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in Four-Dimensional Euclidean Space
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Abstract. We show that a certain four-dimensional field theory has powerful
structures in common with the two-dimensional 0(1,3) non-linear σ-model.

I. Introduction

By now, many non-equivalent two-dimensional relativistic and non-relativistic
integrable field theories have been identified. Both their classical aspects, e.g.
soliton solutions, action-angle variables, phase shifts and their quantum theoreti-
cal aspects, e.g. conservation laws, spectrum, scattering matrix, vacuum expec-
tation values are being intensively studied. However, a complete and explicit
classification of these theories is still lacking.

To the author's knowledge, not a single four-dimensional integrable field
theoretical model - different from the free field - has been identified be it
relativistic or not. Leaving aside the completeness requirement for the set of
conserved charges which enters into the definition of integrable systems, actually,
the very existence of a non-free four-dimensional continuum field theory with an
infinite number of conserved charges has not been established, yet. On account of
theorems due to Aks [1] on the one hand and to Coleman and Mandula [2] on
the other hand it seems very unlikely that reasonable four-dimensional non-trivial
relativistic theories exist which possess an infinite number of conserved local
charges.

In this communication we show that a certain classical four-dimensional local
Euclidean field theory admits an infinite number of continuity equations involving
non-local expressions of the field variables and an infinite number of correspond-
ing non-local symmetries. The theory in question was introduced into the
literature by Yang [3], It is a local translation-invariant though not manifestly
SO (4)-invariant Lagrangian theory. Its extremal classical configurations are closely
related to the anti-self-dual SU(2) Yang-Mills gauge fields, whence the name:
Lagrangian theory of anti-self-dual fields.
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II. The Model

Let us consider the sourceless SU(2) Yang-Mills theory in Euclidean four-
dimensional real space and let us impose the anti-self-duality condition on the real
gauge potentials

Aa

μ 0 = 1,2,3; μ = l,...,4.

We set

B= ° a n d B = B

where σa denote the Pauli matrices and where the summation convention is
implied. Correspondingly, we pass from the real-valued field strengths Fa

μv to the
Lie-algebra-valued field strengths

P — _ pa
μv 2ί μv

Bl^-Bμ' Flv = ~ Fμv '

Here the symbol f stands for the Hermitean adjoint. Then

^μv = Bμ,v~ Bv, μ ~ C^μ* ̂ V]

Anti-self-duality means exactly

Fμv=-2-Vv<%, (0)

where εμvctβ is the Levi-Civita symbol, ε 1 2 3 4=+l. This is a set of three independent
Lie-algebra-valued equations.

We introduce the complex variables (the bar denotes complex conjugation)

the corresponding derivatives and the corresponding linear combinations of the
gauge potentials :

, ____.__
z~ 3 l 4 ' "'

The anti-self-duality equations now read
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The first two equations can be integrated immediately taking the reality of the
gauge potentials Aa

μ into account.

whereDeSL(2,C).
A gauge transformation is the replacement

All this is familiar from Yang's discussion [3].
Less familiar are perhaps the following observations. We note that

is a gauge invariant quantity. It is a positive 2 x 2 matrix whose determinant is
equal to 1. The third of the anti-self-duality equations takes its simplest form when
written as an equation for χ

Lχ,z}—0, χeSL(2,C),>0 (1)

or

X.yy + X,zz + {X.y(X~ % + X,z(X~ %} X = ° > X^ SL(2, C), > 0 . (!')

Thus, to any real anti-self-dual gauge configuration there corresponds a positive
2 x 2 matrix χ of determinant 1 satisfying Eq. (1) or equivalently Eq. (Γ).
Conversely, let χ be a positive 2 x 2 matrix of determinant 1 satisfying Eq. (1)
[or (Γ)]. Then by taking the hermitean square root

and forming

we obtain an anti-self-dual gauge field (in the so-called Hermitean gauge).
If we parametrize χ with the help of Poincare coordinates for the forward unit

mass hyperboloid:

* l -*- —-1 ρ complex,

equation (1) reads

ΦLΦ,yy + Φ,z5] - Φ,yΦ,y ~ Φ,zΦtz + Q,y

ΦlQ,yy + e,zzl ~ 2e,yΦ,y ~ ̂ Q,zΦtz = °

These are Yang's equations "in the 1^-gauge". As we have seen, it is the Poincare
parameter formulation of the gauge invariant Eq. (Γ).
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Next, it is important to note that Yang's equations - and hence Eq. (Γ) - are
the Euler-Lagrange equations for a variational problem with the Lagrangian
density

a>-L Φ.yΦ.y + Φ.zΦέ + β.yQ.y + Q zQ,*-

This Lagrangian density defines the model.
We may avoid the employment of special parametrizations of the positive 2 x 2

matrices with determinant 1. In order to make contact with other models we
introduce instead a real four vector q by setting

1

Detχ=l implies

«"«„ = !

where

q.a = 9ab<f

with

Finally, the positivity of the matrix χ implies

qeV}

i.e. q takes its values on the forward unit hyperboloid in a Minkowskian colour
space.

The differential Eq. (!') for χ becomes

;^;^J + ̂ ;^,z;^=°- (i")
Here the dots denote Minkowskian scalar products and the brackets mean vector
products e.g.

The Lagrangian and, consequently, the field equation and the constraint are
invariant under internal Lorentztransformations

where A is an SL (2, C)-matrix- valued function of y and z. They are translation-
invariant and "invariant" under the following group of (coordinate)
transformations

y-*y' = cos δ [cos aelβλy + sin aeιγλz'] — i sin δ [ — sin ocelβλy + cos c^eιyλz]

z-»z' = — /sin(5[cosαβI/?Aj7 + sinαβιyAz] +cosc)[ — s

x(y> y> z> z)->tf(yf, yf, z'> *') = ι(y> y> ̂  z)
where α, j8, y, δ, and λ are arbitrary real parameters.
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They are obviously not invariant under arbitrary rotations in the four-
dimensional Euclidean coordinate space, let alone inversion of the coordinates.

However, on the set of solutions of the field equation the action of the full
rotation group SO (4) can be defined, such that solutions are mapped into
solutions and that the action for the solutions does not change. Actually, it suffices
to describe the transformation law for rotations around an angle 2-θ in the
(l,3)-plane

y-+y' = y cos2 θ — y sin2 θ — (z + z) sin θ cos θ , y^y' = . . .

Re2lθ:z-+z' = (y + y)smθcosθ + zcos2θ-zsm2θ, z->7 = ... (32)

χ(y, y, z, z)

where

satisfies the following system of linear differential equations

For χeSL(2,C), >0 this system is compatible if and only if χ satisfies (1). It is
equivalent to the linear system advertised by Belavin and Zakharov [4]1.

The composition law for two successive rotations in the (1, 3)-plane

(y, y, z, z) > (/, y', z', 7) > (/', y\ z", z")

is

< + '''ft, y, z, z) = < (̂θ)t // , F, z', 7) <](}/, y, z, z) .

The field equation and the constraint remind us of the two-dimensional 0(1,3)
non-linear σ-model. In fact, solutions of Eq. (1") depending only on the coor-
dinates x1 and x3, or x1 and x4, or x2 and x3, or x2 and x4 solve the field equation
of the classical Euclidean two-dimensional 0(1,3) non-linear σ-model

4 , w 4 = , q q =

e.g.

On the other hand, solutions of (1") depending only on the coordinates x1 and x2,
or x3 and x4 satisfy the explicitly soluble equation [cf. (1)]

1 In terms of θ, j/(θ) and χ, their parameter λ and their fundamental matrix Ψ are given by

λ=tgθ, ψ=(^{θ)Dγ
where for instance in the Hermitean gauge
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Thus we might think of the "theory of anti-self-dual gauge fields" as being
composed of the free theory in some planes and the non-linear 0(1,3) σ-model in
some other planes of the four-dimensional Euclidean space.

III. Non-Local Continuity Equations and Non-Local Infinitesimal Symmetries

We go back to the system of linear differential equations defining j/(θ). Setting

tg0=C

and taking the Hermitean adjoint, it reads

θ
o.

We expand j2/(θ)t in powers of the parameter ζ :

insert this expansion into the left hand sides of the system (4), collect all terms of
the same order in ζ and set the resulting coefficients separately equal to zero. In
this way we obtain the following set of equations

A —A — Ύ~IΎ A — 0 * A -\-A -\-Ύ~IΎ A — 0^n+l,y ^n,z X Λ,z*Λn~*J , ^n+ l,z ^^n.y ' X X.y^n" '

n=0,l,2,...

from which we derive the following infinite set of non-local continuity equations.

Without loss of generality we may assume

EO. (6)

This set is the direct generalization of the infinitely many non-local conservation
laws corresponding to the non-local charges Qa

n+l of the Minkowskian two-
dimensional 0(4) non-linear σ-model [6].

Along with the non-local continuity equations go non-local symmetries. In
their infinitesimal form they are given by

(7)

where ε
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IV. Backlund Transformations

Both lower dimensional theories i.e., the Euclidean two-dimensional O(l, 3)
non-linear σ-model and the free theory possess Backlund transformations mapping
solutions of

and

q,y-y-(q,y q,y)q-ίlq'Λ,y' >q,y~]=Q, q q=-ι

respectively into solutions of

4,ww + (<Z,w 4,w)<2 = 0, q-q=+ί

and

respectively. In both cases the image vector is orthogonal to the original vector.
It is a remarkable fact that these Backlund transformations can be wed to a

single one in four-dimensional Euclidean space mapping solutions of

into solutions of (1")

The Backlund transformation is

q q=+l, q-q=-l, q q = Q (8^

B+:

q,y - q,z =-(q- q,z) q+(q- q,y} # - O q-z + q,y q\ (8

2)

Note that this Backlund transformation consists of only one complex vectorial
differential equation.

Compatibility of the defining equations of B+ - including the reality require-
ments for q and q - implies

0o>)H-4,zz-(4y^ + #,z #j)^^ (2 + )

Here the proportionality factor K is arbitrary. This situation, namely that the
compatibility of the defining equations of a Backlund transformation does not
enforce exactly the field equations, is familiar from the Euclidean two-dimensional
O(l,3) non-linear σ-model.

2 Ίo q: q q= — 1 correspond real SU(1,1) gauge potentials
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If, however, q satisfies the differential (2"), then κ = Q and q solves (1"). Or, if q
satisfies (1"), then κ = Q and q solves (2").

If we multiply (82) vectorially by q and q and pass to the complex conjugate of
the resulting equation, we obtain

In terms of the hermitean 2 x 2 matrices χ and χ9 the Backlund transformation B +

reads

{χ χ},yx=-χ{χχ},ϊ, y , ϊ
({χ'χ},zχ=χ{χχ},y)

where

χ = ί°l-Σ«'σi. £ = $°1- Σί'σ«
ί=l i=l

The Backlund transformation B+ does not commute with the transformations
(3 2). Hence, by forming

Tγ+=R~1B + Ryy y = e2ίθ

we obtain a one parameter family of Backlund transformations (c.f. [5], Eq. (VI. 6))

The corresponding vectors q and q( y + ) are no longer orthogonal to each other
whereas extensions of B+ obtained by analogous combinations with the transfor-
mations (3j) do not affect the orthogonality of the original and the image vector.

V. The Analogs of the Two-Dimensional Local Conservation Laws

In order to derive yet another infinite set of continuity equations - corresponding
to the set of local conservation laws of the Minkowskian two-dimensional 0(4)
non-linear σ-model - we need two continuity equations involving both the original
and the Backlund transformed solutions q and q in combinations which are
invariant under internal Lorentz transformations. They should express the
information that

6 = {tf,yjr+ <2,zj+ i\A 4, y tf.y] + *'[<? <?,. <?, J)
and

are orthogonal to q and to q respectively. To formulate such continuity equations,
it seems mandatory to parametrize q and q such that the algebraic equations (8J
are satisfied identically. The complex equations (82) and (8'2) take their simplest
form if for the parametrization of q and q Poincare coordinates are used :

q = tgh α (cos βr + sin βs) + cosh" 1oc t
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with

2φ ' φ ' φ '

We combine the internal coordinates α and /? into a complex coordinate

Now equations (82) and (8'2) read

Φ

B+ : (9)

φ

where

M = (x1 + ix4)/2 and i;-(

For any parametrization of q and q it is not difficult to show that the relations

can be cast into the form of continuity equations. These simplify considerably if
Poincare coordinates and the relations B+ are used. The result is the following
complex continuity equation

Φ

If we start from the pair q(θ)(y',yf, z',zf), (q(θ}(yf,yf, zf, z') " instead of the pair
q(y,y,z,z), (q(y,y,z,z)Y, we arrive at the one-parameter family of continuity
equations

Φ \ Φ .

+ /{ρ/"ρ"})H -0 (11)
Φ I ),v
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with
du, = cos2 θ du - sin2 θ d--i sin θ cos θ(dυ-dΰ),

dv. = dito up to the replacement

du. = dito up to the replacement u+-*v ,

and where, up to an integration "constant", ώ(θ} is defined by two compatible
Riccati euations

20

r)(fl)

2φ } \ Φ I \ 2φ

Just as in the two-dimensional case [5], we may expand the l.h.s. of Eq. (11) in
powers of y = e2lθ (or y ~1 = e~ 2lθ) around y — 0 (or y — oo) after having inserted the
appropriate expansion of ώ(θ} obtained from Ty+. We then may collect the terms
accompanied by equal powers of y (or y ~ *) and set them separately equal to zero.
In this way we would get an infinite series of complex continuity equations the
densities of which are invariant under internal Lorentz transformations. In
contrast to the two-dimensional case they involve non-local expressions of the
field q. Even worse, these nonlocal expressions have not been obtained explicitly.
They require the iterative solution of two compatible linear differential equations
involving the parameter y for some two by two matrix i.e. of the linear systems
associated with the Riccati equations (12). Unfortunately, only the formal
expression for the zero order term is at our disposal.

VI. Conclusions

In this note we have formulated a local Lagrangian field theory in four-
dimensional Euclidean space. The extrema of its action are related to the anti-self-
dual SU(2) gauge potentials. The model in question is a composition of the free
theory in some planes and the 0(1,3) non-linear σ-model in some other planes of
the four-dimensional Euclidean space.

Using the known structures of the two-dimensional 0(1,3) non-linear α-model
as a guiding principle and scale for the analysis of the model, we gave a Backlund
transformation and a one-parameter extension of it. In addition, it was shown that
the model admits an infinite number of non-local continuity equations and an
infinite number of corresponding non-local symmetries. A generating functional
for the non-local current densities both for the variant ones and invariant ones
under internal Lorentz-transformations is essentially provided by a fundamental
matrix introduced in a somewhat different context by Belavin and Zakharov
and by the Backlund transformation Ty+ and eq. (10) respectively.

The Euclidean theory discussed in this article does not correspond to a
possible dynamics in one time and three space dimensions. However its "projec-
tions" to certain three dimensional Euclidean subspaces presumably correspond
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to dynamical theories in one time and two space dimensions. It might be worth-
while to study the associated quantum theories.

The present note recapitulates and extends results already contained in an
earlier preprint [7]. There is some overlap of our results with the conclusions of
two recent papers by Prasad, Sinha and Wang [8].
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