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Local Theory of Solutions for the 0(2/c + l) σ-Model

H. J. Borchers and W. D. Garber

Institut fur Theoretische Physik, Universitat Gδttingen, D-3400 Gόttingen, Federal Republic of
Germany

Abstract. We develop a theory of solutions n for the Euclidean nonlinear
0(2/c+l)σ-model for arbitrary k and for a region GclR2. We consider a
subclass of solutions characterized by a condition which is fulfilled, for G = IR2,
by those n that live on the Riemann sphere §2 DlR2. We are able to characterize
this class completely in terms of fe meromorphic functions, and we give an
explicit inductive procedure which allows us to calculate all 0(2/c+ 1) solutions
from the trivial 0(1) solutions.

Introduction

In this paper we want to investigate instanton solutions n of the Euclidean Q(N)-
invariant σ-model. This model is characterized by the Lagrangean density

L(n}= £ Σ (W (0.1)
α = l 1=1

with constraint

«2 = M):= Z(«i)2 = 1 > (0.2)
1=1

and by instanton solutions we understand stationary points of the action

S(n):=$L(n)ddx (0.3)

that are continuous and for which the total action is finite:

S(n)<ao. (0.4)

It is known that for the σ-model, (nontrivial) instantons ind>2 dimensions do
not exist. More precisely, the argument is as follows :

Stationary points of L are, as expected, weak solutions of the Euler-Lagrange
equations associated with (0.1)

Ant + 1(^^ = 0 J = 1, . . . ,JV. (0.5)
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Of course, the class of variations has to be specified; see [1] for details. Now, by a
previous result of us [2], continuous weak solutions of (0.5) are real analytic. By a
well-known argument, any twice differentiable solution of (0.5) with finite action is
constant in d>2 dimensions [1, Theorem 5.1].

We may therefore restrict ourselves to d = 2 in the following.
In the case of the 0(3)σ-model, all instantons have been found and are most

easily described by projecting the three components of n stereographically from
the unit sphere [cf. (0.2)] onto the plane [with coordinates (w l5 w2), say] :

W . ̂ l + ̂ Γ1, i = l,2. (0.6)

Then, instantons are precisely those functions n(xί,x2) for which either
w : = w1 + ϊw2 or w is a rational function of z = xί + ix2, see [1].

For the general two-dimensional 0(Λf) model, we give a complete characteri-
zation for those finite action solutions of (0.5) that fulfil (0.5) on the whole
Riemann sphere §2DlR2, i.e. for which also the conformal transform

fulfils (0.5) in R2^C. We show in Sect. 6 that these solutions fulfil the orthogo-
nality conditions

0 (0.7)

for all non negative integers i 9 j with i+j^l, where

3: = 1(01-^2) (0.8)

and the bilinear form ( , ) is defined as in- (0.2) by
N

(f,β) = Σ fnΰm
m = l

By exploiting (0.7), we are able to characterize solutions n explicitly by rational
mappings. In proving this characterization, we develop the local theory for (0.5):
We consider an arbitrary region G C 1R2 and characterize completely the class Ik(G)
of solutions of (0.5) [with constraint (0.2)] obeying (0.7) for ίj^k where 2/c+ 1 = N.
Section 3 deals with the regular case where the vectors dmn for 1 ̂  m ̂  k are
linearly independent, and Sects. 2 and 5 with the remaining singular case.

The characterization obtained (by k meromorphic mappings), though explicit,
still contains a constraint mirroring (0.7). In Sect. 4, however, we show how to
obtain all local Ik solutions in the 0(ΛΓ) model by starting from the known (trivial)
solutions of the 0(1) model, using an explicit inductive construction in k.

1. Local Properties of Regular Solutions

In this section, we want to analyze, for a fixed region G C C, real continuous weak
solutions n of (0.5), i.e. solutions of

n=-(dn,dn)n=-L(n)n (1.1)

with (locally) finite action (0.3). (Note that we have redefined L by a factor of four.)
By the results in [2], all such solutions obeying the constraint (0.2) are real analytic
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and, in particular, in C°°(G). So we may consider the subclass Γk = Γk(G) of solutions
for which

(i) the space Hk spanned by {dln}, /eN, has dimension k;

(ii) (dln,dmri) = Q '

As the bilinear form (,) is not necessarily definite for complex-valued functions, we
use also the (definite) scalar product <, > defined by

N

(f>9>' = Σ fid i

and the conjugation K defined by Kf: = f for which

By (i), the space KHk is also /c-dimensional by (ii), Hk and KHk are orthogonal,
and n is orthogonal to both. Hence, n, Hk, and KHk form a (2k+l)-dimensional
subspace of the JV-dimensional space of the nl9 /= 1, . .., N. Thus, 2k + 1 ̂ N.

k+l

Since Hk is fc-dimensional, there are ^eC, not all zero, with ]Γ λtd
ln = 0. Let m

/=j
be the highest index with λmή=0 and apply dk+ί~m to see that dk+ίn is a linear
combination of {dln}k

=ί. By the invariance of #k under 5 one sees that Hk is
spanned by the first k vectors {dln}k

=ί.
Of course, Hk depends on zeGC(C. More precisely, we have

1.1 Lemma. For any region GcC, the dimension of Hk is constant in G with the
possible exception of a nowhere dense real analytic manifold.

Proof. _ Consider k : = max{k(z)/zeG} where k(z) is the rank of the matrix
B: = (dlni)l ί=1 N. Then there is a point z 0eG with k = k(zQ) and a kxk subde-
terminant Dk of det£ with D f cφO in z0, whereas any (k+l)x(k + l) subde-
terminant Dk+1 is zero. By the maximality of k, D^+i is zero everywhere. By the
analyticity of n, Dk = 0 describes a real analytic manifold which is nowhere dense
since the real analytic Dk does not vanish in z0. Π

Suppose now that G' C G is a connected region for which the dimension of Hk is
constant throughout. Then the space spanned by Hk, KHk, and n is a constant real
linear subspace of IRN of dimension 2k +1 independent of zeG'. Thus, we are
dealing in this case with the 0(2fc+l)-model trivially embedded into the 0(N)-
model. Hence, we may as well suppose

in the following.
We denote by Ik(G) the subclass of solutions n fulfilling (1.2) (ii) for which

max(dimf/j(z)/zGG) = k. Then Γk(G) is a subclass of Ik(G) of regular solutions (for
which the space spanned by {dln}, /eN, has constant dimension k in G).

Our first goal is to associate with Γk an analytic vector function fεHk (for
which we will in fact show in the next section that it characterizes Γk). Consider the
function feHk, Hk: = Hkv{n}, defined by

> : = δ* i = θ,.. . ,k. (1.3)
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The case k = 0 is trivial : Then dn = λn, but λ = λ(n, n) = λ(n, dn) = 0 since (n, dn) = 0
by. differentiating (0.2). Thus, dn = Q = dn, so n is constant, f = μn, and μ= 1 by (1.3)
and (0.2). Hence, we may suppose fc>0.

1.2. Lemma. The vector function /, defined by (13\ is analytic.

Proof. Since feHk, dfeHk by (1.2) (i). Hence, it is enough to show

<3/,3ίn>=0 i = 0 , . . . , f c .

Suppose first i>0. Then

The first term on the right is zero by (1.3). For the second term, use (1.1) and the
product rule to see that di~1(ddn) is a linear combination of dln for / = 0, ..., i— 1.
Thus, the second term vanishes by (1.3), too.

Now suppose i = 0. By (1.2) (i), / can be written

f=Σλid
in. (1.4)

ΐ = 0

But A0 = 0 by (1.2) and (1.3) so that feHh and

fc+l

3/= Σ μfin
i=l

with suitable coefficients μf. Again by (1.2),

fc+l

<n,df>=(n,3f)= Σ μi(n,dίn) = μk+i(n,dk+ίn}.
i = l

But this vanishes, too :

(n, dk+1n) = d(n, dkn) - (dn, dkn) = 0 ,

by (1.2) for ί = 0, m = k and 1=1, m = k. D
We collect further properties of / in the following

1.3. Lemma
(i)

(ii)
(iii) ί/ie vectors {^/l^o,...^ αrβ linearly independent.

Proof.
(i) The proof is by induction on i + l. For i + / = 05 (i) is just (1.3). Assume (i) for

some value i + / with 0 < i + / < k :

The first term on the right is zero by the induction assumption so that

<δz/, dln) = (- l)m <δ/"m/> 5ί+mrc>

as one can prove by induction on m. Now choose m — / and use (1.3).
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(ii) Note that dlf has a representation

d*f= Σ λψn (! 5)

with 4 = (-l)fe<S'fc. For i = 0, this is just (1.4). If (1.5) is true for z'^/c-1, then

k \ k

with suitable coefficients Λ,j+1, if (1.1) is used. Form the scalar product of this
equation with n and use (i) to conclude A0+ 1=(-l) ί + 1(5 ί + 1 fc. Thus

by (1.2) (ii). But

(iii) Assume a relation

Σ V/=o,
ί = o

form the scalar product with dkf and use (ii) to see that λk = 0. Then, differentiate
once and again form the scalar product with dkf to infer λk_1=Q. Continuing in
this manner, λl = 0 for / = 0, . . ., fe. Π

Note that (iii) is implied by (ii) only no property of n has been used.
We are now ready to express n in terms of / :

1.4. Lemma. Let n be a solution of(ί.ί) in GcC and consider the function f of (i .3).
Define the k x k matrix M by

Then M is invertible, and

-^/ (1-6)

Proof
(i) To see that M is invertible, note that M is, by definition, positive semi-

definite. But the quadratic form associated with M is non-degenerate :

only for ^ = 0 since the vectors dlf are linearly independent by Lemma 1.3 (iii).
Thus, M is definite and hence invertible.

(ii) Consider the space Lk spanned by {dlf}, / = 0, ..., k— 1 which is k-
dimensional by Lemma 1.3 (iii). The right hand side of (1.6) is orthogonal to Lk and
KLk: The orthogonality to KLk follows by Lemma 1.3 (ii) (/Φfc!), and the
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orthogonality to Lk is true since

by the analyticity of / By Lemma 1.3 (ii), Lk and KLk are orthogonal, hence the
right hand side of (1.6) is orthogonal to the 2/c-dimensional subspace of Hk

spanned by KLk and Lk. By Lemma 1.3 (i), this one-dimensional orthogonal
complement is spanned by n. Now form the scalar product of the right hand side of
(1.6) with n to see that the proportionality factor is (— l)k. Π

We close this section by illustrating the results for the 0(3)-model :
Since 2/c + 1 ̂  JV = 3, /e = 0 or 1 . For k = 0, n is constant. Suppose k = 1 . Then, by

(1.4), f = λdn, and λ can be determined from the defining Eq. (1.3):

1 = </ dri) = <Adrc, dny = I<3n, dn)

so that λ is real and λ~ 1 = <dπ, dn) = L(ri), the Lagrangian. Hence, f = L~ldn,
which is analytic :

but

and forming the scalar products with n and dn gives μ0 = 0 and

<5rc, d2n) = d<βn, dn) - (ddn, dn) = dL

by (1.1) so that μίL = dL. Hence,

2. Structure of Singular Sets

Suppose n is a solution of (1.1) in a region GcC^lR2. We know how to associate
with n an analytic function / in case the rank of the matrix (dln)l is constant.
Examples of 0(3)-solutions show,_ however, that in general one must expect
singular points where the rank of (dln\ is not maximal, and we want to investigate
what happens at those points. From Lemma 1.1 we know already that the set S of
singular points is a nowhere dense real analytic manifold, i.e. a set of points that
can be described as the set of common zeros of a finite number of analytic
functions.

Real analytic manifolds in 2 dimensions are either one-dimensional or points
(zero-dimensional). Knowing from the last section that we can associate with n an
analytic function in one variable one can expect that the type of singular manifolds
which can appear in n are governed by manifolds of functions in one variable
which means that only isolated points can appear.

Let z1? z2 be the complexification of the variables x1 and x2. We introduce the
new variables u = z1 + /z2, υ = zl—iz2\ then the real manifold zί=zί, z2 = z2

becomes u = v. Since the above transformation is bi-holomorphic we see that the
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analytic extension of n can be written as an analytic function n(u, v) where n is
analytic in some domain G C C2 such that G = {(u, v)eG;u = v}. With this notation
the differential Eq. (1.1) can be extended into G and reads

Our singular manifold can now also be extended into G and reads
S = {(u, V)E G/ia.ni{dl

vn}™= 0 < k}. Since the exceptional points are given by zeros of
sub-determinants, this is an analytic manifold. The defining relations (1.3) for the
function / can trivially be extended into G\S and we find as in Lemma 1.2 that /
depends only on the variable u. Replacing the family {dl

vn} by {dl

un} we obtain in a
similar fashion an analytic vectorfield g which depends only on the variable v and
which is also defined outside of S. On the subset v = ΰ we find in addition the
relation g(v) = f(u) = f(v), so that the relation g(v) = f(v) holds everywhere in G by
analytic continuation.

When working in the complex C2 it has some advantage to avoid the positive
scalar product. For instance the defining relations for f(u) become

££Γ -•••••*
which by using the product rule of differentiation can also be written as

0,.. . ,fc. (2.2)

From these equations together with the Eqs. (ii) from Lemma 1.3 which now read

(dij,dif)=δikδ*, U=0,...,fc (2.3)

we learn the following:

2.1. Lemma
(i) In G\S the vector field f is regular and depends only on the variable u.

Moreover the vectors/, duf, ..., d^f are linearly independent there.
(ii) Iff defined by (2.1} is regular and fulfils the Eqs. (23) thenf, duf, ...,dk

uf are
linearly independent and hence dun, . . ., d*n are linearly independent also.

Proof
(i) The manifold S is defined as the set where the 2/c+ 1 vectors n, dun, ...9d*n,

dυn, . . ., dk

vn become linearly dependent. From this follows in particular that the
matrix

L: = (δMn)*=(* ~) (2.4)
\U L.J

is invertible in G\S by the following argument. Insert the vectors n, dun, ...,dkn as
columns in a (2k + 1) by (2k + 1) matrix N. Then the linear independence tells us
detNφO, and hence detJVWφO. Using the Eqs. (1.2) we obtain

NtN =

1

0

0

0

&
L

0

from which it follows that detLΦθ and hence detLΦθ. With this knowledge we
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can solve the Eqs. (2.1) by the ansatz:

/= Σ Vi»+ Σ μfo
ί = 0 j=ί

and obtain after multiplying with the vectors n, dun, . . ., dkn a linear system for λί9 μ^
which can be solved, and we obtain

/= Σ^n(L-%. (2.5)
ί=0

Since n is analytic in G and detL Φ 0 in G\S it follows that / is analytic in G\S. That
/ depends only on u can be proved in the same way as in Lemma 1.2. Also the
linear independence of the vectors {dl

uf}^ can be proved in the same way as
statement (iii) of Lemma 1.3.

(ii) Using the product rule we can generalize Eqs. (2.3) to

(Sk

u

+if,sk-lf)=(-i)\ i=o, . . . , fc .

If / is now regular then it follows from these Eqs. (2.6) that /, duf, ...,dk

uf are
linearly independent. Using now Eqs. (2.2) we get that the set of vectors {δ^n}* are
linearly independent. Π

Using formula (2.5) we obtain

2.2. Lemma. The vector field f of (2.1), defined in G\S, has an extension into all of G
as a meromorphic function of one variable.

Proof. From formula (2.5) we see that / can be extended into all of G as a
meromorphic function. But since we know that / depends only on u in G\S, the
same is true in G by analytic continuation. Π

The last statement allows us to disentangle the structure of the singular set S.
But first let us remark that we get for g(v) similar statements as for f(u).

Let us denote by PUG the projection of G into the u-plane and similarly for v,
and let us denote by p(f) the pole-set of the extension of / into all of G. Then we
obtain :

2.3. Lemma. The singular set S has the structure

S = (p(f) x PvGuPuG x pfe))πG . (2.7)

Proof. If (w, v) is not in S then it follows from Lemma 2.1 (i) that / and g are both
regular and hence S contains the right hand side of (2.7). Assume next /, g are both
regular at (u, v) then it follows from Lemma 2.1 (ii) and Eqs. (2.2) together with the
analogous equations for g that n, dun, . . ., dkn, dvn, . . ., dk

vn are linearly independent.
This shows that (u,v)GG\S. Hence the right hand side of (2.7) contains S. Π

Putting now everything together we obtain

2.4. Theorem. Let a solution o f ( i . ί ) be an element of Ik(G\ then the set of vectors
{5ln} has constant rank k except on a set of isolated points which have no
accumulation point inside G.
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Proof. Using the fact that G = Gn {t; = ΰ} and g(v) = f(v) we obtain from Lemma 2.3

Since / depends on one variable only and / was meromorphic in G (Lemma 2.2), it
follows that p(f) consists of isolated points with no accumulation points in PU(G).
Identifying now xί + ίx2 with u we see GcPM(G). D

3. Characterization of Regular Solutions

We have seen in Sect. 1 that, to every solution n of (1.1) in GcC which obeys (1.2),
an analytic vector function / can be associated which fulfils Lemma 1.3. For
convenience, we denote the set of such functions / by a special name. For any
region G C C, define

Ak(G) : = { f : G-^<LN/f analytic (dlf, dlf] = δlkδik} . (3.1)

We will now show the converse: Any feAk(G) determines a solution n of (1.1)
which obeys (0.2) :

3.1. Theorem. Suppose feAk(G). Then the kxk matrix

Mn: = «W/»n; U = 0,...,/c-l

is invertible, and the function n defined by

(-l)kn: = dkf- ΣW-^udM^άf (3.2)
i , l

has the properties
(a) (»,«) = !,
(b) n = n,
(c) ddn = — (dn, dri) n .
In short, any feAk(G) gives rise to a (real) solution of the 0(JV)-model. We show

in the next theorems that the functions n defined by (3.2) exhaust the class Ir

k(G).
In the proof, we will use the summation convention that repeated indices will be

summed over with the sum extending from 0 to k— 1.

Proof, (a, b) By the argument in the proof of Lemma 1.3 (iii), for any zeG, the
vectors {dlf}, / = 0, . . . , fc form a (/c+l)-dimensional vector space Lk with scalar
product < , > and conjugation K defined by

K f : = f (3.3)

fulfilling

(3.4)

By (3.1), the k vectors {Kdlf}, 1 = 0, ..., k— 1, are orthogonal (in < , » to Lk and are
linearly independent since the {dlf} are. Hence, they form, together with Lfc, a
(2/c+l)-dimensional space L2k+ί.

Consider the 2/c-dimensional subspace H2kcL2k+1 spanned by {dlf} and
{Kdlf} for / = 0, . . ., k — 1, and choose a vector e φ 0 orthogonal to H2k. Since KH2k
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= H2k, Ke is orthogonal to H2k, too. Hence, one can choose

e = Ke (3.5)

and, since eφO,

l = (e9ey = (Ke,e) = (e,e). (3.6)

Next, the vector dkfeL2k+1 has the representation

dkf = λe + μίd
lf, λ, μte C°°(G) (3.7)

from which one obtains, using (3.1) and (3.6)

by the fact that e = Ke is orthogonal (in < , » to H2k. This implies λ=±ί so that
one may assume λ = + 1 (if necessary, replace e by — e).

Now form the scalar product of (3.7) with d l f :

dM^-^μtMu (3.8)

The matrix M is invertible as it is positive definite [cf. Part (i) of the proof of
Lemma 1.4] so that μ/ = (M) ί7

13M/<k_1. Compare (3.7) with (3.2) to see that

which proves (a, b) by (3.6), (3.5).
(c) By (3.9) and the construction of e,

(3.9)

,...,

= 0 ί = 0, . . . , fc-l . ( j

We now show that these equations remain true, for z<fc, if n is replaced by ddn:

<5^ ddn) = d(dlf, dn) = dd(dlf, n) - d(dί+1f, ny=Q (3.1 1)

by (3.10), and the complex conjugate Eq. (3.11) is

Hence, ddn is orthogonal to the space H2k and thus proportional to e or n :

ddn = λn .

The proportionality factor is easily determined. By (a),

0 - dd(n, n) = 2d(dn, n) = 2(ddn, n) + 2(3n, dn)

= 2λ + 2(dn,dn)

so that

λ = — (dn, dn)

which implies (c). Π
As a tool in the singularity theory to be developed in Chap. 5, we will need a

relation between the action density L(n) and the matrix M. This relation requires
several preparatory lemmas :
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3.2. Lemma.
(i) M is symmetric, MU = MU,

(ii) (M-

Proof.
(i) follows from the symmetry of < , >.

(ii) For;</c-l,

MiJ+ 1 (3.12)

by the analyticity o f / But (3.12) implies

(M-\dMίΓ(M-\Mir j+1=δlj+1 . D

Part (ii) of the lemma and (3.2) suggest the definition of the matrix

N: = M~ldM. (3.13)

3.3. Lemma.

M^N^- !=*„_!. (3.14)

Proof. We have

. (3.15)

For i = k — 1, (3.15) is just (3.2), the definition of n. For i<k — ί, the right hand side
is zero by Lemma 3.2 (ii) so that (3.15) holds, too.

By Parts (a), (b) of Theorem 3.1, <n,π> = l so that (3.15) implies

w dkf~dmf(M~ ^βM^^y

where we used the symmetry of M and M"1 [Lemma 3.2 (i)]. By the definition of
M, the second and fourth term on the right cancel. Hence

. (3.16)

Since MM~ 1 = ί,d(MM~ ') = () so that -(dM)M-1=M(dM~i):

,,̂  t +Mim(dM- ^dM^ 1

3.4. Lemma

^t-ι.*-1=(^3n). (3.17)

Proo/ By (3.2) and the analyticity of /,

= -L(n)(-ΐ)kn

= -L(n){dkf-NiΛ_1d
if}, (3.18)
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where we used Theorem 3.1 (c) and (3.2) again. Since the vectors {dmf} are
independent, we may compare the coefficients of dkf in (3.18) to obtain (3.17). Π

3.5. Lemma.

<3n,3n>=Mfc-.1

lifc-1 (3.19)

Proof. Multiply (3.14) by M^1 to get

flV-^Λfΰ1-!,

put l = k—l and apply Lemma 3.5. Π

We remark that it is, in fact, enough to require, in definition (3.1), only the
weaker equations

(dίf,dif) = δίk i = 0, . . . , fc (3.20)

The original equations will follow if we can show that, for all i < k,

lf) = Q for

Assume that the last equation is true for all i and all / ̂  m — 1. To show it for all i and
m, differentiate once to obtain

But the first term is zero by the induction assumption for the term i+ 1.
To show that the solutions of the 0(iV)-model constructed from / are of class Fk,

we need the result corresponding to Lemma 1.3 (i):

3.6. Lemma. For i, ί^O, 0^i + /^fc,

(dlf9d
lny = (-l)lδi+l k. (3.21)

Proof. Form the scalar product of (3.2) with dlf and use (3.1):

δlk (3.22)

which shows that (3.21) is true for ί + 1 = 0, by the reality of n. Assume (3.21) for all
/, i such that I + i is fixed. Then

<3'/, 3'n> = d(dlf, 3'- 1π> - <<3'+ V, dl~ ̂ > ,

where the first term is zero by the induction assumption so that

as one can prove by induction on m. Now choose m = ί and use (3.22). D

We are now ready to prove

3.7. Theorem. Assume feAk(G\ and define n by (3. 2). Then n is of class Γk, i.e.
(a) (dln,dmn) = Q f o r l + m^l;0^l,m^k;
(b) the vectors {dln}, / = 0, . .., k are linearly independent.
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Proof.
(b) Assume a relation

λtd
in = 09

form the scalar product with dlf and use (3.21) to conclude that l f c_ z = 0, for
I = 0, . . ., k successively.

(a) Differentiate (3.2) j-times and use the analyticity of / to obtain

djn = ̂ dlf. (3.23)

Note that λ{ = 0 for;>0 as the coefficient of dkf in (3.2) is constant. By (3.22),

using the fact that feAk(G). But λ{λl

k = 09 as just remarked, if either j>0 or

By the results of Sects. 1 and 3, solutions of the 0(ΛO-model which are of class Γk

can be described in two equivalent ways :
Either a solution is given (locally in a region G C <C) by a real analytic function

n G-^IR^ with the properties:
(a) ddn= — (dn,dn)n;
(b) {dln}, I — 0, . . ., k are linearly independent
(c) (dln,dmn) = δl°δm°.
Alternatively, a solution can be given (locally in GcC) by an analytic function

/:G-»<C* such that
(a') a/ = 0;
(b') {dlf}, 1 = 0, . . . , fc are linearly independent;
(c') (dlf,dmf) = δlkδmk.

Note that (b') is implied by (c').
The connection of / and n is given by
(d) (-l)kn = 3 fc/-Nu_ ιa

ί/,

or

(d') / = (

In short, we have proven :

3.8. Theorem. There is a bijective mapping from Γk(G) onto Ak(G) (given explicitly by
(d) and (a')).

4. Construction of Solutions

In this section we want to obtain new solutions of the 0(ΛΓ)-model from known
ones. This will be particularly convenient if the "/-language" developed in the last
sections is used.
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The first lemma is simple :

4.1. Lemma. Let feAk(G\ and suppose w.G-^G is analytic with <3wφO in G. Then

g: = (8wΓkfow (4.1)

is in Ak(G).

Proof. The function g is analytic in G by definition. Thus it is enough to check
condition (3.1) for G. But dlg has the representation

dlg= Σ (ί)δ/-1[(δw)-*]3'/= : Σ μfif (4.2)
i = 0 ί = 0

so that μ{ = (3w)z~k, as one can immediately prove by induction on /.
Now, (3.1) is implied by (3.20). But from (4.2), for l<k,

(dlg,dlg) =

and

Next, we want to construct, from those of the 0(7V)-model, solutions of the
0(JV + 2)-model (N = 2k+ 1). This is particularly useful since solutions of the 0(3)-
model are explicitly known [1], and the only solution of the 0(l)-model is /= + 1.

4.2. Lemma. Let feAk(G\ and let <£N + 2 = <£N®<L2 with a basis el9 eN+2 of C2

fulfilling

Define f:G-+CN + 2 by

f:=ae1+F-a~ίheN+2,

with

F ( z ) : = f ( ζ ) d ζ
o

and

Then f is in Ak+ί(G).

Proof. All N + 2 components of / are analytic, and

where the index at the scalar product refers to the number of components.
Furthermore,

since / is in Ak. But δl~1'k = δl k+1. D
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By combining the processes of the last two lemmas, we can generate a lot of
solutions of various 0(N)-models. The surprising fact is that we get all solutions of
every 0(ΛΓ)-model (of the class considered before) in this way :

4.3. Theorem. Let feAk+ t(G), and let CN+2 = <CN0C2 with the same basis as in the
last lemma. Then there is a function F G-^C^, GcG, a number αeC, αΦθ, a
function w:G-»G with <3wΦθ in G such that

with

h(z): = (F(z\F(z)).

Furthermore, dF is in Ak(G).

Proof
(i) Note that, with /, any translated / is in Ak(G\ too thus we may suppose

OeG. Next, one can find by induction an orthonormal basis {ψi}i=ιi...tN + 2

 sucn

that

3'/(o)= 'Σf l fo. (4.3)
i = l

Since the dlf are independent, /(O) φ 0 so that a : = α° φ 0. Consider

Then <p(0)=l; hence, there exists a simply connected domain G1CG in which
φ(z)φO so that

is well defined in G1( and v(0) = 1. Furthermore, the function

w(z):=]υ(ζ)dζ
0

has <3w(0)=l and can be inverted in some region GcG 1 cG. Choose G so small
that G : = w(G)cG. The inverse function has δzΦθ in G; define

(ii) We now show that g can be written in the form g = aeί+F — a~ ^heN+2 as
asserted. Note that, since w(0) = 0 which implies z(0) = 0, and since δz(0) = l,

(4.5)

by (4.3). This results in

<0(0),0(w)> =(dzΓ(k+ 1}</(0),/(z(w))> = a2(dzΓ(k+i}φ(z(w))

= a2φ(z)(dw)k+1=a2 (4.6)

by (4.4). On the other hand, g(w) has a representation

(4 7)
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and inserting (4.7) and (4.5) in (4.6) gives

i.e. gf0(w) = α is constant. That is, g can be written

(4.8)

J V + l

whereF: = £ gf.φ., and ί := -agN+1.
i = 2

To show that φ1? ψN + 2

 = Ψ2k+3 nave tne properties of the basis stated in the
last lemma, note that, since feAk+ΐ(G),

which implies, by induction on m, for O gm gz^/c+l,

In the first equation, choose l = i = 0 to see that (t/;1,φ1) = 0. Next, choose / = 0 to
see by induction on i that (ψ1,ψί) = Q = (Kψ1,ιpίy for i^fe+1. In the second
equation, choose i = m to see by induction on m that <^Kψ1,ψίy=0 for ί^

and <K^ι> V ;2/c+3) = (~1)/c+1 Thus, Ktp1 is a multiple of ιp2k+3, Xιp

(iii) By (4.8), g can be written

with h: = (-l)k+1h, and it remains to show that F, Λ and dF have the stated
properties. By Lemma 4.1, geAk+ί(G), hence (g,g) = Q, i.e. h = (F,F). Furthermore,

which proves (3.20) for f: = dF so that feAk(G). Q

We will illustrate the procedure of the last theorem in the simplest case, the
transition from fc = 0 to fc= 1, i.e. from the 0(1) to the 0(3) model:

For k = 0, f — n [see the argument after (1.3)]; hence, /=! by (n,n) = l. Next,
consider an orthonormal basis {el9e2,e3} of (C3=(C2fc+1 with(e1,β1) = 0, Xe1=e3.
Then

(where we have taken α = 1 in the last theorem). We remark that one can get all 0(3)
instantons from / by applying to it the process described in Lemma 4.1.

5. On the Behaviour at Isolated Singular Points

The structure of regular solutions neΓk(G), i.e. solutions of (0.5) for which the rank
of (dlrift= 1 is constant and equal to fe, has been fully described in Sects. 1 and 3 in
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terms of an analytic vector function / fulfilling

(dif,djf) = δίkδjk i,j = Q9...,k. (5.1)

In case the solution n is not regular, i.e. nε!k(G) so that rank(δzn)f=1^fc, it was
shown in Sect. 2 that one could associate with n a meromorphic function /
fulfilling (5.1), i.e. an element of the set

Mk(G) : = {/ : G-»CN// meromorphic, (dlf, djf) = δίkδjk} (5.2)

the poles of / being precisely the points for which the rank of (dln) is not maximal.
Now we want to investigate the converse question: Suppose an arbitrary

fεMk(G) is given so that fεAk(G\S) where S is a set of isolated points. By (3.2),
one finds a solution nεΓk(G\S) of (1.1). The question is if n is continuous in all of G,
and if it is whether it fulfils (1.1) in G [so that nεIk(GJ]. It is the goal of this section
to show that these questions have a positive answer. The strategy of attacking this
problem will be a reduction procedure in the number of dimensions, similar to the
technique described in Sect. 4.

As the set S consists of isolated points, it is no loss in generality to consider a
single point which, by the translation invariance of (0.5) we may take to be z = Q.
We start with some preparations :

5.1. Lemma. Let ψ(z) be an analytic function holomorphic in a domain G containing
z = 0, and let α^:0. Define

(5.3)
0

then there exists a unique function y(z) holomorphic in G with

χ(z) = (l+α)-1z1+αy(z) (5.4)

having the property

y(0) = φ(0). (5.5)

Proof. Since OeG there exists a power series

converging in some neighbourhood of zero.
From this we get

00 00

χ(z) = £ αϊ(l + v + αΓ1z1 + ϊ+β = (l+αΓ1z1 +" £ (l+a)
v = 0 v = 0

so we obtain

γ(z)= £ (l+α)(l+α + vΓV v (5.6)
v = 0

Since Kl+αXl + α + v)"1 ^1, the power series of y(z) has the same radius of
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z

convergence as that of χ. Since (l+α)z~ ( 1 + α ) § ζaψ(ζ)dζ is uniquevalued in a
o

neighbourhood of zero, the existence of 7 in all of G follows. The second statement
(5.5) follows directly from the power series of y(z). Π

5.2. Lemma. Let f(z)eAk(G\{0}) and define g(z) = zn f(z\ Then g(z) fulfils the
equations

(dig(z),dίg(z)) = δίkz2n i = 0, . . , fc . (5.7)

On the other hand assume g(z) is holomorphic in G\{0} and maps it into C2fc+ l.Ifin
addition g(z) fulfils the relations (5.7) then

belongs to Ak(G\{0}).

Proof. The relations

are equivalent to (see Lemma 1.3)

Inserting f = z~ng, we see by induction with respect to i and j that these are
equivalent to

But by the same argument as in Lemma 1.3 we see that the last equations are
equivalent to (5.7). Π

Now we are prepared to enter the reduction procedure.

5.3. Lemma. Let feAk(G\{Q}) and assume f is meromorphic in G. Choose n such that
g(z) = znf is holomorphic in G and 0(0) Φθ. Let G1 CC contain zero and consider a
holomorphic map vv G^G such that w(0) = 0, 3w(0)=l, and <3wφO in Gv. Define

dz\k

' f ( w ( z ) )

Then feA^G,\{0}) by Lemma 4.Ϊ, g is holomorphic in G1; and the relation

0(0) = 0(0) (5.8)

holds. In addition we can choose w(z) in such a way that

<0(0),g(2)> = <0(OU(0)> (5.9)

holds in a suitable neighbourhood of zero.

zn

Proof From w"/(w) holomorphic in G± follows by assumption that zn-f(z)= —
w"

• I— -I wn/(w(z)) is holomorphic in a neighbourhood of zero. Since / is holomor-
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phic in G^O}, we get by the last two statements taken together that g = znf is
z dz

holomorphic in Gί. From — (0) = 1 and — (0) = 1 follows g(0) = g(Q). This proves

the first part.

Because of (5.8) we get

(w)> . (5.10)

From 0(0) φ 0 follows <0(0), #(w)> Φ 0 in a suitable domain Γ C G. In this domain we

can define φ(w) = j^^^H . Let now χ(w) : = ] ζn/kιp(ζ)dζ then we have by

Lemma 5.1

w

with 7 holomorphic in Γ and

Let ΓjCΓ be a subdomain containing zero with y(w)Φθ in Γ1? define
i fdz

δ(w): = γ(w)ι+n/k with (5(0) = 1 and put z(w) : = w <5(w). We find z(0) = 0 and

(0) = 1. Choose now a simply connected subdomain Γ2cΓί containing zero such

that -— Φ 0. In this region we can invert the function and define w(z). We now
dw

claim that this function has the desired property. By construction we obtain

w ( = + - w
k

0

Differentiating with respect to w we obtain :

- dz -
zk - —— = wfc ψ(w)

αw

or

(dz^k

z —
\αw
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This shows by (5.10):

/zY /dz\k -
'

<g(0),g(z)>

which shows the lemma. Π

Knowing this result, we can set up a reduction- and induction-procedure in the
same way as in the last section. The only difference is that we have to work with
the functions g(z) now which are again free of singularities.

5.4. Reduction Lemma. Assume /(z)e^4fe(G\{0}) and f(z) = z~n-g(z) with g(z)
holomorphίc in G and g(0) Φ 0. Assume in addition the relation (5.9)

Then y'(z) \ = dg-\a\' 2g(0) <0(0), dg(z)y defines a mapping y' : G^C2fc~ ί. Define g^
and m by the relation

with g1 holomorphic in G and ^(OJΦO. Then we obtain

and hence

by Lemma 5.2.

Proof. By assumption follows <g(0),dg>=0 and </,0(0)> = </, ^(0)> = 0. Hence
y'(z) is living in a 2k — 1 dimensional space. The mapping / might have a zero of
order m. From the relation (dlg, dίg) = z2nδίk, i = 0, . . . , fe it follows easily that w^n.
Because of </, 0(0)> = </, gp> = 0 we have (3V, dlyf) = z2n^k~\ i=l, ...,k-l.
Inserting now γr = ̂ ngl9 the desired relation for gf χ follows by induction. Π

5.5. Reconstruction Lemma. Assume f± defines a solution of the 0(2/c— 1) σ-model in
G\{0} and assume

i(z) holomorphic in G and gί(0)ή=0. Let mk be any positive integer and
Put

o

and define

0(z):H* 2-1/2(*2k + fc^

we find

,dίg) = z2(nk-ί+m*Ψk, i = ί, ...,k.
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Hence
f ( z ) : = z-(mk+nk-ί}g

is an element of Ak(G\{Q}).

Proof. By construction we find (g,g) = 0. The higher relations follow from the
properties of gl (see also Lemma 5.2). Π

5.6. Corollary. Let feAk(G\{0}) and assume f is meromorphίc in G with

g(z) holomorphic in G and 0(z)φO. Then f(z) can be reconstructed locally at z = 0
from the case k = 0. The order of the pole nk can be written

k

nk= Σ mί>
ί=l

where mt is the order of the singularity we gain by the i-th reconstruction step.

Proof. This follows immediately from Lemma 5.5 and the fact that the transfor-
mations in Lemma 5.3 do not change the order of the pole. Π

It is our next goal to show that the solution n(z,z) of (1.1) associated with f(z)
stays a solution at points where f(z) has a pole, the only thing happening being a
change in the number of linearly independent vectors. The key for the solution of
this problem is the following

5.7. Lemma. Let n(z,z) be a solution of (1.1) in G\{0} and assume the action density
L(n) in (0.1) stays continuous at z = 0. Then n(z, z) is a solution of (1.1) in all of G.

Proof. If L is continuous, then it is also bounded, i.e.

Assume G1 is convex; then we get

\\n(Zl)-n(z2)\\ = J(gradMs)

which shows the continuity of n. Since we have An— — L n it follows that An
= continuous part + "£". Since the equation An = "δ" leads to some n which is not
continuous at z = 0 it follows that also An is continuous at z = 0. Hence we get
An= -Ln in all of G. Π

Now it remains to show the continuity of L(n). There we have to distinguish
two cases, namely the induction step from k = 0 to k = 1 and the other cases. For
k = 1 we have by the remarks at the end of Sect. 3 the formula f = L~1dn [cf. (2.5)]
and hence L = </,/>"1. Thus, if / has a pole z""1, then L has a zero \z\2nι. For
fe> 1 we get L by Lemma 3.6 and have

We are not able to compute these determinants exactly, but this is not necessary
since we are only interested in the leading singularity of these determinants. The
outcome of this investigation is the following :
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k
5.8. Lemma. Let feAk(G\{0}) and assume f has a pole of order nk= ]Γ m . Then L

ί=l

behaves at zero as \z\2mι. Hence L is continuous in G and f defines a solution of Eq.
(l.l) in all of G.

Proof. The case fe = 1 has been treated separately and therefore we can proceed by
induction with respect to fe. This means we have to follow the steps described in
Lemmas 5.3 and 5.5. We start with the analytic transformations.

Let w(z) be an analytic map with w(0) = 0 and w'(0) = l and let
f(z) : = (dw)~kf(\v(z)). Then we get with M0. = <δ'/,^'/> and w' = δw

In this calculation, linearly dependent vectors have been subtracted. This means

Since w;(0)= 1 it follows that detM and detM have the same behaviour at zero. So
it remains to evaluate the determinant of (M^ where / has the special form
described in Lemma 5.5. Inserting f = z~(mk+nk~l}g we obtain with nk_1+mk = nk

= \z\- 2(l+ ̂  det«^, a^>y0 . (5.12)
Remember g was of the special form

with a φ 0 so that we obtain

<3^, djgy = δί0δj° \a\2

Using the expansion of the determinant and estimating |<d'/z, djhy\ by (dlh, dlhy1/2

, djhy1/2 we obtain

^,^»UW2 Π <A 5'Λ>
i = 1

and

i = 1 i = 0

Remember that </z,/z> has a zero of order |z|2(mk+1), so that we obtain:

i
£ = Yl <δ l7z,δ l7z>{|α|2^™ι-ι2(mk+1)ϊ
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Inserting now the value of h we obtain

a

From (3ίgf1,δ
 /gf1) = 0 we calculate

<δίh, S'fe> - <<31'- H^i), #~ ̂ z^J) + 4|αΓ 2 |(y, #' H^^i)!2

Using the argument backwards, we can replace the product of the (dί~1(zmkgί),
di~l(zmkgi)y again by the determinants. So we finally obtain

This result inserted into (5.11) gives together with (5.12):

rm=ι .2nk

U) ' '

Since we had nk = ̂ jnl we obtain the desired result. Π

Lemma 5.8 and Theorem 2.4 now combine to give

5.9. Theorem. The bίjectίve mapping from Γk(G) onto Ak(G) constructed in Theorem
3.8 extends to a bijective mapping from Ik(G) onto Mk(G).

We have shown in Sect. 4 that every feAk(G) can be obtained by reconstruct-
ing it from /0e^40(G). Note, however, that the induction procedure described in
Lemma 4.2, since it involves integration, will only lead again to a meromorphic
function if no poles of first order appear (which can always be achieved by starting
with poles of high enough order).

6. Global Solutions

In this section, we study continuous finite action solutions of the 0(JV) model in all
of IR2^(C, i.e. continuous solutions n of (1.1) with (n,ri) = l such that L^eL^lR2).
We denote this class by /(IR2).

If the orthogonality conditions (0.7) are imposed on these global solutions, we
may obtain a characterization of them rather easily by choosing G — (C in Theorem
5.9 and remembering Lemma 3.5 : They are precisely given by those meromorphic
mappings /eMfc((C) for which M^}ltk_1 is in Zf((C).

This characterization is, however, deficient in two ways : The integrability
condition on / is rather implicit, and the orthogonality conditions (0.7) on n have
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to be imposed. Thus, neither the class of solutions n to be characterized nor the
class of characterizing mappings / are described in a very illuminating way.

Fortunately, the situation is completely transparent if we restrict ourselves to
the class of solutions n of (1.1) which are solutions on the whole Riemann sphere
§23lR2, i.e. for which also the conformal transform

n(z,z)\ = n(z~ \z~i) (6.1)

is a continuous finite action solution of (1.1) in all of ERA As the action S [cf. (0.3)]
is a conformal invariant, we merely assume by this that ή is a solution of (1.1) for
z = 0 and is continuous there. We denote the class of these solutions by /(§2). Note
that there is no index k : We do not assume any orthogonality condition of the type
(0.7). In fact, we are now able to derive (0.7) as a consequence:

6.1. Theorem. Let n be a solution of the 0(JV) model on §2DlR2. Then, for all non
negative integers i,j with z'+jΞ^l,

(δίn,δ /n) = 0. (6.2)

Proof. We prove (6.2) by induction on i+j. For i+j=l, we may suppose 1 = 0,7 = 1
by the symmetry of (6.2) in z, 7. But (n,dn) = Q by differentiating (n,n)=l. Now
assume (6.2) for all /, 7 with l^z+j^m. As a first step in proving (6.2) for
z+7 = w+l, we show that (dln,djn) is analytic.
We distinguish the cases (i) ij_ 1 and (iii) j = 0, 7_ 1 :

(i) d(dln, djn) = -(d1' \Ln\ djn) - (δ'n, dj~ \Ln)} = 0

by the induction assumption.

(ii) φ, djn) = (dn, djn) - (n, dj~ \Lh)}

the last term is equal to —dj~1L by the induction assumption. We will prove

(dn,diri) = dj-lL (6.3)

by a separate induction argument on 7. Equation (6.3) is true for 7=! by the
definition of L. For 7 > 1,

(dn, djn) = d(dn, dj~ lri) - L(n, dj~ * w) ,

where the last term vanishes by the induction assumption for (6.2) and the first is
equal to ddj~lL by the induction assumption for (6.3).

Hence, in all cases, (<9lVz, djn) is analytic. Next, we want to prove

\\ffn\\ eZ?(IR2). (6.4)

This will finish the proof, since by Cauchy-Schwarz, we then have the majorization

where the right hand side is in L^IR2), by (6.4). But an analytic function that is in
Z^IR2) is identically zero, by a variant of Liouville's theorem. (For a short proof,
see e.g. (3.13) of [1].)

To prove (6.4), note first that, by induction on /,

m = l



Solutions of the 0(2/cx + 1) σ-Model 101

with suitable constants cmi. Hence, with w^z" 1,

• J (ww)m + l '~2<dmn,dmn>dwdw, (6.5)

where we used the Cauchy-Schwarz inequality
i 2 i

Σ ^Γ—\ . . >}

am <ι ) α .m — Z_j i m'
m= 1 w= 1

But the right hand side of (6.5) is finite: Since n is a continuous solution of (1.1)
with L(n) integrable for |w| < 1 [put i = 1 in (6.5)!], n is analytic there, by the results
of [2]. Consequently, the integrals exist as m, i^l. This proves (6.4), since the
integrals over |z| < 1 are finite by the analyticity of n. Π

At this point, one might speculate about the possibility that the orthogonality
conditions (6.2) are automatically satisfied for any n which is merely in /(IR2). This
is the case for the 0(3) model, and we believe it to be true in general but have been
unable to prove it. However, not much is missing: We can show (by using the
Calderon-Zygmund and Sobolev inequalities in tandem) that (6.2) is satisfied for
any solution n of (1.1) on IR2 for which L(n)eL1 + ε(IR2) for some ε>0.

Our next goal is to give a simple characterization of solutions ne/(§2). Note
that, for any such solution, there is an integer k such that neljβR2): The rank of
the matrix (dmrc)meN is finite, and (1.2) is implied by (6.2).

6.2. Theorem. The following statements are equivalent:

(ii) /eMk(C) is a rational function 6>/z = x1 + ix2eC;
(iii) rce/(IR2) is a rational function 0/(x l5x2)eIR2.

Proof. (i)=>(ii): By the definition of /(§2), rce/(§2) implies ne/(§2). By the
arguments before the theorem, there are integers kj such that ^e/k(R2), rce/^IR2).
Since by (6.1), dln and dlή are linear combinations of each other,7 = fc so that the
functions /, / corresponding to n, ή by Theorem 5.9 fulfil

Now simply note that

satisfies (6.6) by which /,/ are defined uniquely. Since /,/ are both meromorphic,
(6.7) implies that / is rational.

(ii)=>(iii): By (1.6) n is a rational combination of {dmf} for m = 0,...,fc. But /
and hence all derivatives are rational functions of xί + ix2.

(iii)=>(i): Since πe/(IR2), ή fulfils (1.1) in all of IR2 except possibly for z = Q. Since
n is rational and bounded, ((n, «)=!), so is ή. Thus n defines a distribution for
which the combination T=ddή + L(n)ή has support only in z = 0 and is hence a
combination of derivatives of the δ measure at z = 0. But T is actually arbitrarily
often differentiable at z = 0 and hence zero [so that ή fulfils (1.1) in all of IR2] : Since
ήm is rational, ήm = PJtQJ'1 since ήm is bounded, Qm Φ 0 so that ήm and hence T is
infinitely often differentiable. Π
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We remark that in the 0(3) model, the conclusion that / is rational follows
already from the assumption πe/(IR2). Again we believe this to be true in general
but have been unable to prove it.

As a last point we want to show that the previously known solutions of
0(2fc+1) models (see Sect. 4 of [1]) fall into the subclass considered here. This will
follow easily from condition (iii) of the last theorem.

We briefly recapitulate how the harmonic polynomial solutions of the 0(2/c+1)
model described in [1] were constructed:

By stereographic projection of R2

^^(l + ̂ Γ1, μ=U (6.8)
3

into the unit sphere r2= ]Γ x^ = l5 the equation of motion (1.1) can be written
μ=l

L2rc-(L2n,φ = 0, (6.9)

where L is the angular momentum operator on the sphere r2 = l. Hence, any
eigenfunction of L2 to any fixed eigenvalue k(k+l) will solve (6.9). Choose, in
particular, the following combination of spherical harmonics Ύkm:

««: = <* Σ Ui>m+k+1Ykm, (6.10)
m = — k

where U is a constant unitary (2k +1) by (2k +1) matrix fulfilling

^ ,m+*+1=(-im,-m + *+ι (6-11)

so that nt is real. By the addition theorem for the spherical harmonics, n2 is a
constant, and ck can be adjusted so that n2 = l. Thus, (6.10) are true 0(2fc + l)
solutions, not lying in any subspace of dimension smaller than 2fe+l, by the
independence of the spherical harmonics. The action of these solutions is given by
4π/c(/c+l).

To see that the solutions (6.10) fall into the class /(§2), we use Theorem 6.2 (iii):
Note that the spherical harmonics are polynomials in cosθ, sinθ cosφ, sinφ where
θ and φ are polar angles on r2 = 1, and thus rational functions of the r variables. By
(6.8), nt as defined in (6.10) are rational functions of x1? x2.

Finally, we remark that the harmonic polynomial solutions, though stationary
points of the action (0.3), are not minima for k> 1 this instability of the solutions
(6.10) has been shown in [3]. This result is in sharp contrast with the case k = 1, the
0(3) model, see [1].
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