Commun. Math. Phys. 72, 49-53 (1980)

On a Normal Form of Symmetric Maps of [0, 1]

H. Rüssmann¹ and E. Zehnder²

 ¹ Fachbereich Mathematik der Johannes Gutenberg, Universität Mainz, D-6500 Mainz and
 ² Mathematisches Institut der Ruhr-Universität Bochum, D-4630 Bochum, Federal Republic of Germany

Abstract. A class of continuous symmetric mappings of [0, 1] into itself is considered leaving invariant a measure absolutely continuous with respect to the Lebesgue measure.

We consider a continuous map f of the closed unit interval onto itself and try to put it into the normal form $N = \varphi^{-1} \circ f \circ \varphi$,

$$N(x) = \begin{cases} 2x & \text{if } 0 \le x \le \frac{1}{2} \\ 2(1-x) & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$
(1)

by means of a homeomorphism φ of [0, 1]. The statement is as follows:

Theorem. Let $f:[0,1] \rightarrow [0,1]$ be continuous and satisfying

$$f(0) = 0, f(\frac{1}{2}) = 1,$$
(2)

$$f(x) = f(1-x), \quad 0 \le x \le 1.$$
 (3)

Assume that

$$1 < c \leq \frac{f(x) - f(y)}{x - y}, \quad 0 \leq y < x \leq \frac{1}{2}$$
 (4)

for a real constant c. Then there is a strictly increasing continuous map φ of [0,1] onto itself such that

$$\varphi(Nx) = f(\varphi(x)), \quad 0 \le x \le 1 \tag{5}$$

with N as defined by (1). Moreover, if $c > 2^{\sigma}$ for some σ with $0 < \sigma < 1$ then φ is Hölder-continuous with exponent σ .

Remark 1. Observe the condition (4) is essentially a smallness condition on the Lipschitz distance between the functions $x \rightarrow f(x)$ and $x \rightarrow 2x$, $0 \le x \le \frac{1}{2}$.

Remark 2. Mappings $f:[0,1] \rightarrow [0,1]$ satisfying the conditions of the theorem leave invariant a measure absolutely continuous with respect to the Lebesgue measure, see [1]. For more general results see [2].

For the proof of the theorem we reduce the problem to a conjugacy problem on the circle. By definition of N in (1) the functional equation (5) is equivalent to

$$\varphi(2x) = f(\varphi(x)) = f(1 - \varphi(1 - x)), \quad 0 \le x \le \frac{1}{2}$$
(6)

in view of (3). The idea is to continue f/[0, 1/2] to a function $F : \mathbb{R} \to \mathbb{R}$ such that

$$F(x+1) = F(x) + 2$$

$$F(-x) = -F(x), \qquad x \in \mathbb{R}.$$
(7)

Then we look for a $\Phi: \mathbb{R} \to \mathbb{R}$ continuous and strictly increasing, such that the conditions

$$\begin{aligned}
\Phi(x+1) &= \Phi(x) + 1 \\
\Phi(-x) &= -\Phi(x),
\end{aligned}$$
(8)

and

$$\Phi(2x) = F(\Phi(x)), \qquad x \in \mathbb{R}$$
(9)

are satisfied.

First we show that for such a Φ the equalities (6) are fulfilled with $\varphi = \Phi/[0, 1]$. Indeed from (8) we get

$$\Phi(x) + \Phi(1-x) = 1, \quad x \in \mathbb{R}$$
⁽¹⁰⁾

and therefore

$$\Phi(2x) = F(\Phi(x))$$

= $F(1 - \Phi(1 - x)), \quad x \in \mathbb{R}$ (11)

as a consequence of (9). Now (8) and (10) give

$$\Phi(0) = 0, \quad \Phi(\frac{1}{2}) = \frac{1}{2}, \quad \Phi(1) = 1$$

On a Normal Form of Symmetric Maps of [0,1]

so that the monotony of Φ leads to

$$0 \leq \Phi(x) \leq \frac{1}{2}, \quad 0 \leq x \leq \frac{1}{2},$$

$$\frac{1}{2} \leq \Phi(x) \leq 1, \quad \frac{1}{2} \leq x \leq 1.$$

Hence (11) with $\varphi = \Phi/[0, 1]$ and f = F/[0, 1/2] yield (6).

In order to establish the existence of Φ we have to derive from (2), (3), (4) an $F:\mathbb{R}\to\mathbb{R}$ not only satisfying F/[0, 1/2]=f and (7) but also

$$1 < c \leq \frac{F(x) - F(y)}{x - y}, \quad y < x.$$
 (12)

We define $F: \mathbb{R} \to \mathbb{R}$ by

$$F(x) = f(x), \qquad 0 \le x \le \frac{1}{2},$$

$$F(x) = -f(x), \qquad -\frac{1}{2} \le x \le 0,$$

and

$$F(x+k) = F(x) + 2k, \qquad -\frac{1}{2} \leq x \leq \frac{1}{2}, \qquad k \in \mathbb{Z}.$$

This definition is consistent in view of (2). Furthermore we obviously have F/[0, 1/2] = f and (7). Now (12) is valid for $x, y \in [-1/2, 0]$ by (4) and the definition of F. If $y \in [-1/2, 0]$ and $x \in [0, 1/2]$ we get

$$c(x - y) = c(x - 0) + c(0 - y)$$

$$\leq F(x) - F(0) + F(0) - F(y) = F(x) - F(y),$$

so that (12) is satisfied for $x, y \in [-1/2, 1/2]$. If $x, y \in [-1/2+k, 1/2+k]$ for some $k \in \mathbb{Z}$ we find

$$c(x - y) = c[(x - k) - (y - k)] \leq F(x - k) - F(y - k)$$

= F(x) - 2k - F(y) + 2k = F(x) - F(y)

provided y < x. Finally let $y \in [-1/2+2, 1/2+2]$ and $x \in [-1/2+k, 1/2+k]$ with k > 2. Then we put $z_j = \frac{1}{2} + j$ and obtain

$$c(x - y) = c(x - z_{k-1} + z_{k-1} - z_{k-2} + \dots + z_2 - y)$$

$$\leq F(x) - F(z_{k-1}) + F(z_{k-1}) - F(z_{k-2}) + \dots + F(z_2) - F(y)$$

$$= F(x) - F(y)$$

so that (12) is completely proved.

Now the existence of a continuous strictly increasing function Φ with the desired properties (8) and (9) is guaranteed by the following

Lemma. Let $F: \mathbb{R} \to \mathbb{R}$ be continuous, strictly increasing, and satisfying

$$F(x+1) = F(x) + n, \qquad x \in \mathbb{R}$$

for some integer $n \ge 2$. Assume

$$1 < c \le \frac{F(x) - F(y)}{x - y}, \quad y < x$$

with some constant c. Then there is an unique $\Phi: \mathbb{R} \to \mathbb{R}$ continuous, strictly increasing, and satisfying

 $\Phi(x+1) = \Phi(x) + 1, \qquad x \in \mathbb{R}$

such that

$$\Phi(nx) = F(\Phi(x)).$$

Moreover, if for some σ , $0 < \sigma < 1$ we require $c > n^{\sigma}$, then Φ is Hölder continuous with exponent σ . In addition, if F(-x) = -F(x), $x \in \mathbb{R}$ then $\Phi(-x) = -\Phi(x)$, $x \in \mathbb{R}$.

Remark. Since $F(x) = nx + \hat{F}(x)$, $\hat{F}(x+1) = \hat{F}(x)$, $x \in \mathbb{R}$ the above estimate is a Lipschitz smallness condition on the periodic part \hat{F} of F.

Proof. Let $G: \mathbb{R} \to \mathbb{R}$ be the inverse of F; G is strictly increasing, continuous, satisfies

$$G(x+n) = G(x) + 1, \quad x \in \mathbb{R}$$

and

$$\frac{G(x) - G(y)}{x - y} \le \frac{1}{c} < 1, \qquad x \neq y.$$
(13)

In order to solve

 $\Phi(x) = G(\Phi(nx)), \qquad x \in \mathbb{R}$

we introduce the complete metric space

 $M := \{ \alpha : \mathbb{R} \to \mathbb{R}, \alpha \text{ continuous, increasing, and} \\ \text{satisfying } \alpha(x+1) = \alpha(x) + 1, x \in \mathbb{R} \}$

with the metric

 $|\alpha - \beta| := \max_{0 \le x \le 1} |\alpha(x) - \beta(x)|.$

The required function Φ satisfies the equation

 $\Phi = T(\Phi)$,

T being defined by

 $T(\alpha)(x) = G(\alpha(nx)), \quad x \in \mathbb{R}.$

Clearly $T(M) \subseteq M$, and T is a contraction in view of (13). It remains to show that the unique solution $\Phi \in M$ of (14) is strictly increasing. Assume x < y and $\Phi(x) = \Phi(y)$ then $\Phi(nx) = \Phi(ny)$ and hence $\Phi(n^k x) = \Phi(n^k y)$ for all integers $k \ge 1$. Since $n \ge 2$ we can pick k so large that $n^k y > 1 + n^k x$, hence as $\Phi \in M$ we arrive at

$$\Phi(n^k y) \ge \Phi(1 + n^k x) = \Phi(n^k x) + 1$$

which gives a contradiction. Therefore, if x < y then $\Phi(x) < \Phi(y)$. Clearly F(-x) = -F(x) implies $\Phi(-x) = -\Phi(x)$, since the set of odd functions in M is left invariant under T.

On a Normal Form of Symmetric Maps of [0,1]

As far as the Hölder-continuity of Φ is concerned, assume $c > n^{\sigma}$, $0 < \sigma < 1$. If $\alpha \in M$, then

$$\alpha(x) = x + \hat{\alpha}(x), \quad \hat{\alpha}(x+1) = \hat{\alpha}(x), \quad x \in \mathbb{R}.$$

We shall show that $T(H_{\sigma}) \subseteq H_{\sigma}$ where H_{σ} is the closed subset of M defined by

$$H_{\sigma} := \{ \alpha \in M | H_{\sigma}(\hat{\alpha}) \leq A \},\$$

where

$$H_{\sigma}(\hat{\alpha}) := \sup_{\substack{x \neq y \\ 0 \leq x, y \leq 1}} \left| \frac{\hat{\alpha}(x) - \hat{\alpha}(y)}{|x - y|^{\sigma}} \right|$$

and A > 0 has still to be determined.

Let $\alpha \in H_{\sigma}$ and $\beta = T(\alpha)$ then for x > y we have

$$\beta(x) - \beta(y) \leq \frac{1}{c} (\alpha(nx) - \alpha(ny)),$$

and therefore if $0 \leq x, y \leq 1$

$$\left|\frac{\hat{\beta}(x) - \hat{\beta}(y)}{|x - y|^{\sigma}}\right| \leq \left|\frac{n}{c} - 1\right| + \frac{n^{\sigma}}{c} H_{\sigma}(\hat{\alpha}).$$

Hence, since $\frac{n^{\sigma}}{c} < 1$ we find $T(H_{\sigma}) \subseteq H_{\sigma}$ if A > 0 is chosen sufficiently large, so we

obtain $\Phi(x) = x + \hat{\Phi}(x), x \in \mathbb{R}$ with $H_{\sigma}(\hat{\Phi}) \leq A$ as was to be proved.

Asking why one loses smoothness in the above simple lemma one meets the equation

$$\varphi(2x) - 2\varphi(x) = a(x), \quad a'(0) = 0,$$

to be solved for a periodic function φ . In general this equation does not admit differentiable solutions even if a is analytic.

Acknowledgement. The authors would like to thank the Institut des Hautes Études Scientifiques, Buressur-Yvette (France) for its hospitality during the preparation of this note in March 1978 (Preprint IHES/M/218).

References

- 1. Ruelle, D.: Applications conservant une mesure absolument continue par rapport a dx sur [0,1]. Commun. Math. Phys. 55, 47–51 (1977)
- Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Am. Math. Soc. 186, 481–488 (1973)

Communicated by D. Ruelle

Received March 3, 1979; in revised form September 15, 1979