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Non-unitary Scattering and Capture.
I. Hubert Space Theory

E. B. Davies
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Abstract. By carrying out a general analysis of properties of the wave operators
for the non-unitary scattering theory which arises in connection with the use of
complex "optical" potentials in nuclear scattering and elsewhere, we clarify
some puzzling differences between two recent approaches to this subject.

1. Introduction

In two recent papers [1,12] B. Simon and the author have discussed scattering
problems for one-parameter contraction semigroups on Hubert space. These
semigroups arise in the complex "optical" potential approach to scattering theory
of multiparticle systems, in which the effect of "external" channels is taken into
account in a phenomenological manner by including absorptive or decay terms in
the interaction. The virtue of the model is that it eliminates a large number of
degrees of freedom and hence leaves one with a more analytically tractable
problem.

Another virtue of this approach is that one may easily incorporate into it
effects of interactions with the electromagnetic field. In standard multiparticle
scattering theory such common phenomena as the capture of a neutron by a
nucleus cannot occur, because the compound nucleus which is formed is unstable,
and only becomes stable upon the emission of y-radiation. On the other hand we
shall show in [2] that in an appropriate quantum dynamical semigroup model of
neutron scattering capture may indeed occur.

We start by assuming that the free evolution is described by a self-adjoint
Hamiltonian HQ on the Hubert space ffl, and that the interaction Hamiltonian is
H = HQ + V, where the perturbation Fis not self-adjoint. The following is the first
of a series of hypotheses, each of which will be assumed to hold after its
formulation, without further mention.

Hypothesis A. The Hamiltonian H0 is semi-bounded. Also V— V^ — iV0 where the
self-adjoint operators F0 and V1 have Dom(FJ)2Dom(7ί0), and F0^0. Finally, Vi

are relatively compact with respect to H0.
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It is an immediate consequence of this hypothesis that V has relative bound
zero with respect to H0, and that — iH is the generator of a strongly continuous
one-parameter contraction semigroup on tff , [7, p. 499].

We define a bound state of H to be an eigenvector with real eigenvalue, and
denote by ^fb the closed linear span of the bound states. According to [10, p. 113]
the essential spectrum of H is equal to that of H0 so the non-real spectrum consists
of a sequence of eigenvalues λn whose only possible limit points are in Sp(H0)£IR.
Associated with each λn is a generally non-orthogonal finite rank spectral
projection Pn of H\ the restriction of H to Pnffl has spectrum {λn} but a possibly
non-trivial Jordan form. The point spectral subspace j^p of H is defined to be the
closed linear span of Pn^f for all λn with Im(Λn)<0.

There is yet another subspace of Jf invariant under e~iHt, namely the subspace
of decaying states

\\e-ίHtφ\\=Q.
f-»oo

It is easy to show that ^fp £ J^d and one would like to be able to find conditions
under which J4fp = j^d. This is an open problem.

Lemma 1. // φeΌom(H) and Hφ = λφ for some real λ then V0φ = Q and
(H0 + V1)φ = λφ. Moreover ^lJ^ and

for all ί^O.

Proof. For any bound state φ

so <F0φ,φ>-0. Since F0^0 it follows that F0φ-0. Hence H, H* and (H0 + ̂ i)
coincide on J^b. The fact that the restriction of e~lHt to $fb is a one-parameter
unitary group follows immediately. To prove that Ĵ J,1 is invariant under e~ίm we
note as in [12] that if φe 2tf^~ and φ is a bound state of H then

and Hφ = λφ with AeIR then

Therefore <φ, φ>=0, and ^fdλ^fb. The invariance of J d̂ is elementary.
As in ordinary scattering theory the wave operators are defined by

W_φ = \ime~ίHteίHotφ
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their domains being the sets of φ for which the limits exist. The extent to which the
domains and ranges of W± can be interpreted as in the unitary case is limited by
the fact that e~iHt is only defined for ί^O. We handle W_ using Cook's method.

Hypothesis B. The Harrdltonian H0 has purely absolutely continuous spectrum.
Moreover there is a dense subspace ^ of Zίf such that

00

j \\VeίHotφ\\dt<oo
o

for all φe@.
Before starting the next lemma we recall from [1] that the absolutely

continuous subspace J^ac for H is defined to be the closure of

M(H) = \φ:] \(e-iH*φ^y\idt^cΛψ\\2 for all
I o

It is elementary that ̂ c is invariant under e~iHt and that

^£«<. (1)

Lemma 2. The limit W_^φ exists for all φeJjf and defines a one-one contraction
W_ from $e into jfac.

Proof. We ίefer to [1] for the proof that W_ is a contraction from #e into tfac and
give Martin's proof [8] that W_ is one-one. Sincό

for all φejjf and all ί>0, the subspace

satisfies

for all ί^>0. Since HQ is semibounded (2) also holds for all f ^ O by analytic
continuation in ί. But if e^ then

o

so

lim \\W_eiHotφ\\

— lim

By density arguments we conclude that

\im\\W_eίH^φ\\ = \\φ\\
ί-»00

for all φe Jf. Combining this with (2) we obtain JS? = 0.
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2. Domain of the Wave Operator W+

The proof of the existence of the limits, W+ φ is not easy. In [1] the author used the
Kato-Birman theory to show that Oom(W+)^J^ac, while in [2] Simon adapted
the Enss theory to show that Όom(W+) = 3ίfb

±. The two papers are not directly
comparable because the Kato-Birman theory depends on abstract operator
hypotheses while the Enss theory uses geometrical ideas, but for potential
scattering problems the Enss theory is more powerful except possibly in the
spherically symmetric case. It is pleasing therefore that we can show under simple
general conditions that ^ac = ̂ fb

λ, so that the two approaches give qualitatively
identical conclusions.

We start by pointing out that if H1 =HQ -f F15 the scattering between H0 and H
can be split into two independent problems between H0 and H15 and between H1

and H. We assume that the first problem is amenable to one of the standard
methods of analysis [9], and in particular assume the following.

Hypothesis C. The Hamiltonian Hl may have non-empty point spectrum, but it
has empty singular continuous spectrum.

By the theory of unitary dilations of one parameter contraction semigroups
[3, 13] there is an orthogonal decomposition

such that each of the subspaces is invariant under e ίm for all ίg:0, and ^fu is the
largest subspace on which e~ίHt are unitary operators. The semigroup is said to be
completely non-unitary on j^cnu.

Lemma 3. The subspace 2tfu is invariant under e~ίHίt for all ίeIR and

e-
imφ = e-ίHίtφ (3)

for all φe Randal l ί^O.

Proof. If φeJ4?unΌom(H) and we put φt = e~ίHtφ then

t

Therefore F φ = 0 so

whose solution is φt = e~iHltφ. Since J^ur\Ώom(H) is dense in jήfu, (3) holds for all
ΦE^U. The in variance of J^ under e~lHlt for t ̂ 0 is immediate. But V1 is relatively
compact with respect to H0, so Hί is semibounded and the in variance of 3tifu under
e-iHit for £<;Q can j3e provec[ ̂  analytic continuation in ί.

Lemma 4. IfeBt is a completely non-unitary one-parameter contraction semigroup on
$e then
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Proof. We first consider the case of a completely non-unitary one-parameter
semigroup of isometries. By [3; 13, p. 151] there is an isomorphism of 3? onto
L2{(0, oo);J^} for a suitable auxiliary space Jf such that

if Og

for all /eL2 and ί^O. If 2 is the subspace of C°° yK-valued functions with
compact support in (0, GO) then S>ζM(B). Since Q is dense in ffl the result follows.

In the general case let e~ίκt denote the minimal unitary dilation on Jf~2^ of
eBί, so that K has purely absolutely continuous spectrum by [3; 13, p. 84]. If we
define

then e~ίκt^g^ for all ί^O and tfgg. If s,ί^0 and f,geJV and P is the
projection of Jf onto ffl then

-0

so

Hence if we define Jί = ̂ @^λ then

for all ί^O. The restriction ect of e~lίCί to Jί is a one-parameter semigroup of
isometries. Since it is the sum of a completely non-unitary one parameter
semigroup of isometries, to which we can apply the first part of the proof, and a
one-parameter unitary group which has absolutely continuous spectrum because
it is a restriction of e~lK\ M(C) is dense in Jt.

If/eM(C)and#eJf then

Hence PfeM(B), so M(B) is dense in 3? as required.
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Theorem 5. Under Hypotheses A, B, C we have

Proof. Since H coincides with Hί on J^ and H^ has no singular continuous
spectrum, there is an orthogonal direct sum decomposition

where J^& is the closed linear span of those eigenstates of H1 lying in J^M, and
actually equals J^b. lίφe^CUtac then φetfac(H^ so φe^fac(H). Applying Lemma 4
to the restriction of e~itH to J4? we obtain

The proof is completed by reference to (1).
In the light of the above theorem and [1, 12] it is now reasonable to assume

Hypothesis D. The limit W+φ exists for all

3. Invertibility of the Wave Operators

In order to make further progress we need the following hypothesis, which is
frequently satisfied but whose necessity is uncertain.

Hypothesis E. There is a conjugation operator J on 3^ such that for i = 0,1

Lemma 6. The reverse wave operators

ί-»CO

and

ί-»oo

exist with domains

Moreover if W+ and V_ are extended to the whole of 3f by putting

for all φeJ^b then

JW _J = V+ = W* =

Proof. If φe^f then

= l\mJe~iHteiHotJφ
ί->oo

= JW_Jφ.



Non-unitary Scattering and Capture 283

The proof of the existence of V_ is similar, using the fact that J^b = ̂ b.
From their definitions it is evident that

(w+φ,Ψy = (φ,v+ιpy (4)

for all φeJtf^ and ψE^f.lϊφe^fb then the left hand side vanishes by the definition
of W+φ. Also

so <(/>, F+φ> -0. Hence (4) holds for all φ9 ψE^f and V+ = FF*.
The conditions of the following theorem are certainly not always satisfied, but

when they are the spectral analysis of H is considerably simplified.

Theorem 7. The following conditions are equivalent :
(i) The range of W_ is a dosed subspace

(ii) The scattering operator S = W+ W_ maps ffl one-one onto ffl
(iii) One has a Banach space direct sum decomposition

34? = (Range W_)®^d@^b.

The first two subspaces need not be orthogonal to each other but both are orthogonal
to $eb.

Proof. If (ii) holds then by the inverse mapping theorem there extends an α > 0 such
that || Sφ || ̂  α || φ \\ for all φ e tf . It follows that || W_ φ \\ = α || φ \\ for all φ e 3ff and this
implies (i).

Conversely if W_ has closed range then there is a constant α>0 such that
\\W_φ\\^a\\φ\\ for all φejf. Now

\\eiHote-imW_φ\\

\\eiHotW_e-ίHotφ\\

ίHotφ\\=oi\\φ\\ (5)

so S is one-one with closed range. But

Range (V+) = Range ( J W_ J)

= J Range (W_)

is a closed subspace, so V_ V+ is one-one with closed range by a similar argument.
Now

If φl Range S then for all \pe ̂

0^<Sφ,φ>^<φ,S*φ>

so S*φ = Q and φ = 0. Hence Range S = 34?.
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Since (i) is implicit in (iii) we are left with proving (iii) from (i) and (ii). If
then

= lim \\e~ίmW_φ\\=0
i-»oo

so Sφ = 0 and φ = 0. This proves

(Range ^_)nJTd = 0.

Moreover fflb is clearly orthogonal to both subspaces. lϊ φeJ^f then φ = φac + φb

where φaceJί?b

λ and φbeJ^b. Then W+φb = 0 and

W+φac=\imeίH^e-ίmφac = ψ (say).
ί->oo

Since 5 has range equal to jf there exists φ'e Range PF_ with PF+0' = ιp. Now
putting φ" = φac — φ' we obtain

lϊmeίHote-iHtφ" = Q
t-*oo

so φ"eJΊfd. We thus have φ = φb + φ' + φ" where φbe3^b, φ'e Range W_ and

Hypothesis E is certainly not absolutely necessary. For example suppose that

Jf = L2(IR3), H0= - — - zJ and Hypotheses A-D are satisfied.
2m

Theorem 8. The conditions of Theorem 7 are still equivalent if Hypothesis E is
replaced by the condition that the operator Vis rotationally invariant.

Proof. The only change is in the proof that if S is one-one with closed range then it
is onto. Since S commutes both with H0 and with rotations, it is a multiplication
operator in each angular momentum sector, and hence is normal, SS* = S*S. This
implies the required result.

If the conditions of Theorem 10 are satisfied then the restriction of H to Range
W__ is a spectral operator of scalar type [4, 5]. Even if this fails it is still possible
that for some finite interval [α,ί>] the subspace W_J4?[aίb] is closed, where ^[a>b] is
the spectral subspace of H0 for the interval [α, £>]. One may then show that H is a
spectral operator of the scalar type on W_^[a b] and that S maps ^[a>b] one-one

,

The following result shows that the properties of Theorem 10 are stable under
small perturbations.

Theorem 9. Let Hλ = H() + Vl- iλV0 where λ lies in the half-plane H - {λ : Re λ > 0},
and where Hypotheses A-E are satisfied for all λ. If (7n£]H is the set of λ for which
W_(λ) is a Fredholm operator of index n, then H has finite point spectrum with total
multiplicity nfor all IE Un. IfU^ is the set o/AeH such that W_(λ) has closed range
of codimension GO, then U ̂  U0, U1, U2, ... are disjoint open subsets o/H.

Proof. If n< oo and λe Un then every eigenvector of H lies in J^d©J^, which by
Theorem 7 has dimension equal to n. Since 3?d®fflb is invariant with respect to
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e~ίm the algebraic multiplicity of the point spectrum of H is exactly equal to n.
Since W_(λ) are strong limits of the analytic family e~

iHλteίHot as f-»oo, W_(λ) is
strongly and hence norm analytic in A, and so norm continuous in λ for AeH. But
the class of (semi) Fredholm operators of given index is open in the norm topology
[7, p. 230].

We henceforth assume

Hypothesis F. The equivalent conditions of Theorem 7 are satisfied for the
Hamiltonian H.

The direct sum decomposition of Theorem 7 is associated with certain non-
orthogonal projections. Such projections are frequently inconvenient, particularly
in connection with probabilistic interpretations of the equations, and it is useful to
have the following result concerning the orthogonal projection P with kernel

Theorem 10. Ifφε^ then

t-»oo

Proof. The result is obvious for φeJ^d so we assume OΦφeRange W_. By (5)

lim \\e~imφ\\=β>0

the left-hand side being a decreasing function of t since e~ίm is a contraction
semigroup. Given ε > 0 let a be large enough so that

\\e-ίHaφ\\<β(l+ε)

and write

where φ0€j4fd and (^e^/nJ^1. Then for all t^

so

->jβ as f-»oo.

Now

so
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This establishes that

lim \\(l-P)e-ίmφ\\=Q
ί-+oo

for all φ = Range W_ and hence all φe^f/.

4. Some Simple Examples

An analysis of simple cases shows that the conditions of Theorem 7 are not always
satisfied. It frequently happens that the union of the sets Un defined in Theorem 9
is dense in H and that its complement consists of a set of curves corresponding to
values of λ at which new eigenvalues appear in the spectrum of H. On these critical
curves we see by Theorems 7 and 9 that W_(λ) does not have closed range.

To justify these assertions we first consider the case where V is a rank one
perturbation. We put Jf = L2(IR) and define

where /e J f , Re(/l)>0 and H0 is defined by

with the obvious domain.
Since the scattering operator

Sλ = \imeίHote-2iH^eiHot (6)

commutes with H0 whenever it exists, it is a multiplication operator on L2(IR). We
shall prove existence only under the following condition.

Hypothesis G. The Fourier transform of the function |/|2 lies in L^IR).

Lemma 11. If f satisfies Hypothesis G, then Sλ exists for all Re(Λ)>0 and

"for all #eL2(IR), where h(z) is defined for all Im(z)<0 by

00 I f ϊwϊl2

M X f \J \U)\ Jz) = - du

and has continuous boundary values on the real axis.

Outline of proof. For sufficiently small \λ\ one may expand the right-hand side of (6)
in powers of λ, prove convergence term by term and then identify the two sides of
(7) term by term in the power series expansions. The existence of Sλ and the
validity of (7) for all Re(Λ)>0 then follows by analytic continuation, using the fact
that all the operators concerned are contractions depending analytically on λ.
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Since h(x) is a continuous function of x vanishing at + oo and Re (λ) > 0 implies
that

for all xeIR, we see that Sλ has closed range unless there exists xeIR such that
iλh(x)= — 1. This demonstrates that

We now turn to the eigenvalue problem. A trivial calculation shows that all
eigenvalues E of H have strictly negative imaginary part. Moreover a number E is
an eigenvalue of H if and only if

For each λ this equation may have several solutions, each of which is locally an
analytic function of λ. The critical curves on which Sλ is not one-one are seen to
coincide with the values of λ for which one of these eigenvalues meets the real axis
(and disappears).

As an explicit example we recommend the case

for which all the relevant quantities are explicitly computable.
A similar but more complicated analysis using the eigenfunction expansion

method [6, 11] can be carried out for Schrodinger operators with complex central
potentials, in each angular momentum sector. Note that in [5, p. 2397] the
hypothesis that certain functions A ±(λ) do not vanish for 0 ̂  λ < oo is equivalent to
the conditions of our Theorem 7, modulo technicalities.
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