On a Normal Form of Symmetric Maps of [0, 1]

H. Rüssmann ${ }^{1}$ and E. Zehnder ${ }^{2}$
${ }^{1}$ Fachbereich Mathematik der Johannes Gutenberg, Universität Mainz, D-6500 Mainz and
${ }^{2}$ Mathematisches Institut der Ruhr-Universität Bochum, D-4630 Bochum, Federal Republic of Germany

Abstract

A class of continuous symmetric mappings of [0,1] into itself is considered leaving invariant a measure absolutely continuous with respect to the Lebesgue measure.

We consider a continuous map f of the closed unit interval onto itself and try to put it into the normal form $N=\varphi^{-1} \circ f \circ \varphi$,

$$
N(x)=\left\{\begin{array}{lll}
2 x & \text { if } & 0 \leqq x \leqq \frac{1}{2} \tag{1}\\
2(1-x) & \text { if } & \frac{1}{2} \leqq x \leqq 1
\end{array}\right.
$$

by means of a homeomorphism φ of $[0,1]$. The statement is as follows:
Theorem. Let $f:[0,1] \rightarrow[0,1]$ be continuous and satisfying

$$
\begin{align*}
& f(0)=0, f\left(\frac{1}{2}\right)=1, \tag{2}\\
& f(x)=f(1-x), \quad 0 \leqq x \leqq 1 \tag{3}
\end{align*}
$$

Assume that

$$
\begin{equation*}
1<c \leqq \frac{f(x)-f(y)}{x-y}, \quad 0 \leqq y<x \leqq \frac{1}{2} \tag{4}
\end{equation*}
$$

for a real constant c. Then there is a strictly increasing continuous map φ of $[0,1]$ onto itself such that

$$
\begin{equation*}
\varphi(N x)=f(\varphi(x)), \quad 0 \leqq x \leqq 1 \tag{5}
\end{equation*}
$$

with N as defined by (1). Moreover, if $c>2^{\sigma}$ for some σ with $0<\sigma<1$ then φ is Hölder-continuous with exponent σ.

Remark 1. Observe the condition (4) is essentially a smallness condition on the Lipschitz distance between the functions $x \rightarrow f(x)$ and $x \rightarrow 2 x, 0 \leqq x \leqq \frac{1}{2}$.

Fig. 1

Remark 2. Mappings $f:[0,1] \rightarrow[0,1]$ satisfying the conditions of the theorem leave invariant a measure absolutely continuous with respect to the Lebesgue measure, see [1]. For more general results see [2].

For the proof of the theorem we reduce the problem to a conjugacy problem on the circle. By definition of N in (1) the functional equation (5) is equivalent to

$$
\begin{align*}
\varphi(2 x) & =f(\varphi(x)) \\
& =f(1-\varphi(1-x)), \quad 0 \leqq x \leqq \frac{1}{2} \tag{6}
\end{align*}
$$

in view of (3). The idea is to continue $f /[0,1 / 2]$ to a function $F: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
F(x+1)=F(x)+2 \quad x \in \mathbb{R}
$$

Then we look for a $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ continuous and strictly increasing, such that the conditions

$$
\begin{align*}
& \Phi(x+1)=\Phi(x)+1 \\
& \Phi(-x)=-\Phi(x), \quad x \in \mathbb{R} \\
& \mathrm{~d} \tag{8}\\
& \Phi(2 x)=F(\Phi(x)), \quad x \in \mathbb{R} \tag{9}
\end{align*}
$$

and
are satisfied.
First we show that for such a Φ the equalities (6) are fulfilled with $\varphi=\Phi /[0,1]$. Indeed from (8) we get

$$
\begin{equation*}
\Phi(x)+\Phi(1-x)=1, \quad x \in \mathbb{R} \tag{10}
\end{equation*}
$$

and therefore

$$
\begin{align*}
\Phi(2 x) & =F(\Phi(x)) \\
& =F(1-\Phi(1-x)), \quad x \in \mathbb{R} \tag{11}
\end{align*}
$$

as a consequence of (9). Now (8) and (10) give

$$
\Phi(0)=0, \quad \Phi\left(\frac{1}{2}\right)=\frac{1}{2}, \quad \Phi(1)=1
$$

so that the monotony of Φ leads to

$$
\begin{array}{ll}
0 \leqq \Phi(x) \leqq \frac{1}{2}, & 0 \leqq x \leqq \frac{1}{2} \\
\frac{1}{2} \leqq \Phi(x) \leqq 1, & \frac{1}{2} \leqq x \leqq 1 .
\end{array}
$$

Hence (11) with $\varphi=\Phi /[0,1]$ and $f=F /[0,1 / 2]$ yield (6).
In order to establish the existence of Φ we have to derive from (2), (3), (4) an $F: \mathbb{R} \rightarrow \mathbb{R}$ not only satisfying $F /[0,1 / 2]=f$ and (7) but also

$$
\begin{equation*}
1<c \leqq \frac{F(x)-F(y)}{x-y}, \quad y<x . \tag{12}
\end{equation*}
$$

We define $F: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{array}{lr}
F(x)=f(x), & 0 \leqq x \leqq \frac{1}{2}, \\
F(x)=-f(x), & -\frac{1}{2} \leqq x \leqq 0,
\end{array}
$$

and

$$
F(x+k)=F(x)+2 k, \quad-\frac{1}{2} \leqq x \leqq \frac{1}{2}, \quad k \in \mathbb{Z} .
$$

This definition is consistent in view of (2). Furthermore we obviously have $F /[0,1 / 2]=f$ and (7). Now (12) is valid for $x, y \in[-1 / 2,0]$ by (4) and the definition of F. If $y \in[-1 / 2,0]$ and $x \in[0,1 / 2]$ we get

$$
\begin{aligned}
c(x-y) & =c(x-0)+c(0-y) \\
& \leqq F(x)-F(0)+F(0)-F(y)=F(x)-F(y),
\end{aligned}
$$

so that (12) is satisfied for $x, y \in[-1 / 2,1 / 2]$.
If $x, y \in[-1 / 2+k, 1 / 2+k]$ for some $k \in \mathbb{Z}$ we find

$$
\begin{aligned}
c(x-y) & =c[(x-k)-(y-k)] \leqq F(x-k)-F(y-k) \\
& =F(x)-2 k-F(y)+2 k=F(x)-F(y)
\end{aligned}
$$

provided $y<x$. Finally let $y \in[-1 / 2+2,1 / 2+2]$ and $x \in[-1 / 2+k, 1 / 2+k]$ with $k>2$. Then we put $z_{j}=\frac{1}{2}+j$ and obtain

$$
\begin{aligned}
c(x-y) & =c\left(x-z_{k-1}+z_{k-1}-z_{k-2}+\ldots+z_{2}-y\right. \\
& \leqq F(x)-F\left(z_{k-1}\right)+F\left(z_{k-1}\right)-F\left(z_{k-2}\right)+\ldots+F\left(z_{2}\right)-F(y) \\
& =F(x)-F(y)
\end{aligned}
$$

so that (12) is completely proved.
Now the existence of a continuous strictly increasing function Φ with the desired properties (8) and (9) is guaranteed by the following

Lemma. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, strictly increasing, and satisfying

$$
F(x+1)=F(x)+n, \quad x \in \mathbb{R}
$$

for some integer $n \geqq 2$. Assume

$$
1<c \leqq \frac{F(x)-F(y)}{x-y}, \quad y<x
$$

with some constant c. Then there is an unique $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ continuous, strictly increasing, and satisfying

$$
\Phi(x+1)=\Phi(x)+1, \quad x \in \mathbb{R}
$$

such that

$$
\Phi(n x)=F(\Phi(x))
$$

Moreover, if for some $\sigma, 0<\sigma<1$ we require $c>n^{\sigma}$, then Φ is Hölder continuous with exponent σ. In addition, if $F(-x)=-F(x), x \in \mathbb{R}$ then $\Phi(-x)=-\Phi(x), x \in \mathbb{R}$.

Remark. Since $F(x)=n x+\hat{F}(x), \hat{F}(x+1)=\hat{F}(x), x \in \mathbb{R}$ the above estimate is a Lipschitz smallness condition on the periodic part \hat{F} of F.
Proof. Let $G: \mathbb{R} \rightarrow \mathbb{R}$ be the inverse of $F ; G$ is strictly increasing, continuous, satisfies

$$
G(x+n)=G(x)+1, \quad x \in \mathbb{R}
$$

and

$$
\begin{equation*}
\frac{G(x)-G(y)}{x-y} \leqq \frac{1}{c}<1, \quad x \neq y \tag{13}
\end{equation*}
$$

In order to solve

$$
\Phi(x)=G(\Phi(n x)), \quad x \in \mathbb{R}
$$

we introduce the complete metric space

$$
\begin{aligned}
M:= & \{\alpha: \mathbb{R} \rightarrow \mathbb{R}, \alpha \text { continuous, increasing, and } \\
& \text { satisfying } \alpha(x+1)=\alpha(x)+1, x \in \mathbb{R}\}
\end{aligned}
$$

with the metric

$$
|\alpha-\beta|:=\max _{0 \leqq x \leqq 1}|\alpha(x)-\beta(x)|
$$

The required function Φ satisfies the equation

$$
\Phi=T(\Phi)
$$

T being defined by

$$
\begin{equation*}
T(\alpha)(x)=G(\alpha(n x)), \quad x \in \mathbb{R} \tag{14}
\end{equation*}
$$

Clearly $T(M) \subseteq M$, and T is a contraction in view of (13). It remains to show that the unique solution $\Phi \in M$ of (14) is strictly increasing. Assume $x<y$ and $\Phi(x)$ $=\Phi(y)$ then $\Phi(n x)=\Phi(n y)$ and hence $\Phi\left(n^{k} x\right)=\Phi\left(n^{k} y\right)$ for all integers $k \geqq 1$. Since $n \geqq 2$ we can pick k so large that $n^{k} y>1+n^{k} x$, hence as $\Phi \in M$ we arrive at

$$
\Phi\left(n^{k} y\right) \geqq \Phi\left(1+n^{k} x\right)=\Phi\left(n^{k} x\right)+1
$$

which gives a contradiction. Therefore, if $x<y$ then $\Phi(x)<\Phi(y)$. Clearly $F(-x)=-F(x)$ implies $\Phi(-x)=-\Phi(x)$, since the set of odd functions in M is left invariant under T.

As far as the Hölder-continuity of Φ is concerned, assume $c>n^{\sigma}, 0<\sigma<1$. If $\alpha \in M$, then

$$
\alpha(x)=x+\hat{\alpha}(x), \quad \hat{\alpha}(x+1)=\hat{\alpha}(x), \quad x \in \mathbb{R} .
$$

We shall show that $T\left(H_{\sigma}\right) \subseteq H_{\sigma}$ where H_{σ} is the closed subset of M defined by

$$
H_{\sigma}:=\left\{\alpha \in M \mid H_{\sigma}(\hat{\alpha}) \leqq A\right\},
$$

where

$$
H_{\sigma}(\hat{\alpha}):=\sup _{\substack{x \neq y \\ 0 \leqq x, y \leqq 1}}\left|\frac{\hat{\alpha}(x)-\hat{\alpha}(y)}{|x-y|^{\sigma}}\right|
$$

and $A>0$ has still to be determined.
Let $\alpha \in H_{\sigma}$ and $\beta=T(\alpha)$ then for $x>y$ we have

$$
\beta(x)-\beta(y) \leqq \frac{1}{c}(\alpha(n x)-\alpha(n y)),
$$

and therefore if $0 \leqq x, y \leqq 1$

$$
\left|\frac{\hat{\beta}(x)-\hat{\beta}(y)}{|x-y|^{\sigma}}\right| \leqq\left|\frac{n}{c}-1\right|+\frac{n^{\sigma}}{c} H_{\sigma}(\hat{\alpha}) .
$$

Hence, since $\frac{n^{\sigma}}{c}<1$ we find $T\left(H_{\sigma}\right) \cong H_{\sigma}$ if $A>0$ is chosen sufficiently large, so we obtain $\Phi(x)=x+\hat{\Phi}(x), x \in \mathbb{R}$ with $H_{\sigma}(\hat{\Phi}) \leqq A$ as was to be proved.

Asking why one loses smoothness in the above simple lemma one meets the equation

$$
\varphi(2 x)-2 \varphi(x)=a(x), \quad a^{\prime}(0)=0
$$

to be solved for a periodic function φ. In general this equation does not admit differentiable solutions even if a is analytic.

Acknowledgement. The authors would like to thank the Institut des Hautes Études Scientifiques, Bures-sur-Yvette (France) for its hospitality during the preparation of this note in March 1978 (Preprint IHES/M/218).

References

1. Ruelle, D.: Applications conservant une mesure absolument continue par rapport a $d x$ sur $[0,1]$. Commun. Math. Phys. 55, 47-51 (1977)
2. Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Am. Math. Soc. 186, 481-488 (1973)

Communicated by D. Ruelle

