (resp.
X,) the set of internal (resp. external) lines of y; A" (resp. £.) is a subset of
N (resp. ). We also call n, =|X, | the number of external lines of v, and m(y)
the number of independent loops of y (note that m(G)=m,ng=n, N 5= N
etc...).
ii) With 7y, one can always associate two sets of variables, K” and k’, which play
the same role as the variables K and k for G(K® = K, k¢ = k).

— K is the set of “external” r-momenta of y, namely:

K'={K!; jeX,; Y K =0} (2.20)

jeXy

it varies in a space &{g; ™.

—k'={k},... mm} is a set of independent “internal” (or “integration”)
r-momenta of y; varies in a space E;'Iz‘?’

The choice of the variables k” contains a large arbitrariness, but satisfies the
following requirement.

For every vertex ve A (resp. internal line i€ £ ), there exists a linear mapping
2 (resp. 27) from 8 b’y ERY to &,(resp. &) such that the corresponding
substltutlons

Ez

(K7, k") — K*(K", k)

2
(K7, k") — (K", k")

be solutions of the following system:

- Y KYK", k) =0 (see (2.3))
aeX
KoK k) = &, (K", k"), (2.21)

3 The intersection of graphs is understood as being taken on the set of vertices and on the set of
internal and external lines.
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if o = o(i) is an internal line of y(ie £.).
- K, (K",k")= K], (2.22)

if o = a(j) is an external line of y(je X ).

Note that 76 = 2, 1¢, 2% = 1, (see definition 2.a.).
iii) It has been shown by Zimmermann [7] through a constructive procedure that
it is possible to define simultaneously for all subgraphs y of G (including G) the
variables (K?, k") and the corresponding mappings Il.’, /TZ in such a way that the
following properties hold:

—for every couple (y,y’) with 9" =y (where y can be G itself), there exists a

linear mapping f?, from &7y~ " x Efp to &7¢, Y x Efn” which has the follow-

ing form: " @ " )
5 K" = K"(K", k) (2.23)
TR =k (k) (2.24)
—Y(y,y,y") with y” =y’ = y, one has:
B = BB, (2.25)

The important point here is that k”" is a function of k” but does not depend on
K. Following the terminology of [ 7], we say that such a set of variables {(Ky,ky),
Vy = G} is an admissible set of basic momenta. The choice of this set still contains a
large arbitrariness. Such a choice will play a crucial role in the definition of R
and in the proof of the convergence of the integral (2.19). We shall suppose that
we have chosen once for all a certain admissible set in the following sections 3
and 4; (for a proof of the fact that H;, is independent of the choice of any admissible
set of basic momenta see [12]).

Definition 2d
i) For every y < G, the mapping ﬁVG allows to reexpress (K’ k) as a function of
(K, k) through the linear substitution k" = k¥(k) (see (2.24)). (K”, k) varies in a space
£ =65 X EQOW, =m) + 1, ~ 1)

Then with every couple y, y’ such that y = 7, we can associate a linear mapping
s), from é’[g;’k) to é’:ﬁ;,’,k) which is defined as follows:

(KK (K7 = KY(K", k(K)). k) (2.26)

In (2.26) the substitutions are those defined by f],, and ﬁ;; (see (2.23), (2.24)).
It is easy to check that due to formula (2.25), the set {s,;V7,7" = G} satisfy the
similar property:

ify <y cy:sh, =sl, s (2.27)
il) With each mapping IZ (resp. /Tf) introduced in Definition 2b ii), we can associate
a mapping A’ (resp. ;) from ffgg’k) to &, (resp. &,) through the following formulae:

(K, k) i K¥= K%K, k(k)) (2.28a)
(K7, k) 2> KT = [(K, K(K)), (2.28b)

In (2.28a) (2.28b), the substitutions are those defined by 4!, Ziy, B,
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Remark. We can verify the following relation between the above mappings:
Vucy and je L A7 = s (2.29)
Definition 2e. Being given the sets of functions H™, H'® of Definition 2b, we

shall now associate with them for every subgraph y of G a function I (K, k) on
&y which is similar to I; (see formula (2.15)).

(K,
V\}e put: ~
1K k)= [] H™(KYK",K'(K)) x [T HP (K", K'(K))) (2.30)
VENy ic?y
By writing:

HO (KK, k' (K)) = (5 H") (K7, )
and
HP (K, K (K) = (47 HE) (K, k)

and applymg Lemma 1.7 to the mappings 4!, 2”, we deduce from the assumption

i* o

H™e Z and H(z)ez the following lemma whose proof is exactly similar to
r(ny—1)

that of Lemma 2.1. (one now applies Proposition 1.3.b. and d. to the product (2.30)).

Lemma 2.2. For every y < G, the corresponding function 1(K”,k) belongs to the

class =57 which is determined as follows :

a) a,=(()a) (2.31)
ie?,,
where
={Sc ER s S & Ker A} (2.32)
b) w,=1{S,c x2S, ¢ Ker A} VieZ ;n(S,)ea,} (2.33)
¢) VS, < &Ry sy one has:
aS)=" > wm+ Y (2.34)
i;Sy - Ker A7 v;SyE Ker 4}

2.3. The Renormalized Integrand R,

Definition 2f. We first need to recall the following notions which are relative to
forests of subgraphs in G.
i) If y is an element of a given forest U(G), we shall introduce the set .# J(U) =
{r,;1<a<c } of all subgraphs y, € U(y) which are maximal in y. We also con51der
the ass001ated ‘reduced graph” j of y, which is obtained from y by contracting
each y, to a single vertex in y. (see [ 7] ). We then call m(j) the number of independent
loops of 7. In view of the definition of m(y) (see Definition 2b)), we obviously have:
m@y)=m@)+ Y my,) (2.35)

1=asc¢

Note that the definition of y depends on the forest U = U(G). When several forests
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U are involved, we shall use the more precise notation y(U) in order to avoid any
ambiguous meaning (it will be the case in section 3).

ii) With the reduced graph G (resp. 7) of G (resp. y) in the given forest U(G), we
associate the following functions Ig, (resp. 1 )

LK, k)= [T H™(K*K.,k) [T HP((K.k)) (2.36)
VEN'G ie4éG
(resp. : L (K7, k)= [ H™(K*(K", k'(k)) [T HY (K", k'(k)) (2.37)
VEAN; i€e?;
Here we have used the notations: &, =%\ () &£, , AN =4\ U 4,
Ya€M-,(U) Ya€M(U)

By applying again Lemma 1.7 and Proposition 1.3b and d, we then obtain a pro-
perty which is analogous to Lemmas 2.1 and 2.2.

Lemma 2.3. Let y be the reduced graph of y in a forest U(G). T hen the corresponding
function I, (K?, k) belongs to the class /{3 """ which is defined as follows :

a) a,=(() o)) (2.38a)

iefs
where d?, are defined by (2.32)

b) w,={S,c &Ry, S, ¢ Ker A-VieZ ;n(S )ea,} (2.38b)

c) VS, &R, onehas:

uS)= Y mt X A (2.39)

i€¥y; VEN 53

Sy Ker Y Sy Ker A2,

Definition 2g
i) The sets {u,;ve A"} and {y, ;i€ Z} being given, we associate with every sub-
graph y of G the following number which we call the “dimension of y” (relative to
the latter sets):
dy)= Y u,+ X p;+rm(y) (2.40)
VEN y i€?y
If we similarly put:
d@)= Y u,+ 2w+ rm(p) (2.41)
VENF ieZ5
for the reduced graph y of y (relative to a certain forest U(G) containing y), we have
the obvious relation:
dpy)=d@) + Y d,) (2.42)
1Za<¢,
ii) For every function F(K”,k) on é’fgj,k), (t*PF) (K", k) will denote the Taylor
expansion of F of degree d(y) with respect to K” at K” = 0 (this function is intrin-
sically defined: see Sect. 1.3). Of course this definition only holds if d(y) = 0 which

is not necessarily the case (if this is the case y is called a “renormalization part” as
in [7]). If d(y) < 0 we put by definition *® F = 0.

Remark. The mapping (K7, k) —» (K7, k? = k*(k)) defined by (2.24) commutes with
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the operation *), namely if F(K?, k) = F(K”, k*(k)), then
(td(Y)F) (K7, k) = (td(v)ﬁ) (K7, k7) l o

Definition 2h. We propose the following generalisation of Zimmermann’s
renormalized integrand. Let % be the set of all the forests of G. Then we put:

R(K, k)= Z Fy(K,k) (2.43)
Uel
where:
VUe¥ :F (K, k)= YK, k) if U is normal
= (— HO) YUK, k) if U is full (2.44)

The function Y{(K, k) and all the auxiliary functions Y"X(K?, k) corresponding to
every ye U are recursively defined as follows:

YK K) = Lo (K%K [T (55— e400) YO) K, k). (2.45)

1=as¢,

In (2.45), I; is the function introduced by (2.37), and s is a short notation for
(s7 )*, namely the inverse image operation induced by the linear mapping s,
defined through (2.26) (Definition 2d (i)). (Indeed, — t"'”")Yya is a function of
(K", k); s* denotes the substitution: (K", k) = (K'«(K", k), k).

To see that (2.44) actually provides a complete recursive definition of F,
it is sufficient to notice that if y is a minimal subgraph of U(i.e. c, = 0), then:
YUK, k) = L (K", K) = 1 (K", k).

So the recursion works by inclusion (of subgraphs) inside the forest, starting
from the minimal subgraphs and ending at y = G.

Remarks
i) Due to the definition of *®; if y is not a renormalization part (d(y) < 0), it
yields no contribution to the formulae (2.43), (2.44), (2.45).
ii) Formulae (2.43), (2.44), (2.45) are the exact analogs of Zimmermann’s integrand
R, (see [7]) although in the latter the sets of variables (K, k?) instead of (K, k)
had been used in the corresponding expressions (namely for the operations s and
t'™) ; however, our last remark at the end of Definition 2g, shows that this slight
change in the presentation causes no perturbation in the algorithm which defines
R, (or RY).

From the analyticity of A™, H?® in the regions &,, &, (Definition 2bi) we can
now derive the following property:

Lemma 2.3. R;(K,k) is a (real) analytic function on é’&”,l} This comes from the

Sact that all the operations (including the linear mappings s* and the Taylor expan-
sions t*7<)) involved in the above definition of R, preserve the analyticity property.

The above analyticity property allows us to take Ej} as an integration contour
(inside the analyticity domain of R (K, k)). In order to show that the Renormalized
Convolution product defined by (2.19) makes sense, we now have to prove the
absolute convergence of this integral; this will be possible if we ensure that the
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conditions of the Power Counting Theorem of Weinberg (Lemma 1.2.) are satisfied ;
this is the scope of the two next sections.

3. The “Complete Forest” Formula for R with Respect to a Nested Set .7 of
Subspaces of E™

As a first step towards the proof of the integrability of the function R;(K, k) with
respect to k it is necessary to transform the original expression of R, (see Defini-
tion 2h) and establish some combinatorial results which are similar to those of [ 7]
and make an essential use of the notion of “complete forest”. Here however, we
need to introduce the notion of complete forest not only with respect to a given
subspace S of Ef} (asin [7]), but more generally with respect to an arbitrary nested
set of subspaces of Ef].
Definitions 3a (see also [7])
1. An internal line i of y is called constant (resp. variable) in a subspace S < EQ
relatively to y, if the corresponding subspace {K"=0,keS} of (g){gz » 1s contained
(resp is not contained) in Ker A (see Definition 2dii.).
2. A G-forest U is called complete with respect to a subspace S of Ef] if:
i) GeU
ii) For every yeU the internal lines of the reduced graph 7(U) are either all variable
in S relatively to y or all constant in S relatively to 7.
3. For a G-forest U which is complete with respect to S one defines two sets of
subgraphs W5(U) and B%(U) by the following conditions:

a) W5(U) is the set of all ye U for which all the lines in & L) &re constant in §
relatively to 7.

b) B5(U) is the set of all te U satisfying:

t¢W5(U); 3yeWS(U) such that 1e.# (U)

Lemma 3.1. Let U be a complete forest with respect to a subspace S < Ey) and
let ye WS(U), and ue M (U). Then the following properties hold :

a) si({(K'k); K” =0, kES})~{ (K*k); K*=0,keS}

b) A lineie & is constant in S relatively to p, if and only if it is constant in S relatively
toy.

Proof. According to (2.20) we have:

K*={K";jeX,; ), K!=0}. Now the equations which define s (see (2.23),

jeXu
(2.24), (2.26)) have to satisfy the system (2.21), (2.22) which implies (since

X, =X U“gyw))

K if jeX,

ek HGIRER) = { + (K, K(K)) if jeZ,

But since ye W5(U), we have: [(K”; k'(k)) = 0 for K =0, ke S, and this entails:

VjeX,; KXK', k'(k)) =0 for K” =0, keS, which proves a).
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Moreover, let us apply relation 2.29):
Vi e,?ﬂ ; lg‘osz = /A!. Then from the above result a) we deduce that:
Viefu, M ({(K* k); K*=0,keS}) = AUK",k); K* =0, keS})

and this entails b). q.e.d.
One can state the following property of R, which is similar to the one proved for

RE in [7].

Lemma 3.2. Being given a subspace S, R, admits the following corresponding
expression:

R,=)Y X¥ (3.1)
U

in which the sum extends to all the forests which are complete with respect to S and
where

XP=(01- Oy (3.2)
Y5 and the following auxiliary functions Y’ are defined recursively (for every
y < G) by

Y,=I, [] si.Y, (3.3)

Ya€My(U)

and

f,, =1 =) if y eB%U)

f,, = — 110 if y,¢B5(U)

We omit the proof of this lemma which goes exactly as that of [ 7] for R, ; indeed,
it will be generalized in Proposition 3.1 below.

(3.4)

Definition 3b. Let U be a complete forest with respect to an arbitrary subspace

S = Ejp. For a given graph ye U we define the integer M©)(y) by:
MO =r Y m(@E(U)) 3
uel(y)
ueWw (U)

With m(i(U)) given by Definition 2fi).
In (3.5) the summation extends over all ueU such that u <y and ug W(U);
SO two cases occur:

—if y¢ W(U), then: MO () =m(3U)+ Y. My, (3.6)
Ya€AMy(U)
—if ye W(U), then: M®()= Y M) (3.7)
Ya€My(U)

Remark. It can easily be seen that the dimension k(S) of S satisfies the inequality:
M®(G) = h(S) (3.8)

Definitions 3¢

1. We now consider an arbitrary set of subspaces S(j)cEZ(')'j= 1... L which

satisfy: S = §@ = ... = S®. We denote by # this nested set of subspaces.
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2. Let #(SY) be the set of all the complete forests of G with respect to the subspace
SVeZF(j=1...L).

Following Definition 3a.3, we can associate with such a forest Ue%(SV),
the sets of subgraphs WS9(U), BSY(U); for simplicity we shall put: W59(U) =
WYU), BSY(U) = BY(U); all these sets are subsets of U.

Starting from any forest UV e U(SY), it will be possible to associate with it a
unique minimal forest which contains it and which is complete simultaneously
with respect to all subspaces S¥€ % : this will be achieved by a recursion procedure
which makes use of successive completions as follows:

Let UY be a forest which is complete with respect to all subspaces S, such
that [ <j. By using the prescription of [7]*, we construct the completion forest
UU*D of UY with respect to SY** through the following formula:

Ui+h = gy o+ (U W) (3.9)

We recall briefly the definition of «/Y* Y (UY) as given in [7]. We consider the set
WU+ (U Y) of subgraphs in UY such that at least one line in £y, is constant
in SU* Y relatively to y; for every subgraph ye WU+ )(UWY), we then call sy, UY)
the subset of all lines in Z;,, which are constant in SUTD; the set U+ YUY
is then defined by:

sty JTE G TgUYs Iye WU+D(UY) such that T is a connected
AITUT) = component of p\s(y, UY) (3.10)

Note that if UY belongs to %(SY* 1), then &Y+ (U Y) is empty.

Lemma 3.3. Let UY) belong to all sets %(SV), with | <j. Then the forest UY*"
(see (3.9)), the set ZYTNUY) (see (3.10)) and the various sets WOUD)( <)
satisfy the following properties:

i)y UYHDeq (S, for every [ISj+1;

moreover
WU Uty = VV(J'H)(U(J')) - W‘j)(U‘j)) (3.11)
ii) %(H “(U‘j’) — BU+ 1)(U(j+ 1))’ (3.12)
i) VI<j, WOUUHY) = 0 DUD) L WU YD) (3.13)
Proof

a) The fact that UY* Y is a forest has been proved in [7].
Let ye UY*Y; three cases are possible:

e WUHID(UW), yeUMN\WITUD), yegi+HUD).

By construction if ye U\ WU+ YU W), all the lines in & are variable in SU* Y,
if yeWUrUY), all the lines in &, 5o vy are constant (since in s(y, UY)); 1f
yeo/VT U Y) there exists a y'e WU 1)(U‘”) such that ye /#, (UY*Y), and all the
lines in &, ;(, + 1), are variable in SU* 1 relatively to y'; but the argument of Lemma

4 Seein [7] Lemmas (4.1) ... (4.5)
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3.1 then shows that all these lines are variable relatively to y. All these remarks show
that UV Ve/(SU* D), with the associated sets:

WUFDH(UU*Y) = WUHD(UW) and BYHD(UYHY) containing Y * V(UY). The
inclusion WU D(UY) =« WO(UW) is trivial since for every y¢ WI(UY), every line
in Z; 5, is variable in SV and therefore in SU* 1, so that y¢ Wu+H(yY).

b) Let us now study the forest UY*? with respect to any subspace S, with
I<j:

Ifye UY, then all the lines in £ ;) belong to &
they are either all constant in S?, or all variable in S©.

If ye/UDUW), let ye WU DUY) such that yeM ,(UY*D). The inclusion
SO < §U*Y implies that every line in £, ;. is constant in S®. Now since
& oy < Ly, and that UPe(SY), we deduce that all lines in &£,y
are constant in S® (relatively to 7). But & swosny S Ly wa, (by construction),
and then in view of Lemma 3.1, all the lines in £, ., are constant in SO, also
relatively to 7. So we have proved that UY* De%(S?) and at the same time that
AITNUD)Y e WOUYHY). We have moreover proved (see the beginning of the
above argument) that:
if yeUY, then ye WU U+ V) if and only if ye WO(UY).

Adding up these results yield Eq. (3.13). q.e.d.

Through an obvious recursion we obtain the following more general statement:

sww,> and since UYed (SV),

Lemma 3.4. Let & be the set of nested subspaces as defined in 3c.1. Given an index
j(1 £j £ L)and aforest UVeU(SY), V1 < j, one can construct a forest U™ given by:

L-1

Ub = U‘j)u< U of M “(U('"))) (3.14)
m=j

where each U™V (resp. o/ ™+ D(U™) is defined recursively by (3.9) (resp. 3.10).

U™ is called the completion forest of UY with respect to # and satisfies the follow-

ing properties:

VSMeg - UBeU(S™), (3.15)
L-1 )

Vi<j, wO-(U®) = < U ot ”(U‘"”))u WU Y) (3.16)
m=j

Remark. We note that in general the sets ™" DN(U™)m=j...L—1 in (3.14)
are non empty; so there are in general several forests UYe%(S®)(I <j) which
admit the same completion forest U™ e#(S"); | < L. This enables us to classify
all the forests UV e#(S™V) into equivalence classes defined as follows:

A class C,, is the set of all forests UV e%(S™") which have the same completion
forest % with respect to & . The precise construction of such classes will be given
in Lemma 3.7.

Lemma 3.5. For some j< L, let UVe%(SY),VI<j, and let U be the completion
forest of UY with respect to F , then:

Vi<j BOUY)=BYU). (3.17)
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Proof. From Lemma 3.4 we have:

L-1
U= UU>U< U &(“"“’(U“”’)) (3.14)
m=j

and

L-1

) ™ D(U™) satisfies (3.16).

m=j
Let yeUY; in view of (3.14) yeU; if y # G, there exist subgraphs ueUY and
teU such that ye s (UY), yed (U),y =t p Necessarily if 7+ pu then:

L-1
te () /™t I(U™). (3.18)
m=j
Two cases are possible: a) ye BO(UY).
Then y¢ WO(UY), and in view of (3.14) and (3.16), this implies (since ye UY);
¢W"’(U) By assumption, ue WO(UY) and so either 1 = ue WHUY) or © #

with te U ™ DU ™) in both cases, (3.16) entails that e WO(U). We conclude

that yeB“’(U).

b) y¢BOYUY). If ye WU W), formula (3.16) entails that ye WO(U) so y¢BY(U).
If y¢ WO(UY), necessarily u¢ WO(UY) and that means & awo contains only
variable lines in S® and consequently in S™; due to the construction of U, this
entails that there cannot be any t # u, with y =t < u and te WO(U); so finally

¢ BOU).
Definition 3d. Let # = {S¥;1 <j< L} be a nested set of subspaces of Efy, as
defined in 3cl.

1. Aforest U of G is called complete with respect to & if it is complete with respect
to each subspace SV in &, namely:

Vj, 1<j< L:Ue%SY)
Following Definition 3a.3, we can associate with such a forest U, the sets of sub-
graphs WS(U), BS”(U) (for every j < L): for simplicity we shall put: WS”(U) =
WOU), BS?(U) = BY(U); all these sets are subsets of U.

2. If U is complete with respect to %, we call #7(U) the set of all subgraphs y
in U which belong to at least one set BY(U) (for some integer j < L); namely:

B%(U) = U BY(U) (3.19)
1=j=L

Lemma 3.6. Let & be a nested set {S?;1<i<L} and U be a complete forest
with respect to F . _
i) Let yeU ;if there is some integer i < Lsuch that ye W(U), then:

VI<i:yew®(U)

ii) Ifye#” (U) and if i is the minimal integer (i <L) such that ye B?(U), then:
Vizi, y¢WwWHU)
Yi<i, yeWOU).
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Proo

i) If J;e W®(U),y has only constant lines on S, and since S® = S for every
I < i, y also has only constant lines on all these subspaces S®; this proves i).

ii) Let ye BY(U); then y¢ W(U) and in view of i), y¢ WO(U) for every [>i.
Moreover there exists a graph y in W(U) such that y be a maximal subgraph of
7" in U; but in view of i), we also have:

Vi<i, yeWdU). (3.20)

Then if i is the smallest integer such that ye BY(U), y cannot have variable lines in
S® such that I < i (indeed if it were the case, one would have ye BY(U) in view of
(3.20). So necessarily ye W(U), for every [ < i.

Definitions 3e. Let F = {S©@,5W .. §B: 8O < s = = §®} and for every j
(O<j< L) let us put: F,=1{8°...,8}. (F = F). We call %(F ) the set of all
forests which are complete with respect to the nested set % .. It is natural to say
that any full forest is complete with respect to the nested set %, = {S‘®}, since
such a forest contains G and has (in a trivial way) all its lines constant in {S©};
so the set of full forests of G is identical with #(# ), and we have the following
obvious inclusion relations:

UF) < ... cUF ) ... cUF ) = UF ).

For any given forest U in % (%) and every j(0 <j < L) we define CY as the class
of all forests UY in %(F ;) whose completion forest with respect to % (in the sense
of Lemma 3.4) is equal to U.

It is clear that C{ reduces to {U} and that the following inclusion relations
hold:

{UlcCl Ve . cChc...cCP.

We shall now completely characterize the classes C which are associated with U,
by means of the following sets:

#7(U)= ) BYU).

0=isj

Lemma 3.7. Let U in%(¥). Then Jfor every integer j, with1 < j < L, the correspond-
ing class CY is the set of all forests UY which satisfy the inclusion relations :

(U\#Z(U)vB” (U)c UY U (3.21a)

The class C is the set of all forests U'® which satisfy the inclusion relations :

U\BZ(U)c U9 < U. (3.21b)
Proof

1. Forafixedj(0 <j < L),let UY beagivenforestin C). Thenlet {U™;j <m < L}
be the increasing sequence of forests associated with U through Lemma 3.4:
U™mecCy

ymt - gm gym+ “(U('"))
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and
L-1
U=U"= U‘j)u( U )9/‘"’“)(U""’). (3.22)
m=j
Then by applying Lemmas 3.3 and 3.5 to each forest U™, we can write for
jsmsL:

ﬂ(m+ 1)(U(m)) - B(m+ 1)(U(m+ 1)) — B(m+ 1)(U), (323)
and from (3.22) and (3.23) we obtain:
L-1 L
U¥=U\ ) & OU™ U\ () B™U™)> U\B*(U) (3.24)
m=j m=j+1

Moreover, by applying Lemma 3.5 to UY we also obtain
VI<j:BYU)=BYUD) < U < U (3.25)

From (3.24) and (3.25), we deduce that U satisfies the inclusion relations (3.21.a)
if 1 <j < L (resp. (3.21.b) if j = 0).
2. We shall prove that conversely, if U? satisfies the inclusion relations (3.21.a)
(resp. (3.21.b) then UVeCY. This statement holds trivially for j = L (since neces-
sarily U™ = U); let us make the recursive assumption that it holds for j = J + 1,
and prove it for j = J.

Being given forest U which satisfies (3.21.a) (resp. (3.21.b)), we put:

UYty = g9y BY (L) (3.26)
then the latter clearly satisfies the inclusion relations:
(U\#BZ(U)u A7+ (U)c UV U (3.27)

and from our recursive assumption : UY*DeCy* V.
Then by applying Lemma 3.5 to UY* " and using (3.26) we can write:

Q(J+ 1)\B(J+ 1)(_U(J+ l))C U(J) - Q(J+ 1)

But in view of Lemma 3.3., this shows that UY* " is the completion forest of
UY with respect to SU+ 1,

It remains to show that for every [ < J, U is necessarily complete with respect
to SO,

Since all the graphs y of UY belong to UY"" these graphs can always be
classified as follows, with respect to a given subspace SO < J):

a) Yy WOUYTY): this implies y¢ WY DUV *D)so there is no maximal
subgraph y, of y in UY*" which belongs to BY*)(UY*"Y), namely to BY* )(U)
thus in view of (3.26), every maximal subgraph of y in UY*" must belong to UY
and therefore we have : y(UY) = y(UY ). But since y¢ WUV * V) we can con-
clude that all the lines in &,y (=¥ ;pu + v,)are variable in SO (relatively to 7).

b) ye WUV *Y): we shall prove that every line i in & Jwenys 1S constant in
SO relatively to y. Let 7 be the (unique) subgraph in UY * Y such that ie & (((UV V).
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Then either 7 = y, and then i is constant in S® relatively to y, or t = y, with T # y;in
the latter case, T belongs to UY Y\ UY), namely to the set .o/ *V(UY)) (since
UY*D is the completion of U with respect to SY*; by Lemma 3.3, 7 is thus a
maximal subgraph of y in UY* 1. Moreover, from Lemma 3.5 applied to UY*+ Y
and relation (3.21.a) satisfied by U (for j = J), we obtain:

B(l)(U(J+ 1)) — B(l)(U) < Uyv

and since t¢ UY t¢ BO(UY D).

Since ye WO(UY* V), we then deduce that te WOUY ™), and that the line i is
constant in Y, relatively to T and also (due to Lemma 3.1) relatively to 7.

So we have proved that UY is complete with respect to each subspace S,
with [ £ J ; namely U e% (¥ ;). Since UY * Y is the completion forest of U with
respect to SY* 1, and that UV Ve CY "1, we have thus proved that UeCy).

To end our recursion argument, we just remark that in the last step (from
j=1toj=0), only the first part of the above argument is applied (namely U" is
the completion of U with respect to S)). q.ed.

The purpose of the end of this section is to prove the following property for the
renormalized integrand R .

Proposition 3.1.  Given any nested set F = {SY;1 < j< L} there exists a corres-
ponding expression of R which is defined as follows :

RyK.R)= Y XK. (3.28)
UesU(F)
Each term )~(U (for UeU (F)) is given by :
X,=(1-¢O7Y (3.29)

and YY) is defined together with the set of auxiliary functions { YV ;¥ye U} by the
Sfollowing recursion formula :

YW=y [1 siFO79 (3.30)
where : ras )

f‘(lu) =(1- td('}'a)) if Vae,%g(U) (3.31)

f~‘(1U) —_ td(Va) lf /})a¢g9’—(U) (332)

To prove this proposition we need some auxiliary definitions and properties.

Definition 3f. Given a forest Ue% () we consider a forest U® < U. Let yeU;
i) a subgraph peU(y)n U is called maximal with respect to U© if there is no
A€ U(y)n U (i # y) such that ue U(j).

ii) we define the following subset of U(y):

VO(y) = {ueU(y): u maximal with respect to U®} (3.33)
iii) With y we associate the following function:
POk = [ H™K%k) ] HPKK (3.34)
vEN\(U N ) €L \u Ly

KeVO(y) eV O(y)
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We state the following:

Lemma 3.8
a) IOV =1 T si@v” (3.35)
#EMV(U)
ugU0)
b) for every ye U :VO(y)= M (U) (3.36a)
I(U ,U©) =] JUO) (3‘36b)

a) From Definition (2.37) of I, and (3.34) of I{*Y ) and taking into account
Property (2.29) we obtain:

L 1 seagv@= 1 #kn6 1 HYE K
pey(U) vEN (U Ny ) LN L)
uguo Ya€M(U) 'yaeﬂy(U)
n n H™(K’, k) l_[ HA(K k)] = l_[ H™
ueMy(U) | veN W\V N u €LV Ly VEN Y\(U N yr)
ugU©@ L wevow) wevow) Yevow)
[T HY=1YYK"k); qed.
iEL\(U Lyr)
v'evo(y)

(b) Property (3.36.a) is trivially verified from Definitions 2f.i) and 3fii). If ye U©

then by comparison of Definition 3f.ii) of 1"V with Definition (2.36) of I, and
taking into account 3.36.a we verify 3.36. b.

Definition 3.8. For every subset J = 4% (U) we write:
U=JuU\BZU))u(@B"\J)

and define the forest U)) = U by:

UQ = U\B*(U)uJ (337)

Remark. From Lemma 3.7 when J varies in 27 (U) U\J) varies in C(} that means:
the sets J are in one to one correspondence with the forests U® Wthh constitute
the class C{?.

Lemma 3.9. .
a) The function Y defined by (3.30) (when y = G) satisfies :

YyO= 3 v@» (3.38)

J < BFU)

where YV ye U(G) is given by the recurrent formula :

Y‘U Jy L, n S*f(J) Y(U J) (3.39)
Ya€AMy(U)
with fO=—l0a ify e(U\B"(U))u J}
f;{l) =1 if y,eB7\J (3.40)

the summation in (3.38) runs overall subsets J of % (U).
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b) Let U = U°J) be defined by (3.37) then :
If yeU®, YU =yl (3.41a)
If yU®, YU = WU T s¥(— )y (3.41b)
uevo(y)

Here the function Y(VU(O)) corresponds to y as a subgraph of the forest U®(G) and it is
given by Definition (2.45).

Proof
a) Let us consider formula (3.30) for y = G :
YO=19 ] sHfoyw. (342)

vedly; (U)
If we work out the factors (1 — “®) occurring for each pe U(G) such that ue 2% (U),
then formula (3.42) yields Egs. (3.38), (3.39), (3.40).
b) To prove Properties (3.41.a) (3.41.b) we suppose that the latter hold for every
subgraph belonging to the set .# (U) ; from this recurrent hypothesis we can write
Egs. (3.39) (3.40) for every ye U as follows:

YO =r, Il si(=ee)yP ] soroven
ue( M, (U) U©) '€y (U)
y'eU©®
* d(w’ Uw©
[T s(—enyd >> (3.43)
wevo(y)

We notice that in (3.43) the products between different kinds of disjoint maximal
subgraphs of U(y) commute. Using then the composition property sﬁ sflf* = sfj
(Eq.2.27) and Lemma 3.8a we obtain from (3.43):
YWD = [V TT s7°(— ¢4 y U (3.44)
uevo(y)
So if y¢ U'® the last equation proves (3.41.b); if ye U we use properties 3.36.a)b)
of Lemma 3.8 and finally obtain from (3.44) and Definition (2.45):

w,J) — * d(ya)) y(U©®) _ y(U©
Vi =Ly, n 8§, (=) Y, =Y, ) (3.41a)
V€Ml (U(O)
g.ed.

Proof of Proposition 3.1. The Definition (2.44) of R, can be reexpressed as
follows:

Ro= ) (1—1@)yy (3.45)
U©eU(F o)

or by regrouping together the terms which correspond to forests U'” in the same
classes C{ with U in %(F):

Rg= ) [ > (l—td‘G))Y‘é"“)} (3.46)

veu(# )L u@ec?

In order to show (3.28) (3.29) we are clearly led to prove that the quantities Y’
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defined by (3.30) (3.31) (3.32) are related with the YU through the following
formula:
VUeu (), Y¥= Y vV (3.47)
U©ec®
From Lemma 3.9a) we have:
9= Y vy (3.38)
J< BFU)

and by Lemma 3.9 b) Eq. (3.41.a) for y = G yields (every forest U®eC{ is a full
forest so Ge U :

YO = Y(GU(O’) (3.48)
By inserting Eq. (3.48) in (3.38) and taking into account the remark after Definition
3 g, we finally obtain (3.47). g.ed.

Remark. The “complete forest formula” of Zimmermann [7] appears as the
special case of Proposition 3.1 which corresponds to # = {S®, S} (%7 (U) then
reduces to BS(U)).

Definition 3h. For every ye U we define the subset a;; < & asfollows:
G‘f = (SVeF 1y WO(U)} (3.49)

we can then prove.

Proposition 3.2. Let y,e.# JU); then

a) if y,eB”(U) then ], >0 and 67, + 07
b) if 7,687 (U) then o] >0
Proof
a) Ify,e#”(U), then in view of Lemma 3.6(ii), there is an integer i < L such that:
,EBO(U) (3.50a)
Vi<gi 7, EWOU) (3.50b)
Vi<i 7,€ W) (3.50¢)
Formula (3.50a) and (3.50b) show (in view of Definition 3h) that:
o, ={SVPeF;i<I<L} (3.51)

Now since y, is a maximal subgraph of y in U, we conclude from (3.50a) that
e WO(U); Lemma 3.6(i) then implies that:

VILi yeWO(U)
Then in view of Definition 3h we can say that:

afc {SPeF ;i+1<I<L} (3.52)
Comparing (3.51) with (3.52) yields the desired result a).
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b) Let ya¢g’ (U). We have the two followmg cases:

b.1)VSPe F,y e WO(U). That means O' = (f and property b)is trivially obtained.
b.2) Let [ be the minimal integer (1 < I'< < L) for which 7,£ WO(U). Lemma 3.5(i)
implies that:

vzl y,¢WiU) (3.53)
and from Definition 3d.3, we have:
={SVeF;j=1}.

Let us show that necessarily if j > I, then y¢ WY(U); indeed since y, is maximal in y
and since y, has variable lines in SY (in view of (3.53)), the relation ye WY(U) would
imply y,€ BY(U), which is not possible since we assumed that yﬁ%g (U). So we
have proved that if S¥eg? then y¢ WY(U), or in other words S¥ea?, and b) is
thus proved.

Definition 3.i.1. With every uoe%’f (U)n U(y) we associate a nested sequence of
subgraphs, denoted by &7

g 1€ UNBZU):py, 2 M, (U)Vj=0,...r —1 (3.5
! u €M (U)

The above set o7 g““) can also be empty. We then define:

B(U)={ueU(y)n#”(U): 3 a sequence /¥ + 7} (3.55)

Definition 3i.2. For every ye U Ue% (¥ ) we define the following sets of subspaces:

¢,=1{Sc Ep;:38Vea’ such that SV = S} (3.56)

A {SY c é"{ﬁ;’k) S, & Ker 4! Vie,%’?U( ;jv $ﬁ> ;n(Sy)Géy} (3.57)
uedBy(U)

We prove the following:

Lemma 3.10.
i) For everyy, e (U):

6, o6, and 6, 6, Vyae@f(U) (.58
6'}’u < &y Vya¢g?(U) '
rN,

ii) The couple (6,d,) is an admissible couple in & e

Proof

i) From Definitions (3.56), (3.49) and in view of Proposition 3.2 (for ai ) we obtain
easily this proof.

ii) The Properties b), ¢), d) of Definition 1d follow easily from Definitions (3.56),
(3.57). We then show the validity of Property a) of Definition 1d i.e.:

¢, (3.59)

Y

Let Sed,; by Definition (3.56) that means S ¢ Ker 4} Vie#; and in view of
Definition (3.57) we have to prove also that S ¢ Ker 4] VIe.Z for every ue % (U).
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Let us consider such a subgraph p,€4%,(U); following Definition 3i.1. there exist
in U(y) a sequence 7" of subgraphs of y defined by (3.54). By Lemma 3.10.i)
we obtain that:

64020, >...6, 26, ;withé, #6,
so in view of Definition (3.56) there exist at least one subspace S < S such that:

S & Ker A VieZ, (3.60)
c( N Kerl})m( N Kerlj‘?’) (3.61)
ey e, ’
j=1...r

or equivalently

yeWSU), weWsU),j=1...r (3.62)
We can rewrite formula (3.61) equivalently as follows:

AUK” =0, k)[kes =0 VjeZ,

KM = O,k)lke§ =0 VieZ,  j=1..r

We shall now show that (3.60) and (3.63) imply that Vie #, S ¢ Ker 4;. Indeed, let
us suppose that the contrary holds, namely that for one e %, one has § = Ker 4
which means:

(3.63)

MK =0,k)|,es=0, I€ L (3.64)
From the relations (2.29) between the mappings 1“°, S5 j=0,...r,s, we obtain:

A= Afoos) = Af0os), oS oSk, 1€y (3.65)
Inserting (3.64) in (3.65) we have:

MOKH(K* (.. (K" =0,k)....k)|,.g =0 (3.66)
Let us show that

Vi0<j<r), K"K"* =0,k)|,s=0 (3.67)

(where p, , denotes 7).
This results from Lemma 3.1.a) which, in view of (3.62) can be applied to each

subgraph 4, (0 < j<7).
In view of (3.67) Eq. (3.66) yields:
MoK = 0,k)|,.s=0 which means:
S < Ker /}° for the considered line le & (3.68)

But (3.68) is contrary to the hypothesis (3.60) and we conclude that statement
(3.64) is not true. It follows that:

S¢ Kerd), VieZ, (3.69)

The inclusion S = § allows us to obtain from (3.69) that also S & Ker 4],VIe %,
g.ed.
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Lemma 3.11.

i) 6,co,; cry:ayr\( QU aﬂ)
Gy A ey (U)

i) o, co,

Proof

i) From Definitions (2.38.a) and (3.56) we obtain that ¢ 6, < 0. In view of definition
(3.i.1) for every ,ue% (U) there exists a sequence ﬂ“"# &f (3.54) therefore
by Lemma (3.10i) we have: 6,56, >...6, o36,; so it follows: ¢, =

é,nl () 4,
ueB,(U)
ii) In view of Definitions (3.57), (2.38.b) and the first property if we verify that
d)y c ;.
Definitions 3i.3. For every y,e (U), Ue (¥ ) we define the following sets:
a) If y,e5.(U)

o) = {8, c&e, i n/S,)€6,. S, €d, } (3.70)
b) If 3,¢,(U)

o) = {8, < Exhay TS,,)€6,} 3.71)
Lemma 3.12

i) (@, 6,) is an admissible couple in & s

)
ii) For every S,€d,, S, =s,S,€w

e ( A
iii) For every 7,6 8,(U) o) cd,

Proof

i) In view of Definitions (3.70) (resp. (3.71)) and (3.56) together with Property
(3.58) the sets (0", G, ) satisfy the requirements a), b), c) of Definition 1d.

i) Let S,e®,and S, =s,S,. By Property (1.18) and Definition (3.57) we have:

n,(S,) = n(S,)€d, (3.72)
In view of the Definition (3.71) Property (3.72) proves that S, e in the case
7.8 %,(U).

Now from Property (2.29) 4] = 4}“s, it follows directly that S, ¢ Ker A}« if and
only if §, = Ker 4}. Taking 1nto account this property together with Definition
(3.57) of @, we obtain:

S, & Ker A« Viea??U( U 3‘2) (3.73)
uedy(U)
If y,€%,(U) then:
%U( U )C( U f,:) (3.74)
w'edy (U) ueB(U)

From (3.73) (3.74) and by Definition (3.57) of ®, we obtain S, €d, . The latter
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property together with (3.72) prove (in view of Definition (3.70)) that S, e q.e.d.
iii) By comparison of Definition (3.70) with (3.57) (of @, ) and in view of Property
(3.58) 6, = 4, , we obtain that 0’ c @, g.ed.

4. Integrability of the Renormalized Integrand R ;
This section is devoted to the proof of our main theorem:

Theorem 4.1

a) For every fixed value of K in &~ V), the renormalized integrand R 5(K, k) (defined
by formulae (2.43), (2.44) and all the derivatives DR of the latter belong to a class
A® whose asymptotic indicatrix o satisfies the following condition :

sup ((S)+h(S))=—1 4.1)

{8'# {0} = Egy}
where h(S") < rm denotes the dimension of the subspace S'.

b) The integral
H'(K) = f R4(K,k)d,, k 4.2)
Etk
is absolutely convergent. The function HF" that it defines belongs to the class
Cc® ((gw(n 1))

The proof of this theorem is based on the possibility of writing decomposition
formulae of the type (3.28) for R, corresponding to a variety of nested sets & =
SV esP ... =85 for each such decomposition (3.28), the various terms
X v With UeZ (# ) will be proved (in Proposition 4.2) to belong to appropriate
classes 47, (U). But since X is itself defined through recursive formulae (see (3.29),
(3.30)) which involve aux1hary functions Y (ye U(#)) it will be first necessary to
prove (in Proposition 4.1) that each of these functions Y, belongs itself to an
appropriate class /{3 Gr®y)

Proposition 4.1. Let & = {SV ... S™} be a nested set of subspaces in Ejy and U be
aforest in U(F) (m < m).

Then for any subgraph y€ U, the function Y(Kyk in formula (3.30) belongs to a
class o ("‘V &) of admissible Weinberg funcnons with the following properties:

a) a = ay(U F), &, are defined by formulae (3.56) (3.57)

b) l) VSDe F such that SVEG , the asymptotic coefficient a(SY)) satisfies:
either . (SV) = if YueU(y) SV¢q, (4.3)
or o (SV)< — Mm(y) —1 (4.4)

1f there is at least one ue U(y) with S”)ea

i) VSYeZF such that S‘”ea} the asymptotlc coefficient with respect to every
subspace S €@, with n(S,) = SV, satisfies :

(S, < dy) — MY(y) 4.5)

For the proof of this statement we shall use the recurrence hypothesis that Proposi-
tion (4.1) holds for every function Y, , with y,e.# (U). We shall need to prove the
following auxiliary Lemmas 4.1., 4.2., 4.3.



G-Convolution of N-Point Functions 231

Lemma 4.1. % and UeU(F ) being given, the function I(K’, k) belongs to a class
A ”V ®) of admissible Weinberg functions with the followzng properties :
i) F or every SY€ F such that SY'¢6., the corresponding coefficient satisfies :

o(S9) = 0 4.6)

ii) For every SP€F such that SY€6,, the coefficient corresponding to every S €®,
such that n(S,) = SY, satisfies:

o,(S,) = d(y) — rm(y). 4.7)
Proof. From Lemma 2.3 we obtain that: I(K’,k)e/{7*7" with o,0; and o,
defined by formulae (2.38) a) b) and (2.39). Now the following properties have been
proved in Sect. 3 (Lemmas 3.11, 3.10) : 6, = 6, &; = w; and (@,, 6,) is an admissible
couple in _(g:g.:f’k), so that in view of Proposition 1.3.c. we also have:

Iye&/(w,dew’;), &y)

It remains to check (by using formula (2.39) and the Definition (2.41) of d(y) that:

- VSyed)y
one has:
oGS = X u,+ Y p=d@)—rm() 4.8)

vEN 5 €5

—VS§=58YeF (1 £ j<m), such that SV¢6 (U, F ), one has a;(S) =0. (49

The latter result comes from the fact that for such an SV, ye W(U), which means
that :

5
S‘f’c< N Ker){)m( N Kerl})

VEN ie?;
therefore formula (2.13) applies to o (SY).

Lemma 4.2. For every subgraph v, (U), with 7,87(U) the function
sH1 — t"”“)Y belongs to the class /(" i) of admissible Weinberg functions

with the followmg properties :

i) VSYe F with SYeg, the asymptotic coefficient corresponding to every subspace

S,ed, with n(S,) = SV satisfies :

o(S,) < d(y,) — MYy, (4.10)
ii) Vs # with SV¢c,
either :0l(SV) = 0= — MYy, if VueU(y,) SVE6, 4.11)
or  :a(SYV)< — MYNy,) — 1if3 at least one pe U(y,) with SY€3 . 4.12)

Remark. The last equality in (4.11) is a consequence of Definition (3.7) which
yields M9(y ) =0ifVu <y, pe W(U), i.e. S(”¢6#.

Proof. From the recurrence hypothesis we have that Y e;ai("ya a®3) 1 from

5 We note that when S < Ker A’Vie.#; then from the Definitions 2c and 2d we can easily verify
that S « Ker A Voe /',
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(4.3), (4.4), (4.5) the corresponding coefficients «, satisfy:

—for every:S, ed,  with n(S, )=SY(SVeq, ):

o, (S,) =0, (SV)<d(,)— MYy, (4.13)
o, (S9) < — MUy,) — 1 @.14)
—for SV¢4, :{if 3 at least one ue U(y,) with SVed,
o (S9=0  ifVueU@,), SV, (4.15)
The property y,€%” (U) yields by Lemma 3.10:
g, =6, (4.16a)

moreover by Definition 3i.1 we have y,€4 (U) which by Lemma 3.12 iii) implies:

o cd, (4.16b)
We now apply Lemma 1.6 to the function (1 — t40) f’ya; in view of Properties
(4.16a, 4.17b) and Lemma 3.12(i), (6,@;, ) (resp. ((fvacbya)) can pI:ay AthAe role of
(o’w) (resp (0, w)) in this lemma and we obtainthat (1— t0') ﬁaeﬂﬁ‘ﬁ;'“%“’véy”; the
coefficients &, are specified as follows: ‘

a) If S‘”eo Property a) of Lemma 1.6 yields:

Vs, ea  withn(S,)=SY,

&'}’a(SVa) = &Va(S(J)): a}’a(s?a) (4.17)
Moreover by Properties (4.16 a,b) and the hypothesis S” €4, we have S¥e€4, and
S, €®, ,t00; so, we insert (4.13) in (4.17) to obtain:

3,(8,) < div) ~ MOG,) (@.18)

b) If SY¢4, but SVed, , then Property b) of Lemma 1.6 yields:

& (S9) =2, (S9)—dy)— 1 (4.19)
Inserting (4.13) in (4.19) we obtain:

g, (SV) < - MY(y,) -1 (4.20)

c) If SY¢6, Property c) of Lemma 1.6 yields :

& (S9)=u, (SV) (4.21)
We insert now (4.15) (resp. 4.14) in (4.21) to obtain:

& (S9)=0 if Ve UGy, SO¢6, 4.22)

g, (S)< —MY(y,)—1 if3 atleast one ue U(y,) with S¥eg, . (4.23)

Lemmas 3.10 (ii) and 3.12 (i) and (ii) allow us to apply Lemma 1.4 to the function
(1 -t Y, st ‘“V 40 and to the mapping s [(from &7, to é:ﬁ%’:’k)); we
obtain that s¥(1 —t"‘“’) . is an admissible function on &7y, in the class
A% ‘“*‘a)'&y""” such that :

vs c &Ny, 09(S)=d,(S,) withS, =s,5) 424)

(K7:k) *



G-Convolution of N-Point Functions 233

Since the condition 7,(S, ) = n(S,) holds (in view of formula (1.19) it is easy to check
that in view of (4.24) the conditions (4.18) (resp. (4.20), (4.22), (4.23)) entail property
(i) (resp. (ii)) of the Lemma. g.e.d.

Lemma 4.3. For every subgraphy,e M (U)withy,¢B(U), the function s¥( — t"(“’)f/

belongs to a class M“"‘f‘” 9 of admissible Weinberg functions whose asymptotic

coefficients satisfy the followmg properties :
i) Let SVed,; VS, ed, with n(S,)=SY

either :o\(S ;) = d(y,) = d(y,) — MY(y,) (4.25)
if YueU(y,) SYV¢é,
or (S, < d(y,) — MYXy,)
if 3 at least one peU(y,) with SV€d,. (4.26)
ii) Let SV¢ G,; then
cither :09(S9) = 0= — MU(y)  if YueUw,)SV¢S, 4.27)
or (S < —MYy)—1 if 3at least one ueU(y,)
with SU)GGAA (4.28)

Remark. For the last Egs. in (4.25) (4.27) see the remark at the end of Lemma 4.2.

Proof. From the recurrence hypothesis we have }N’yﬂedﬁﬁ;’&%’“m. Moreover the
property y,¢ % (U) yields by Lemma 3.10:

g,, <9, (4.29)

We apply directly Lemma 1.5 to the function ( — td(“’)f’y; now in view of (4.29)
the role of the set (o'e) (resp. 0, ) is played by the admissible couple (&, 3.)
(see Lemma 3.12.i) (resp. &, , @, ) and we obtain that:

(— ti0)Y eof%w %) with & defined as follows :
Ya rN7y, Ya

a) If SVed , SYed, | then VS, withm (S, )=V
we have by Property a) of Lemma 1.5:
@, (S, ) =0, (SY) (4.30)

From the recurrence hypothesis (4.5) which applies to SVed, the Eq. (4.30)
yields :

a,(8,)=dw,)— MO0, (4.31)

b) If SVed, SV¢4G, , then VS, with m(S, ) = SY by Property b) of Lemma 1.5
we have:

a(S,)= ocYa(S‘j’) +d(y,) 4.32)
From the recurrence hypothesis (4.3), (4.4) the Eq. (4.32) yields:
either :a (S, )=d(y,) if VueU(y,) S9¢ g, (4.33)
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or 4 (S,)=d(y,)—MYy,), if3atleast one ueU(y,)
with S9e6,. (4.34)
¢) If V¢4, by Property c) of Lemma 1.5 we obtain:
i (S9)=a, (S9) (4.35)

Taking into account (4.29) we also have SV¢ 6, ;so from the recurrence hypothesis
(4.3), (4.4) the above Eq. (4.35) yields:

& ($9)=0, if VueU(y,) S9¢6, (4.36)
& (SV)< —MYPy,)—1, if 3 atleast one ueU(y,) (4 #7,)
with S9ed, . (4.37)

Lemmas 3.7 (ii) and 3.9 (i) and (ii) allow us to apply Lemma 1.4 to the function
(—t**9)Y, and to the mapping s, ; as at the end of the proof of Lemma 4.2, we
easily check that the Property i) (resp ii) of the present lemma is directly implied
by the above inequalities (4.31), (4.33), (4.34), (resp. (4.36), (4.37) if one again defines

the class sz("(") 99 by (4.24).

Proof of Proposition. 4.1. We apply the results of Lemmas (4.1), (4.2), (4.3) to each
of the factors in formula (3.31):

YY = 1'7 ]-_[ *f")’a Va
1<a<c
By Proposition 1.2.b, we obtain that : )~’ e, ‘“V’&V"i’“ where the set of asymptotic

coefficients a.(S) satisfies the following COHdlthtlS
i) VSVeF w1th SU¢6.,, we take into account Properties (4.6) (4.11) (resp. 4.12),
(resp. 4.28) and Proposmon 1.2 b, and this yields :

o (SD) =0 (SV) + Y &l (SV)=0; if YueU(y) SV¢q, (4.3)

or respectively : o (SY) < — > MY(y) — 1= —MY(y) -1
if 3 at least one ue U(y) with SVed,. @.4)
For writing the equality at the right hand side of (4.3), (4.4) we have made use of
Definition 3b and of the fact that ye WO(U).

ii) VS9Ye # with S‘”ea from Properties (4.7), (4.10), (4.25), (resp. (4.26)) and
Proposition 1.2 b we have that VS e, with n(S,) = SO

0,(8,) =2 al(S,) + o(S,) < X dy,) — X MO(y,) + d) — rm(7) (4.38)
Let us use tl:e relations: “ “

d(y) = Yd(y,) +d() (2.42)
and “

MO(y) =3 M9y,) + rm(y) (3.6)
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(the latter trivially follows from Definition (3b) since y¢ WY(U)). So, (4.38) yields
finally:

a.(S,) < d(y) — MY(y) (4.5)
g.ed.

Proposition 4.2. For every UeU (F ), the function

X, =1 -1t y® (3.29)
and every derivative Dy, X, of X, belong to a class A%Y) of Weinberg functions
such that :

VSVeF, oy (SY) < — b — 1 (4.39)
here hY) means the dimension of the subspace SY.
Proof. When Proposition 4.1 is applied to y = G, it yields :

Y, €.9/%0+7:%¢) with the properties:
1) VSVeF such that SY'¢4; :

2, (S9) < — MY(G) — 1 (4.40)

because there is always at least one e U(G) such that S¥e4, (since SV # {0}).
ii) VSPeZ# such that SYed, and VSed, with n(S) = NCE
%5(8) < d(G) — MY(G) (4.41)

We can now apply Lemma 1.6’ to the function )~( expressed by (3.29) (the cases 1)
and ii) correspond respectively to the cases b) and a) of Lemma 1.6') ; we then obtain
that there exists a class A®Y) which contains X, and all the derivatives D X
and which satisfies the condmons

VSWeZ, oc(U)(S(j)) < —MYG) -1 (4.42)
Moreover taking into account Definition 3b, we have : MY(G) > hY) where hY
is the dimension of SY. It then follows from (4.42) that :

VSWe F , a(S(J)) <1

q.ed.

Proof of Theorem 4.1. Let {L,,...,L. } be an arbitrary set of independent vectors
and W an arbitrary bounded region in Ef}. With the ordered set {L,,..., L ks

we associate a unique nested set of subspaces # = {S1, ..., S™) by the followmg
definition :

Vjis1<jsm:$Y={L,,...,L;}
We then write the corresponding expression (3.28) of R ; :
RgK. k)= 3 XK,k (3.28)

Ueu(F)
Then in view of Proposition 4.2 and of Definition la, we can say that for each
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forest U in % (¥ ), and for each bounded region Qe&*"~ Y there exist numbers
b(U,Q) 2 1(1 <j <) and M, (Q) such that X, satisfies the following bound:

VKew:

)?U<K, > Ln;...n;+ C) ' S My(Q) nn;fu((Ll..,Lj))

Jj=1 j=1

SMyQ) [ n" 1 (4.43)
j=1

provided that : V}, n;2 bJ.(U, w),and CeW.
Let us then put:

M@= ) My©Q

Uet(F)
(4.44)
bi(@2)= sup b(U, Q)
UelU(F)
From (3.28), (4.43), (4.44) it follows that:
VKeQ: RG<K, > L ...onz+ C)' <M(K) ][] r]j_h(j)—l (4.45)
j=1 j=1

provided that: Vj,n; 2 b () and CeW.
Let us now introduce the class A”) whose asymptotic indicatrix o is defined as

follows ; for every subspace S in Ef,f; with dimension A(S), one puts :

o(S)= —h(S) — 1 (4.46)

Since formula (4.45) has been established for an arbitrary set of independent
vectors {L',..., L™} and an arbitrary bounded region W in EI™ it expresses the
fact (see Definition 1a) that for every K in &~ 1), R4(K, k) belongs as a function
of k, to the above-defined class 4.

Now, by definition, « satisfies the following property:

sup(«(S) + h(S)) = — 1, (4.1)
S

and therefore R, satisfies the Weinberg integrability criterion (1.4) ; thus in view of
Lemma 1.2, the absolute convergence of the integral (4.2) is then ensured.

To achieve the proof of Theorem 4.1, it remains to show that the function
HE" defined by (4.2) is infinitely differentiable on &7~ D, This will result from the
two following points.

i) In Weinberg’s proof of his convergence theorem, (whose details are essentially
reproduced here in the proof of our Lemma B.1 in Appendix B, it is clear that the
uniformity of the input bounds on the integrand (such as (4.3) for R ;) with respect
to the external variables (namely K) varying in a bounded set w, entails the follow-
ing property : there exists an integrable positive function g(k) on the integration

space Ej such that:

VKeQ|R (K, k)| <g(k).

i) Every derivative D, R;(K, k) also belongs to the class A® (satisfying condition
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(4.1)) and also fulfils a bound of the type (4.3) for K varying in €. In fact, for every set
Z and every forest U in %(¥), Proposition 2 applies to Dy, X v as well as to X v
and one just has to use the various decompositions of Df, R which correspond
to those of R written above (as an application of formula (3.25)).

By now applying the same argument as above (in i)) to the functions Dy R,
we deduce that there exist integrable functions g (k) such that:

VKe Q |Dj,R(K, k)| < g,(k)

From a known theorem of integration theory, we then conclude that derivation
under the sign | with respect to variables K is licit in formula (4.2), so that

H:necw(é{’f}g— 1)) qed
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