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Abstract We extend Lieb's limit theorem [which asserts that SO(3) quantum
spins approach S2 classical spins as L-> oo] to general compact Lie groups. We
also discuss the classical limit for various continuum systems. To control the
compact group case, we discuss coherent states built up from a maximal weight
vector in an irreducible representation and we prove that every bounded
operator is an integral of projections onto coherent vectors (i.e. every operator
has "diagonal form").

ί. Introduction

This paper is motivated in the first place by a beautiful paper of Lieb [23] who
considers the following situation. Let A be a finite set and let //(5α) be a function of
g3\Λ\ variabies {Sα>J, aeΛ, i= 1, 2, 3 which is multiaffine, i.e. a sum of monomials
which are of degree zero or one in the variables at each site. Define

ZcΛ)0= ί Π [dΩ(Sβ)/4π] exp(-H(7Sα)) (1.1)

where dΩ is the usual (unnormalized) measure on the unit sphere, S2, in R3. For
each/ -1/2, 1, 3/2, ...,let

Z£(y) = (2f + 1ΓIΛI Tr(exp[ - H(γLJW) (1.2)

where {Lα} is a family of independent spin £ quantum spins, i.e. Lα acts on
(C2zf+1) |y11 thought of as a tensor product with L α =l® ...®L® ...®1 (not 1 only
in the αth factor) and L the usual vector of angular momentum /. Then Lieb [23]
proves :

lγ). (1.3)

This demonstrates convergence of ZQ to Za as /— »oo in a sufficiently strong way
that one can interchange the /-> oo and the \Λ\-+ oo limit in the free energy per unit
volume.
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Lieb's proof depends on developing some results on Bloch coherent vectors
and on two inequalities which he proves about projections onto such vectors.
Independently of Lieb and at about the same time Berezin [3, 4] proved some
abstract inequalities about projections onto overdetermined vectors which include
Lieb's inequalities as a special case. Conversely, Lieb's methods can be used to
prove the abstract Berezin inequalities. These "Berezin-Lieb" inequalities are the
basis of much of what we do we discuss them in Sect. 2. Motivated by Lieb's
paper, various other problems have been discussed. [5, 15, 40].

Our goal in this paper is to extend Lieb's analysis from the sequence of
representations of SO(3) to more general compact Lie groups. This is clearly a
natural mathematical question but our interest comes from some work of Dunlop-
Newman [8]. They prove a Lee-Yang theorem for S2-spins by using Lieb's result
and Asano's theorem [2] on a Lee-Yang theorem for spin 1/2 quantum spins and
its extension to spin f spins by Griffith's trick [14]. While this is a rather indirect
way of proving a Lee-Yang theorem for S2-spins, it is the only way we know! In
order to extend the Dunlop-Newman result from S2 to SN (and thereby to (φ4)N+ί

field theories [8]), one must try to generalize Lieb's result and this is our reason for
interest in the general problem. We succeed up to the point of reducing Lee-Yang
for SN spins to an analog of Asano's result for certain spinors see Sect. 7 below.

The preceeding discussion focuses attention on discovering what replaces S2 as
the classical limit space. There has been one other example computed; namely
Fuller and Lenard [9] consider the sequence of spherical harmonic repre-
sentations of O(n) and discover, by ad hoc means, that the limit space is G(n, 2), the
Grassman manifold of oriented two planes in Rn. Our goal is to give a general
procedure that computes the classical limit manifold in general. It will turn out
that this involves isolating the "proper" set of coherent vectors on Lie groups.
Such sets have been considered by Klauder [18], Perelomov [37], and Gilmore
[10, 11]. The first two authors take general families of coherent vectors; only the
last author emphasizes the virtue of taking coherent vectors based on maximal
weight vectors as we shall see, only these seem to be suitable for controlling the
classical limit. Gilmore notes that his coherent states are parametrized by
homogeneous spaces but when he discusses the classical limit [12], these spaces,
which are the limit manifold, get lost!

The classical limit manifolds turn out to be coadjoint orbits i.e. orbits under
the natural action of the basic Lie group on the dual of its Lie algebra. We describe
these things in more detail in Sect. 5 and give several examples in Sect. 6.

For the time being, we note that in general Lie groups there are distinct
families of orbits and this is because there will be different classical limit spaces
depending on which family of representations is used. For example, for SO(4), the
limit for the sequence of spherical harmonic representations is the four dimen-
sional manifold S2 x S2 while for the spinor representations, it is the two
dimensional manifold S2uS2.

We also note that the Kostant-Souriau [20, 38] method of "geometric"
quantization focuses attention on coadjoint orbits in certain nilpotent Lie groups.
From their point of view, our result here are most natural.
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As we shall discuss in Sect. 5, coadjoint orbits have a natural group invariant
symplectic structure, not an unreasonable thing for classical mechanical systems!
Since only S2 among the spheres have such a structure, Sn(n φ 2) is never a classical
limit manifold. This appears to be serious for extending the Dunlop-Newman idea
but, as we shall see in Sect. 7, the difficulties can be overcome.

Next we summarize the contents of this paper. In Sect. 2, we present the
Berezin-Lieb inequalities. These relate the partition function associated to an
operator A to the classical partition function of its lower symbol a(x) — Ύr(P(x)A)
and its upper symbol g with A = §g(x)P(x)dμ(x) (if such exists) where P(x) is a
family of rank one projections with §P(x)dμ(x)=l. Further properties of upper
and lower symbols in general are found in Appendix 1 and in the case where P(x) is
built from maximal weight vectors in Appendix 2. As a warmup to our main
interest in spin systems, we discuss in Sect. 3 the classical limit of Ύr(e~H\ H = — A
+ V(x) using Lieb's ideas. Such an approach has already been found by Thirring
[40]. We include it here for several reasons: first, Thirring's proof is not yet widely
available second, we wish to note the simple extension to allow magnetic fields
and finally, we wish to discuss some connections with other methods of controlling
the classical limit in this case. In Sect. 4, we discuss the classical limit of the
pressure of multiparticle systems in the thermodynamic limit. This section lacks
the polish of much of our other discussion in the sense that a much more
comprehensive result is both desirable and presumably possible. It also lacks the
ideological purity of much of the rest of the paper eschewing the use of coherent
state methods alone. So far as we know, these are the first results on this subject
and we hope it will be brought to a higher level by others. In Sect. 5, we summarize
various features of compact Lie group theory, especially WeyPs theory of
representations; this is partly to establish notation and partly for the reader's
convenience. In Sect. 6, in many ways the central section of the paper, we combine
Sects. 2 and 5 with the machinary of Appendix 2 to extend Lieb's limit theorem to
certain sequences of representations. There should be classical limit theorems for
the sequence whose maximal weight is Lλ where L = 1,2,... and λ is any dominant
weight (see Sect. 5 for definitions). Unfortunately, for technical reasons discussed
in Appendix 2, we are limited to the case λ a fundamental weight (minimal
dominant weight). Most interesting examples are included however in particular,
that of Fuller-Lenard. At the end of Sect. 6, we discuss various examples including
that of O(2n) spinors. These representations are further discussed in Appendix 3.
Finally in Sect. 7, we describe the relevance of our work to an approach to proving
the Lee-Yang theorem. In Appendix 2, we prove that for coherent vectors built on
maximal weight vectors, every operator has a diagonal representation.

We end this introduction with the following remark: it seems to me that there
has been in the literature entirely too much emphasis on quantization, (i.e. general
methods of obtaining quantum mechanics from classical methods) as opposed to
the converse problem of the classical limit of quantum mechanics. This is
unfortunate since the latter is an important question for various areas of modern
physics while the former is, in may opinion, a chimera.

A sketch of some of our results appeared in [37].
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2. Coherent Projections and Berezin-Lieb Inequalities

Let J^ be a Hubert space, (X,Σ,μ) a measure space. A family of coherent
projections is a weakly measurable map χH>P(x) from X to the orthogonal
projections on ffl so that

i) dimP(x)=l for all xeX
ii) fP(x)d/φc)=l (2.1)

in the sense that

l(φ,P(x)φ)dμ(x) = (φ9ψ) (2.1')

for all φ,φej^. [In case jdμ^oo, (2.Γ) supposes that the integral is absolutely
convergent. By the Schwarz inequality on jf and then on L2(X, dμ\ this follows if
j(φ?P(x)φ)dμ(x)<oo for all φ.~\

Lemma 2.1. // d = diDφf), ίΛen fdμ(x) = d.

Proo/ If d< GO, just take traces of both sides of (2.1). If a — oo, let {φί}^L1 be an
orthonormal basis and note that for any n

n

ldμ(x) £ J £ (φi5 P(x)φ.)dμ(x) = n . Q
i = l

The next result shows that coherent projections always arise from coherent
vectors. This result uses the underlying hypothesis always made by reasonable
men that dimjf is countable.

Proposition 2.2. // P(x) is a family of coherent projections then, there exists a
measurable family ψ(x) of unit vectors so that P(x) = (ψ(x\ )ψ(x). Moreover, the ψ(x)
are total

Proof. This is a simple application of the von Neumann selection principle. Let
{φjf= 1 be an orthonormal basis for J^ (N finite or countable). Let An = {x^t,

00

P(x)φ^ = 09 i=l, ...,n-l, (φn, P(x)φn] Φ 0). Then (J An=X since the φi are a
basis. On An9 let "= 1

ψ(x) = P(x)φJ\\P(x)φn\\.

Then P(x) = (i/?(x), OψM ^s obvious since P(x) is rank one. If (φ(x\η) = Q, then
(η9P(x)η) = Q for all x so \\η\\2=Q by (2.1). Π

Definition. Let A be a bounded operator on Jf and P(x) a fixed family of coherent
projections. Then L(A) is the function on X given by :

) (2.2)

L(A) is called the lower symbol of
Notice that

Next, let /eL°°(JMμ). Since (φ,P(x)ψ)eL1 for all φ, φ with

, P(x)ψ)\dμ(x) £

= \\Ψ\\\\Ψ\\
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we have that for any /eL°° :

f /(x) (φ, P(x)ψ)dμ(x) = α(φ, tp)

is a convergent integral with

Wφ,ψ)\£\\f\\«>\\φ\\ \\v\\. (2.4)
Thus, there is a bounded operator ̂  with (φ, ̂ jψ) = α(φ, ψ).

Definition. The map /*->A from L°°(Z) to J?(jf ) is denoted by [7. If 4 = [/(/) for
some /, / is called the upper symbol of A.

We write

(2.4) says that

u/iίoo (2.40
What we call upper and lower symbols, Berezin [4] calls contravariant and

covariant symbols respectively. We prefer to use upper and lower since the
inequalities always go that norms of operators are bounded above by norms of
upper symbols and below by norms of lower symbols. One disadvantage of
dropping the Berezin names is that the names suggest a kind of duality in fact,
while Berezin does not note a duality, there is a strong duality see Appendix 1. In
that appendix, we discuss a number of aspects of upper and lower symbols in
particular, when the following holds :

Definition. We say a family of coherent projections is complete if and only if
Ran(L7) is sequentially strongly dense in 5£(^f\ the bounded operators.

Completeness of the P(x) should not be confused with the completeness of the
coherent vectors ψ(x) which is guaranteed by Proposition 2,2. In fact, as we see in
Appendix 1, there exist both complete and incomplete families of coherent
projections.

In this section we want to give proofs of the following pair of results.

Theorem 2.3. (First Berezin-Lieb Inequality). Let a(x)= L(A)(x\ Then, if A is self-
adjoint

j exp(φ))dμ(x) ̂  Tr(expG4)) . (2.5)

Theorem 2.4 (Second Berezin-Lieb Inequality). Let A = U(f). Then if f is real
valued,

Tr(exp(^)) ̂  J exp(/(x))dμ(x) . (2.6)

Remarks. 1. We only give detailed proofs in case dim(jf)<oo. Fairly simple
approximation arguments work for the case dimjf = oo so long as the inequalities
are suitably interpreted.

2. These inequalities were independently obtained by Berezin [3, 4] and Lieb
[23] (Lieb had specific Fs but his proofs can be extended). Their published proofs
of the second inequality are quite different. The basic proof we give below of (2.6) is
an elegant unpublished proof of Lieb which is related to one step in the published
proof of Berezin. We then give an instructive alternate proof of (2.6).
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3. Since only Jensen's inequality is used, the results extend if exp is systemati-
cally replaced by any convex function, Φ. This was noted by Berezin [4]. With this
remark, WehrFs inequality [42] relating quantum and "classical" entropy can be
viewed as a special case of the Berezin-Lieb inequalities.

Proof of Theorems 2.3 and 2.4 (assuming dimj'f <oo). Let {φjf=1 be a complete
orthonormal set of eigenfunction for A with Aφί = μ^ .

Define

ci(x) = (φi9P(x)φi).

Then (2.7) implies that, for each i

$φ)dμ(x}=i (2.7)

and the completeness of the φί imply that, for each x

Σc ;(x)=l. (2.8)
ϊ

The first bound will follow from Jensen's inequality based on (2.8) and then (2.7)
used to evaluate some integrals while the second bound will come from Jensen's
inequality based on (2.7) and then (2.8) to do some sums. Explicitly, if a = L(A),
then any x :

exp(φ)) = exp /
\

^ Σ c*CΦμι [by Jensen and (2.8)] .
ί

Integrating dμ(x) and using (2.7), we obtain the first inequality.
Now, let / be real valued and A = ί/(/). Then

(φi9 e
A

9i] = e^** = exp(f /(x)Ci

^ lef(x)ct(x)dμ(x) [by Jensen and (2.7)] .

Summing over i and using (2.8), the second inequality results. Π
In [23], Lieb obtains the upper bound by a Golden-Thompson inequality.

Here is a second proof which yields an alternate proof of the second inequality.

Alternate proof of Theorem 2.4 (Again, if dim^f < oo). By adding a constant to /
we can suppose that /^O. Thus, it suffices to show that if /^O

]") ̂  $fn(x)dμ(x) . (2.9)

By Proposition 2.2, P(x) = (φ(x), -)φ(x) for some φ. Let K(x,y) = (φ(x)9 φ(y)). Then

Let B be the integral operator with kernal K [K is Hubert-Schmidt since
$(K(x,y))2dμ(x) = $(φ(y), P(x)φ(y))dμ(x) = l and J(<Wy)<oo]. Then the left side
of (2.9) is

Ύr((AB)»)
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where A = multiplication of / For general self-adjoint A, B one has the Golden-
Thompson type inequality (see e.g. [35]).

But, by (2.1), $K(x,y)K(y,z)dμ(y) = K(x,z), i.e. B2 = B. Thus

Tr(AnBn) = Ύr(AnB) = J f"(x) K(x, x) dμ(x) = j fn(x) dμ(x)

since K(x, x) = 1. [We brush over the fact that since K is only assumed measurable,
one cannot compute the trace so cavilierly; this is easily handled using

This proves (2.9) and so Theorem 2.4. Q

3. Schrodinger Operators with Confining Potentials

In this section we wish to prove:

Theorem 3.1. Let V, a be functions on jRv (respectively real valued and Rv-valued) so
that :

(a) IF(x)| ̂  CeD^2 |α(χ)| ̂  CeD^2

for some C, D.
(b) K a are continuous
(c) \V(x)\^Axδ some A, δ>Q.
(a) divα^O in distributional sense.

Let ph = hΓlV and Hh = (ph- a]2 + K Let Z0 = hvl2Ύΐ(e~H*) and

(3.1)

Then

limZQ = Zc/. (3.2)

Remarks. 1. There are three general approaches to this kind of result: Dirichlet-
Neumann bracketing (see [27, 28, 34]), path integrals (see [36]) and coherent
vectors as we use here.

2. This result is not new. A stronger result was proven by Combes et al. [7]
using D — N bracketing and another proof using Stochastic and Wiener integrals
can be found in [36]. For the case α = 0, the precise proof we give was found
originally by Thirring [40],

3. Condition (c) enters only to assure that Za<ao and various technical
conditions. It could be dispensed with. If one uses Lebesgues theorem on
differentiation of integrals, (b) could be replaced by measurability and (a) by L1

conditions with j | V(y)\dy ^ Cep|*'2, etc. The bounds (a) are used critically in
\χ-y\^l

our proof but not in the bracketing or path integral proofs.
To prove Theorem 3.1, we use the special functions

= (M -v/4 eik χ/Λ exp( - (x - yf/2h) (3.3)
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which obeys

y)2]v> = %. (3.4)

We introduce the h dependent Fourier transforms :

(̂ ) (k) = (2πftΓ v'2 ^e~ik'x"ig(x)dv

X .

Notice that

^Mk,yK=e+i*'kVh(y,k). (3.5)

Let PΛ(k, y) be the rank one projection onto ψΛ(k, y).

Lemma 3.2 ([19]).

$PΛ(k,y)dvkdvy/(2πhγ=l (3.6)

in the weak sense, (i.e. integrals of matrix elements converge)

Proof. Let ηeL2. Then

(2πhγ!\ψfι(k, y\ η) = J^(Wft(0, y)) (k)

so, by the Plancherel theorem

ί(2π/rv^l<^(^^ (3.7)

Integrating dvy and using ||t/?Λ | |L 2 = l9 (3.6) results. Π
This lemma shows that the Ph(k, y) fall into the scheme of Sect. 2. Actually they

fall into the scheme used in Sect. 6 : In the natural action of the Heisenberg group
on L2(RV\ i.e.

we have that

Pft(fc, y) = U(k, y, α)PΛ(0, 0) [7(fc, y^Γ1

and Pft(0,0) is the projection onto what is, in many ways, a "minimal weight
vector".

Proof of Theorem 3.1. We first claim the upper bound

For diamagnetic inequalities [31, 32, 16, 33, 36] show that ZQ(V,a)^ZQ(V9a = Q)
and the Golden-Thompson inequality [13, 41, 35] then proves (3.8).

Given any function g(x) obeying IgtXd gCe1*'*'2, for h fixed and sufficiently
small,

with Mg = multiplication by g, exists and is independent of k. Write its value as
g(y). Then :
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To see the last result, we calculate first

L(ph . α) (fc = 0, y) = - ifi f Σ djipdjip
j

= -iftfΣi3/ f ljv2)=°
7

since φ(k^0,j;) is real- valued and divα^O. Similarly,

so

I^ft β)(M = ̂ M(

Thus

where

By hypothesis (a), (b), α, F-»α, V pointwise as ft->0. Thus, pointwise

Λ) (k, y)-»Hc/fc, y) = (fe - α(j ))2

as fo-*0. It is also easy to show that for any compact set Ω in k — y spaces, and h
sufficiently small

all k, yeΩ. Thus

I dvkdvyQxp(-L(Hh})-^ j dvkdvye~Hc^y}

Ω Ω

so using Theorem 2.3 and Lemma 3.2

l\mZQ^$dvkdvy(2πΓve-Hce(k y)

Ω

for any Ω. Taking Ω-+R2\ we prove (3.2). Q
The proof of the upper bound above is the same as that in [7] and does not use

Theorem 2.4. In general, it is somewhat difficult to use Theorem 2,4 because for
complicated Ks one cannot write down the upper symbol for F so easily.
However, in specific cases, one can write down U(Hh) and typically the upper
bound from Theorem 2.4 is worse than (3.8) but by an amount going to zero as
h-*Q. For example, using (3.7), one easily sees that

U(y2-vh/2) = x2

and, by symmetry (3.5):

so one finds using only Theorem 3.3 that for H^^

7 <Pvh7
^Q = V ^cf

rather than (3.8).
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There is of course nothing sacred about the particular choice of coherent
vectors we used in the above. For example, given δ, one can imagine partitioning
Rv into cubes of side δ and then taking Dirichlet Laplacian eigenfunctions inside
these boxes. One will get a complete orthonormal set and in this way a coherent
families of projections which was also concentrated near single points in those
spaces. In fact, this method will essentially yield Dirichlet bracketing from a
different point of view. In the next section, the reader should keep this remark in
mind.

4. Particle Systems

In this section, we consider a single species of particles interacting only via a pair
of potential K Let

l/N(x l 9...,xN)= ΣKXί-*,) (4-1)
i<3

and

ΞJβ,z,Λ)= Σ^a(βγ f exp(-j8l/N(xf)) ΠΛc,
n = 0 n XieΛ ί = l

with a(β)=d3

Pe-β''2 = π3/2β-3/2, and

where Hn acts on L2(Λn) by £ — h2AΛ -f Un with ΔΛ the Laplacian with vanishing
ί=l

boundary conditions on dΛ and with no restriction on statistics.
To define the pressure, one typically assumes two properties of V:
(1) Stability, i.e.

(2) Temperedness, i.e. for some ε>0, JR0>0

-e; all \x\>R

If both these hypotheses hold, then [29], for any β, z, PJβ,z)= lim \A\
\Λ\^<x>

\nΞa(β,z,A) exists say as A run through hypercubes. Similarly, [29, 28], the limit

P%(β,z)= lim \Λ\~1lnΞ9(β,z9Λ) exists. Here we want to discuss the question
|ΛL|-»co

of when (with no statistics)

limPj2 = Pc,. (4.2)
ft|0 " c*

We will single out a notion we call microstability and show that (4.2) holds for
potentials which are stable, tempered and microstable. We conjecture that any
sum of a positive and a positive definite potential is microstable here, we will
settle for proving that a non-empty class of Fs is microstable.
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Definition. Given keiV = {l?2, ...} and K define Ak(x) to be the cube of side 2~k

centered at a point 2~kTL containing x (for definiteness, Δk is a product of intervals
open on the left and closed on the right) and let

Ffe(x, y) - sup [V(z - w)|ze Δk(x\ we Δk(y)} .

Given /eΛΓ, let Pk f be the classical pressure in a box of size If computed with Vh

replacing V. Since Uk N ̂  UN, Vk is stable and tempered, so by modifying the usual

proof, lim Pk f exists. We say that V is microstable if and only if
l̂ -> 00 '

Pc,. (4.3)

(4.3) is a statement about interchanging limits since lim Pk = \A*\~l InΞ
- 'fc-»oo

k * ,
'

'(β,z,Λt). Thus microstability is a statement about continuity of the pressure
under small local changes which preserve stability.

Theorem 4.1. Let Vbe stable, tempered and microstable. Then (4.2) holds.

Proof. We will prove that

P$^PC* (4.4)

and that

limPj^ l imP k , (4.5)
Λ|0 *?-+oo

for any k so that (4.3) will yield (4.2).
(4.4) follows from the Golden-Thompson inequality. The easiest way of seeing

this is to replace the Dirichlet Laplacian on dΛ by the infinite volume Laplacian,
— A, plus the potential M dist(x, A). As in Sect. 3, Golden-Thompson yields a fixed
A analog of (4.4) with the above modified PQ and with the classical integrals over
all of jR3 with the potential Mdist(x,yl) added. Now take M to infinity and the
finite volume analog of (4.4) results. Taking the volume to infinity we obtain (4.4).

Now consider the quantum pressure in a box of side 2^, P%^. Following the
idea in [24], we can get a lower bound on this quantity by replacing V by Vk and
adding extra Dirichlet boundary conditions on the small boxes Δk(x\ Having done
this, one can write out the eigenfunctions of the new Hamiltonian explicitly as
products of Dirichlet functions in each individual box. The net result is that

Ps% lim P^/U)
<f-»oo

where :

and

aΛb) = > ,n\r / / j
nel +3f

with ck = 2hπ. Now by stability of Vk € lim Pk €(β, z) is continuous in z and clearly
' -̂> oo '

= z so (4.5) holds. Π
h 4 0
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The following illustrates that the set of microstable potentials is non empty, e.g.
F = (l+r)~ α ;α>3, obeys all the hypotheses.

Theorem 4.2. Suppose that V(x) ^ 0 and

(rV)(x)\£C\V(x)\ (4.6)

for some C. Then V is microstable.

Proof. Pk j^Pj always. Next, let Wk be the same as Vk but with max over Δk(x\
Δk(y) replaced by min. We claim that

. (4.7)

For fix boxes, Δk(x\ Δk(y). Then there exists s, ί with

\s-t\^22-k]/3 (4.8)

so that

o
i

by (4.7) and (4.6). In the above, we used the definition of Vk and the positivity of V
to conclude th

Now define Vk by :

Then

θkvk^wk-(ί-θk)vk^wk-vk

so there is a uniform bound, B, on the pressure due to Vk. By Holder's inequality :

Pa<(l-θk)\imPk, + θkB.
cf — K't^ao k'* k

Since, by (4.7), θk-+Q as fc-»oo, we see that

Remark. Independently, Baumgartner [43] has proven results with the same thrust
as Theorem 4.1, but Baumgartner, unlike us, accommodates statistics.

5. A Concise Review of Compact Lie Group Theory

In this section, we review some of the basic elements of Weyl's theory of the
representations of compact Lie groups; see Samelson [30] and Adams [1] for
additional details. We include this material partially to establish notation and
partially for the reader's convenience.
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G will denote a compact Lie group with a discrete center ( ΞΞ semisimple) and g
will be its Lie algebra, 0* is the dual of g. There is a natural representation of G on
g given by :

exp(L4(x) (X}) = x Qxp(tX)x~ 1

for xeG.Xeg. This is called the adjoint representation of G. If A is irreducible, we
will call G simple. (Note : if G is connected, then this definition is equivalent to g
being simple in the usual [30] sense, but if G is not connected, then G can be simple
with g non-simple, e.g. O(4) is simple but its Lie algebra SO(4) is not. Simplicity is
equivalent to G having no invariant Lie subgroups of dimension one or more).
Since G is compact, g has an inner product making A unitary : if g is also simple,
this inner product is unique up to constants. One can fix the constant (and the
inner product in the non-simple case) by taking the inner product to be the
negative of the Killing form, i.e.

(X9 Y) = -Tr(AdpΓ) Ad(Y)) (5.1)

where Ad(30(Z) = [AΓ,Z].
The inner products sets up a natural correspondence between g and g* which

will be useful in concrete situations but in abstract it will be useful to distinguish g
and g* to avoid certain awkwardnesses. On g*, we define by duality the coadjoint
representation, A*, of G by

Under the natural correspondence of g and g*, A and A* are equivalent.
Orbits of the action A*, i.e. Γ = {A*(x)£\xe G} for /eg* fixed will play a major

role in the classical limit theory in Sect. 6 they are called coadjoint orbits. These
orbits have a natural invariant symplectic structure [20, 38] making them
especially attractive as classical limits and incidentally showing that they are even
dimensional. Let us describe this symplectic structure; given /0eΓ, the tangent
space TfQ(Γ) of Γ is associated to a subspace of the tangent space TjQ(g*) = g. Thus
the cotangent space T*Q(Γ) is naturally associated to a quotient space of (g*)* =g.
Explicitly :

T*(n = g/{Xeg\So([X,Y]=0 all Yeg}. (5.2)

To see (5.2), note that we have quotiented out all the covectors,X, which vanish on
the derivatives of curves, A*(exp(tX))£0, on Γ through /0. On T^*(Γ) x T^*(Γ), define
a linear functional ω/o by :

By (5.2), the value of ω^pf], [Z]) is clearly independent of the choice of X in the
equivalence class [X] and if ω,0([X],[Y]) = 0 for all [Y], then [X"]=0, so ω,0 is
non-degenerate. It is clearly anti-symmetric and group invariant. The group
invariance implies that ω is closed.

The first part of WeyΓs beautiful theory of representations of G is to do the
obvious thing, namely diagonalize as much as possible. We therefore pick out a
maximal connected abelian subgroup of G, i.e. a maximal torus, T. The Lie algebra



260 B. Simon

hCg of Tis called the Carton subalgebra. It is a basic fact [1] that all maximal tori
are conjugate. Since any element of the connected component, G0, of G clearly lies
in a maximal torus, every conjugacy class of G0 intersects T. The dimension of h is
called the rank of G.

We will illustrate the general theory in this section with three examples: SU(π),
SO(n), and O(2n).

SU(n). A maximal torus consists of all diagonal matrices,

Γ={(V°)l; *={(*". °X

v \ nl J v \ i

In ft*, take as a basis set ω1? ...,ωw with ωi(X) = (2πi)~'Lxi. Notice ωί -
It is obvious that all maximal tori are conjugate. The rank is n—1.

SO(2n) or O(2n). The maximal torus consists of n 2 x 2 diagonal blocks

j j and h has 2 x 2 blocks z j\. We pick a basis ω1 ?...,ωn in
COS Ό l \ C7 \J /

h* by ωί(Y) = (2π)~1θί. G has rankrc.
Given a representation, π, of G on a finite-dimensional complex space, 2/?u we

simultaneously diagonalize {π(X)\Xeh}, i.e. we seek ve^π and zfe/ϊ* so that

π(Y)ι> = iφθ!; all Xeh.

The A are called the weights of π and the i 's the weight vectors. The weights of the
adjoint representation (more precisely of the complexification of A on gc, the
complexification of 0) are called the roots. [The corresponding root vectors Xa

play an important role in those details of the representation theory that will not
concern us much here for the following reason: For X eh, A(X} (XΆ) = a(X}XΆ i.e.

so πφΓJu is a weight vector (if non-zero) with weight £ + α. As a result, the root
vectors play the role of the familiar raising and lowering operators].

There are basic integrality conditions that the weights must obey, i.e. any
weights must lie in a certain integral lattice «/. If we look for representation of G,
this is because the torus must close, i.e. in the above example, f must be an integral
sum of the ω/s. If we look at representations of g, then the integrality conditions
come from the familiar manipulations with ladder operators. For SU(rc), there are
no extra weights allowed, i.e.

(SU(n))

but for SO(2n), one finds

^ = ίΣ nfo^n^TL ni - n1 e ΊL]

i.e. all integers or all half integers. [The fact that the quotient of weights for g to
weights for G is ΊL2 is expressing the fact that SO(2n) is doubly connected.]

The subtle aspect of WeyΓs theory is the special role played by an object called
the Weyl group. This is the group, W(T), of automorphism of T which arise from
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those innter automorphisms of G leaving T set wise invariant, [i.e., we take those
elements of G which induce inner automorphisms leaving T invariant i.e. the
normalizer, Λ^T^jxeGI xTx" 1 = Γ}] and we associate two elements which
induce the same automorphism on T [this is equivalent to quotienting out by
these x in C(T) = {xeG\xy = yx all yeT}, the centralizer of T9 i.e. W(T) = N(T)/

SU(n). The only elements of G which leave T setwise fixed are those that take the
basic eigenvectors of T into multiples of other eigenvectors. The corresponding
automorphisms, permute the diagonal matrix elements, i.e.

the permutation group on n letters.

SO(2n). Again the fundamental eigenvectors must be permuted but in two
elements blocks. However, now there can be a flip of blocks. Thus the automor-
phisms can permute the θ 's and flip some signs. For determinant 1 an even
number of signs must be flipped, i.e. W(T) = permutations plus even number of
sign flips.

O(2π). The analysis is identical but now any number of sign flips are allowed.
Now let SεW(T) and let xeG induce S; i.e. S(X) = A ( x ) ( X ) ; X e h . Let f be a

weight for π and v£ the corresponding weight vectors. Then,

π(X) [Tφφ] - π(x)π(S~ l

for the obvious dual action of W(T) on h*. Thus π(x)v is a weight vector and S/ a
weight, i.e. the weights of π are a set left invariant by the action of W(T) which
focuses attention on the action of W(T) on h*.

The geometry of the action of W(T) on h* is rather subtle and beautiful. Here
are the basic facts [1, 30] : (i) W(T) is generated by elements of order 2 which act on
h* as reflections (with respect to the natural inner product h* inherits from g*) in
hyperplanes (ii) Any έeh* left invariant by some non-trivial SeW(T), is left
invariant by some element of order 2 acting as a reflection. Thus, the set of
invariant elements is a family of hyperplanes. (iii) If these hyperplanes are removed
from /i*, the remaining points are a union of open polyhedral cones whose closures
are called Weyl chambers, (iv) The Weyl chambers are images of each other under
the action of the Weyl group and each non-trivial element of the Weyl group
leaves no chamber setwise invariant. Thus the number of chambers is exactly the
order of W(T).

One chooses one chamber once and for all and calls it the fundamental
chamber. Those elements of «/, the weight lattice, contained in the chamber are
said to lie in </d, the dominant weights and those in the interior of the fundamental
chamber are said to lie in ,/0, the strongly dominant weights. Here are our standard
examples :
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SU(tt). Any element of J> is of the form Σ m^, m eZ. Since £ω. = 0, we can
i= 1

suppose the smallest mt = 0. A fundamental chamber is given by

mίωi

ί=l

All the geometry is easily checked.

SO(τι). By sign flips and permutations we can clearly arrange to have m1§:m2

Λ=ι Σ miωι£<

O(n). Clearly

ί "
Λ= Σ»V».e.

l ί=l

The next important point is that the fundamental chambers are actually
simplicial cones, indeed an even stronger result is true, there exist λ l 5 ...,λre<#d so

that *Pd=\Σ nί^ί nί = Q\ The λ s are uniquely determined, e.g. in the order
l i = l J

defined by Jά (i.e. λ>μ if and only if λ — μe</d), they are minimal elements of
</d\{0}. The λι$ are called fundamental weights. A. special role is also played by the

r

weight δ — Σ λt. It is the minimal element of J 0̂ and is often called the lowest

form we will call it the magic weight because of its rather spectacular role in WeyPs
integration formula, WeyΓs character formula (see [1,30]) and in the formula for
the main Casimir operator [see (5.3) below].

SU(n). The fundamental weights are A 1=ω 1, A2 =
+ ... + ωn_1.

SO(2n). The fundamental weights are λ1 =ω l 5 . . . ,Λ 7 l _ 2 = ω1 + ... + ω π _ 2 , ^-i
= ̂ (ω1 + ... + ωn), λπ = i (ω1 + ... + ω l l_1-ωΛ).

O(2n). The fundamental weights are λ1 =ω l 5 . . . ,/l n _ 1 =ω1 + . . . H - ω M _ l 5

The fundamental theorem of representation theory is described by the
following result (see [1,30] for proofs):

Theorem 5.1. There is a one-one correspondence between irreducible (unitary)
representations of g and elements ^ej^d. The representation π^ corresponding to / is
uniquely determined by the fact that / is a weight of π^ and among all weights, it is
maximal in the Jd-orάer. Moreover, {v\v is a weight vector for (} is one dimensional

£ is called the maximal weight of πr Given π^ it can be located by finding a
weight of maximal length and using the Weyl group to move this weight to one of
the same length lying in J>d.



Classical Limit 263

SU(w). For /= Σmίωΐ> (m1^m2^ ...^mn_1), π^ is the representation associated to
the Young tableaux [6] with rows with m1? . . . ,m n _ 1 boxes.

SO(2n). It is not hard to see that πLλί corresponds to degree L spherical harmonics,
πλn-ι + πλn

 to basic spinors which are not irreducible on SO(2n) (see Appendix 3)

and ^2Lλn-i^~π2Lλn t°
 spin ^ sPmors

O(2n). n2Lλn corresponds to spin L spinors which are irreducible for O(2n).

In πΛ the Casimir operator £ π^pQ2 (Xt an orthonormal basis in Killing inner
i

product) has eigenvalue (see [30]):

(t,t) + 2(f9δ) (5.3)

in the case where G is connected.

6. Coherent Vectors and the Classical Limit of Spin Systems

Fix a fundamental weight λ of some compact Lie group G. For each L = 1,2,..., let
JfL and τrL be the space and representation with maximal weight Lλ. For L fixed,

let J α̂ be a copy of jfL for αe/1 a finite subset of TLV and let #PA = (X)^α. On J^

define operators Sα(X") (αeΛ, Xe0) to be the tensor product of πL(X) in the αth
factor with 1 in the other factors. Fix a basis Xί9 . . .,Xm for 0 (for convenience) and
a function H of |Λ| m- vectors 5α f (αe Λ, i = 1, . . ., m) which is multiaffine. H(Sΰc(Xi)) is
unambiguously defined since H is a sum of monomials which are products of
commuting operators. If JL = dimjfL, define

ZL

Q(y) = a' \A\ Tr (exp [ - H(ySβ(YL)/L)]) . (6. 1)

Next, let λ be the element of g* obtained by extending λ to g by setting λ = 0 on
/i1. Let Γ be the coadjoint orbit containing λ and let dμ( ) be the probability
measure on Γ inherited from Haar measure, dγ on G, i.e. μ(BcΓ} = y{xeG\A*(x)

}. For each αe/L, let Γα be a copy of Γ and let Γ |yi | =^αΓα. Define

y)= ί

In this section, we will prove :

Theorem 6.1. With the above notation:

Zc((γ) ^ ZL

Q(γ) g Zc/y(l + αL~ ̂  (6.1)

wzίfe α = 2(λ, δ)/(λ, λ) where δ is the magic weight, λ is the basic underlying weight and
(,) is the Killing inner product.

Remark. 1. The lower bound in (6.1) holds even if λ is not a fundamental weight
and it is possible the upper bound is true also for general Λ,e«/d but at a technical
point in Appendix 2, we use that λ is a fundamental weight.

2. The result as precisely stated is only true for connected G's or repre-
sentations of #'s since we use (5.3). The proof holds for irreducible representations
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of G's which are not connected so long as we take for δ in the formula to be the δ
for G0, the connected component of G.

Proof. Let φ be a maximal weight vector for πL and let P(λ) be the projection onto
φ. Notice that (φ,π(X)φ) = Lλ(X] for all X eg; for this is obvious iΐXeh and any
XehL is a sum of root vectors, XΛ, for which πpfjφ is orthonormal to φ (as a
weight vector with distinct weight). Moreover, since Lλ is a maximal weight, any
unit vector with (η,π(X)η) = Lλ(X) for X eh is automatically a multiple of φ since
the dimension of the weight space is one. Now :

so, by the above remark

π(x)P(λ)π(xΓ1=P(λ)

if and only if A*(x)λ = λ. Now let JΈΓ and pick yeG with A*(y)λ) = έ. Then, define

By the above remark, P(f) is independent of which y is choosen with A*(y)λ = £.
Notice that

Tr(jrt(Y)JV)) = iAX) (6.2)

since

Tr(πL(

Moreover, if y is Haar measure on G and μ = dLμ, then

ίrP(/)<W)=l (6.3)

since

xΓ ^y(x) = C

clearly obeys π(y)Cπ(y)~1 = C, so by Schur's lemma, C = (const) 1. Taking traces,
(6.3) results.

Now, for ^ = Kα}eΓ^, let P(tfa})= ®P(^\ By (6.3),

so the P(/)'s are a family of coherent projections. By (6.2), the lower symbol of
H(ySa(Xi))/Lis exactly H(ytΛ(X$ so the lower bound in (6.1) is just Theorem 2.3. By
Corollary A.2.7, proven in Appendix 2, and the fact that ^0 = Lλ is a multiple of a
fundamental weight, the upper symbol of H^S^X^/L) is H((ί + aL~ ̂ (SΓJ). Thus
the lower bound in (6.1) follows from Theorem 2.4. Π
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Example 1. Lieb's theorem [23] is a special case of this result with G = SO(3). This
is not surprising since for this case our proof is essentially identical to Lieb's
(except that Lieb proves Corollary A.2.7 in this case by explicit computation
rather than the abstract consideration in Appendix 2).

Example 2. Let us consider the spherical harmonic representations of O(2ri). This
fits the setup with λ = λί=co1. To compute the coadjoint orbit, notice that under
the association of g and g*, ωx corresponds to the matrix

The image of this matrix under conjugation with arbitrary elements of O(2n) is
exactly

Γ - {MIM* = - M, Tr (M'M) = 2, rank (M) - 2}

i.e. decomposible two-forms or equivalently the Grassman manifold G(n, 2) of 2
planes in n-space. By a direct calculation (λ,δ) = ̂ (2n — 2)(λ,λ). Theorem 6.1 thus
includes the result of Fuller-Lenard [9] for O(2n). A similar calculation yields their
result for O(2n + l).

Example 3. Let us consider the spin L spinors for O(2n). To compute coadjoint
orbits, notice that under the association of g and 0*, λ = ̂ (ωί + ... + ωn) cor-
responds to

A 0 . : .

0 A...

,

0\

0 Al

with A=i . The image of this matrix under conjugation with arbitrary

elements of O(2n) is exactly

i.e. f = {2K\KeΓ} is the antisymmetric, orthogonal matrices. By a direct calcu-
lation in SO(2π) (see Remark 2 following the theorem),

Thus, if Za is defined in terms of f :

Zc, Q ̂  Zα 2L(y) ̂  Zcχfγ(l + (n - 1)ZΓ !))

for spin L spinors (which have maximal weight 2Lλn).
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7. Towards a Lee- Yang Theorem for the D-Vector Model

As described in the introduction, our original motivation for extending Lieb's limit
theorem to general Lie groups concerned the Lee- Yang theorem for classical spins
lying in S'D~1 for D^4. It appears at first sight that we have failed since S0'1 is
never a classical limit if DΦ3. However, there are classical limits which are fiber
bundles over S0'1 :

Lemma 7.1. Let f be the space of Example 3 of Sect. 6. Map f to R2""1 by

Then Ran τ = S2n~2 and the induced measure on S2n~2 is the rotation invariant one.

Proof. Since M is orthogonal and M1 J L =0, τ(M)eS2n~2. Since Γ has a measure
invariant under rotations leaving (1, 0, . . . , 0) fixed and for such R, τ(RM) = Rτ(M\
the induced measure is rotation invariant. Π

Theorem 7.2. Consider a general quantum model with spin ^-, O(2n) spinors at each
site. Suppose that for a Hamiltonian :

~H= Σ UΣ ̂ 4
*,β \ί<J

we have that Tr(e~H)=t=0 in the region Jα/?^0, Kα/?^0, Reμα>0. Then for an
arbitrary classical model with spins on S2n~2 and Hamiltonian

(e a fixed unit vector), ZΦO if Xα/?^0, Reμα>0. // Tr(£~H)φO remains true if a
term

a,β ί=2

is added to —H in (6.3) with Ma/?^0, then the Lee- Yang result holds for 52n~3 spins.

Proof. By the Griffiths trick and the iso tropic coupling Jaβ we get Tr(e~H)φO for
spin L spinors. Taking L— »oo, we get a Lee- Yang theorem for Γ classical spins.
Now consider such spins with Jα/5 = 0. Then, since the Hamiltonian is independent
of L*p i>j^2, we can integrate these variables out. There results a Lee- Yang
theorem for S2""2 spins. Using the Dunlop-Newman [8] method of going from S3

to S2 we can go from S2n~2 to S2 n~3 if Maβ terms are allowed. Π

It remains to prove the spinor Lee- Yang theorem which is a kind of
generalization of the Asano-Suzuki-Fisher results [2, 39]. Various simple special
cases have failed to yield a counter example [22] it seems likely the results is true
but its proof may well require a more group theoretical understanding of Lee-
Yang in the Asano-Suzuki-Fisher case.

Appendix 1. More on Upper and Lower Symbols

In this appendix, we establish some additional properties of the maps, [/, L defined
in Sect. 2. Central to our results is the fact that in some sense U and L are dual. We
begin with the finite dimensional case:
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Theorem A. 1.1. Let P(x) be a family of coherent projections on a finite dimensional
Hilbert space. Then for any /eL°°(X), ,4e=£?(Jf), we have that

Proof. Both sides equal

Since jdμ<oo, /, L(A)eLco and we are taking traces of finite matrices, all the
interchanges of sums and integrals are permissible. Π

Theorem A. 1.2. Let P(x) be a family of coherent projections on a separable Hilbert
space. Let AeJ'^ the trace class. Then L(A)eL1(X,dμ) and (A.1.1) holds for any
/eL00.

Proof. As we noted in discussing (2.Γ), for any unit vectors, φ, ψ,
(φ,P(x)ψ}eL1(X,dμ) and its ZΛnorm is bounded by 1. Since A is trace class, we
know [35] that A has a canonical expansion

n

with φn, ψn vectors, μw^0, and Σμ l l(>4)=||y4||1<oo. Thus ^μn(A)(φn,P(x)ψn)
converges in L1 and it converges pointwise to L(A). To check (A. 1.1), we note that
if B =[/(/):

where the interchange of sum and integral is permissible since

£ $dμ(X)\μn(A)f(X)(φn, P(x)Ψn)\ < oo
n

on account of j \(φn, P(x)ιpn)\dμ(x) ^ 1. Π

One consequence of the above is :

Theorem A.1.3. Let AeJ?p. Then L(A)eLp(X,dμ) and

// feLp(X,dμ\ then for all φ,

$(φ,P(x)ιp)f(x)dμ(x}

converges and the corresponding operator, denoted U(f\ lies in J p and obeys :

Proof. By (2.4) and duality, (A. 1.2) holds for p = 1. It holds for p = oo by (2.3). Thus,
by interpolation, it holds for all p. (A.I. 3) then follows by duality. Π

One of the most interesting consequences of duality involves the notion of
completeness [19] [i.e. Ran U sequentially strongly dense in
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Theorem A. 1.4. A family, P(x), of coherent projections is complete if and only if
KerLn,/! = {0}.

Proof. Let stf be the norm closure of <$ ̂  n Ran U. Then, by duality, j/ = J^, if and
only if KerLnJ^ = {0}. But if «*/ = J^, then any Ae^C(J^) is a sequential strong
limit of operators in Ran U since J* ̂  is sequentially strongly dense in &($f\ If

, there is ^eKerLnJ^. But if 5neRan(7 and £„->£ strongly, then

So Ran U is not sequentially strongly dense. Π

Remarks

1. Thus completeness is equivalent to norm density in J ̂ .
2. Of course, if dim(j^)<oo, all topologies are equivalent and all subspaces

closed so that Ran U = &(&} if and only if Ker L = {0}.
3. In general, Ker U is very large even if KerL = {0}, i.e. upper symbols are

highly non unique. This is obviously the case if dim(Jf)<Go but
dimL«>(X,dμ)=ao.

Examples

1. Let φn be an orthonormal basis of Jf, let (X, £, μ) be {1,2, ...} with counting
measure and let

P(n) = (φn9 )φn.

Then P(n) is coherent but not complete Ran U is obviously diagonal matrices.
2. For each σeS2, the unit sphere in 1R3, let P(σ) be the projection onto that

vector in C3 with

where L is the spin 1 representation of SO (3). Let dμ(σ) be the usual measure on IR3

but normalized to total weight 3. Then, as in our discussion coherent projections
built on maximal weight vectors :

\P(σ}dμ(σ}=i.

In this case, KerLΦ {0}. For if A is a component of the angular momentum, then

3. We will prove in the next appendix that coherent projections built on
maximal weight vectors are complete. Seeing Example 2, one might hope that
completeness picks out the maximal weight vector but alas this is not so. For
example, if we take the spin 3/2 representation of SO (3) and P(σ) with
(σ L — ^)P(σ) = 0, then these P's are complete.

As a final result in the general theory, we note a result of Berezin [4] which is
trivial in the finite dimensional case (Berezin's infinite dimensional result follows
from Kato's strong Trotter product formula [17]).

Proposition A.1.5. Let dim(Jf)<oo. For any

exp(C7(/))= Jim
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Proof. exp(//n) = l + — + 0 -y so by the linearity and continuity of 17:

] = l + -n

from which the result follows.

Appendix 2. Coherent Projections Built on Maximal Weight Vectors

In this appendix, we discuss the framework of Sect. 6 where we considered a
coherent family of projections obtained from a maximal weight vector of an
irreducible representation, π, of a compact, simple Lie group, G, and the specific
problem of finding the upper symbol for π(/Γ), the image of Xeg under the
representation π. Let dμ denote Haar measure for G normalized so §dμ = d=dimπ.
Let P(e) be the projection onto the maximal weight vector for π and for xeG, let

By Schur's lemma, as in Sect. 6 [see (6.3)]

In this appendix, we want to show that

π(X) = c^0(Aά(χ-l]X}P(x)dμ(x) (A.2.2)

where

/0ΓVo <5) (A.2.3)

with /0 the maximal weight in π and δ the "magic" weight. We will only succeed in
proving ( A.2.2/3) in case £Q is a multiple of a single fundamental weight. In general,

our method below will show that if /0 — ̂  n^ (nt > 0, J C {1, . . . , r}, Λ,f fundamental
ieJ

weights), then ( A.2.2) holds with c/0 replaced by some / obeying (i) «? is in the span
of the Uf}ίeJ and (ii) S0 J! = έ0 S0 + 2tΌ δ. Once one establishes (A.2.2), one notes
that /0(Ad(x~1)X) and P(x) only depend on the coset of x modulo the isotropy
group of /Q so that the integral over the group in (A.2.2) can be replaced by an
integral over the coset space = coadjoint orbit yielding the formula we used in
Sect. 6.

Lemma A. 2.1. // A is an operator on the representation space for π with
Ύΐ(AP(x)) = Q for all x, then A = Q (i.e. the kernel of the map L is zero).

Proof, (cf. Klauder [19]). Let φ be a maximal weight vector. Then Tr(AP(x)) = 0
for all x is equivalent to

(φ,π(xμπ(x)~»-0 (A.2.4)

for all xeG. Taking derivatives n times at x = 0, (A.2.4) implies

.» = 0 (A.2.5)
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for all xteg and, so by linearity, for all x fe0c, the complexification of g. In gc there
are special elements {AΓα}α6p+ and {X-Λ}ΛeP+9 root elements (see [30]) with the
following properties.

(i) π(X> = 0.
(ii) {πpf _α ι) ...π(X_Λn)φ \ all αt eP+, all n} span the underlying representation

space.
(iii) π(Xx)* = π(X_a).
In (A.2.5) take all Xt to be XΛ's and use (i) and (iii) to conclude

so by (ii), Aφ = 0. But (A.2.4) for ^4 implies it also for n(y)Aπ(y)~1 so the same
argument shows that Aπ(y)~ίφ = 0 and thus A = Q. Π

Remark. In the context of Sect. 3, a similar result holds. ψh(0, 0) plays the role of a
"minimal" weight vector and KerL = {0}.

This lemma and the general results of Appendix 1, show that any A is of the
form U(f) for some /. We can say much more :

Theorem A.2.3. Let V be a second irreducible representation of G of dimension m.
Let Aίy .-.,Am for m operators obeying

J

Then there exist functions /1? ...,/„ on G so that

and

Proof. As noted already, there exist gt so that

At=ίgtx)P(x)dμ(x).

Next notice, that if (L)!h)(x) = h(y~1x), then

= $h(x)P(yx)dμ(x)

= π(y)L(h)π(yΓ1.

Thus

Multiplying by Vjk(y) and integrating, we see that

with fj = J Vj^LyQi. The /'s then transform under V the right way by general
principles. Π
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Now let A be the adjoint representation, and let B be a map from g to
operators which is linear and obeys

π(x)B(X)π(xΓ 1-B(A(x)X) . (A.2.6)

By the above and the Peter-Weyl theorem [which implies that the only functions
on G which transform under Ly as A are of the form i(A( }~lX}'] we conclude that

B(X) = C,(X) (A.2.7)

for some <?eg* where

C^K)=^(A(χ-1}X)P(x)dμ(x). (A.2.8)

Theorem A.2.3. π(X) is of the form (A.2.8) for some /eg* with

δ. (A.2.9)

Proof. By the above discussion π(X) has the form (A.2.8). Thus, we need only
evaluate ( A.2.9). For later purposes, we note that the calculation of ( A.2.9) follows
for any £ with π(X) = C^(X). Our calculation follows that in Fuller-Lenard [9].
[These authors use a Wigner-Eckardt theorem in the spherical harmonic case to
conclude that π(X) — ocC/Jf) for a constant α. There is a gap in their proof corrected
in an erratum.]

Notice first that

so

/0(X)=^(A(χ-1]X)Ίτ(P(e}P(x))dμ(x). (A.2.10)

On the other hand, ifXt is an orthonormal basis (in Killing form inner product),
then, since the eigenvalue of the Casimir operator is /0 /0 + 2/0 (5 [see (5.3)]

(dim π)(/0

τΐ(P(x)P(y))dμ(x)dμ(y)

= $S(A(y- lxΓ %)Tr(PO;- ίx)P(e))dμ(x)dμ(y)

= (dimπyo(Xe) = (dimπK0 f

where Xe is the element of g with ϊ!(X() = έ •£ for all ι?eg* and we have used

z) — dimπ,

and(A.2.10) withX=^. Π
The following result asserts more-or-less that the only part of the functionals

that count are the parts which lift to coadjoint orbits (i.e. average over isotropy
subgroup).
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Theorem A.2.4. Let Cf be given by (A.2.8). Let x be any element of G with
A*(xyo = S0. Then

CA*(X),(X} = C,(X). (A.2.10)

Proof. Clearly by the uniqueness of maximal weight vectors U(x)~ 1 P(e)U(x)
= P(e). Thus

for any y. Thus

1X}P(y}dμ(y)

Corollary A.2.5. Let Cf be given by (A.2.8). Let P be the projection from g* to h*9

those elements of g* which are zero on /i1, the orthogonal complement of the Carton
algebra. Then

Proof. Let T be the maximal torus, i.e. exp(fo). Then xe T, and φ a maximal weight
vector imply U(x)φ = elΛ(x}φsΆ*(xyo = £0. Thus if dvτ is normalized Haar mea-
sure on T, then, by (A.2.10)

where

β/=
T

Since the duals of the root elements span hλ ([30]), it is easy to see that Q = P. Π

Corollary A.2.6. Let 11? ...,λ r be the fundamental weights. Let /0

 =

J = {ini>0}. Let & be the projection in h* onto the span of {λ^ieJ}. Then

for any

Proof. Let T be an element of the Weyl group leaving ^0 fixed. By general
structure theory [30] (i) T leaves each λ{, i<=J fixed and so Ran^. (ii) There is ye G
with T = A*(y) and A*(yyo=£0. (iii) If ]/^o^subgroup of the Weyl group leaving
/0 fixed, then

*=( Σ τ\/Φ(w,o).

By (ii) CTtQi) = C$i) for any TeWf so by (iii), the result is proven.

Corollary A.2.7. // /0 is a multiple of a fundamental weight, then
(i) π(χ)π contains A exactly once.

(ii) n(X) = c^0(M(x"ί}X)P(x)dμ(X) with c given by (A.2.3).

Proof. By the discussion before Theorem A.2.3, the number of times A occurs in
π®π is the dimension of /'s with QΦO. By the last two corollaries, for any f ,
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Cf — CαA) for some α. Thus, there is at most one A. Since π(X) transforms as A, there
is exactly one and π(X) = C^o(X) for some α. α is evaluated by (A.2.9) yielding
(A.2.3). D

Remarks

1. In general, our proof shows that the number of times A occurs in π(x)π is at
most #(J) with J given in Corollary A.2.6.

2. It follows [21] from general results of PRY [25] that the number of times A
occurs in π(x)π is precisely Φ(J) times. In particular, (i) of the last corollary is not
new.

Finally, we want to note a formula of Gilmore [12] (whose proof is
unnecessarily complicated). Given a dominant weight /, let π£ be the correspond-
ing representation on G and let P^(e) be the projection onto the corresponding
maximal weight vector, ψ^ Define the function Ff on G by :

F/x) = Tr (P

so that

Proposition A.2.8 ([12]). For any {, /:

F,+t(x) = F,(x)F?(x).

In particular, if λl9 ... ,λr are fundamental weights, then

Proof. In π^(χ)π^ the vector ιp^®ψ^ is a maximal weight vector with weight
The cyclic subspace it generates is precisely π^+^ so

The point of this result is that it implies a classical limit result for a special case
for general sequences /, 2^, ... (Gilmore [12] notes a closely related result) and this
suggests that despite our ability to only the classical limit along fundamental
sequences, it may hold more generally.

Theorem A.2.9. Let £ be any dominant weight and let Γ be the corresponding
coadjoint orbit with dμ the corresponding normalized measure. Then

Jim j-Tr(exp([XXY)/n])= f </#<?) exp(ΦO) (A.2.11)
n Γ

for any Xegc, the complication of g where dn = di

Proof. For any A :

— Ίτ(A) =
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with dγ normalized Haar measure. Thus, using Proposition A.2.8 :

LHS of (A.2.11)= lim jFπχexp(x~^Yx/n))dy(x)
n~* oo

- lim f[F/exp(χ- lXx/rifi\ndy(x)

= im j(ι/v, π,[exp(χ- l

= RHSof(A.2.11). D

Appendix 3. On Spinor Representatives

For the reader's convenience, we define and sketch some properties of the spinor
representations of O(2n). The basic \ spinors are defined in terms of operators
σ l ί . . . , σ 2 w obeying

σ^ + σ/7^2^1. (A.3.1)

There exist such operator on Cm with m = 2n and every set of such σ's is unitarily
equivalent to a direct sum of this special set. In terms of the 2 x 2 Pauli matrices, τ1 ?

τ2, τ3 and a tensor decomposition Cm = C2® . .. ®C2 (n times), we can take:

σ 1 =τ 1 ®l® ...®1

σ3 = τ 3®τ 1

The operators, Ltj= ^oyr,- (ί<j) obey the commutation relations of SO(2n) and

define a representation of Spin(2n), the two fold cover of SO(2n). It is not
irreducible but if one adds parity and asks for a representation of pin(2n) [the
group related to Spin(2n) as O(2n) is related to SO(2n)], one obtains an irreducible
representation.

If one takes the conventional Cartan subalgebra generated by L12,

L34, . . . ,£ 2 «-i,2n one can rea(i off the weights since then

are diagonal. The weights are +2ωι i ••• iiω« so ^na^ ̂ ne πiaximal weights are
^ωί+ja>2+ ... +2 ω w-ι±2 ω « wnicn are two fundamental weights /l π _ 1 and λn

(Warning: do not confuse the direct sum of πλn and πλn_l with nλn + λ n _ 1 ) . The spin L
spinors, L= 1, 3/2, 2, 5/2, ... are defined to be the direct sum of π2Lλn and π 2 L λ n_ 1

which is again irreducible for pin (2n). Alternatively, it is the subspace of the 2L-
fold tensor product of the spin 1/2 spinors where £ L? has its maximum value.
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By WeyFs dimension formula [30], the dimension d(n,L) of the spin L spinors
is given by :

For example :

d(5, L) = 2(60)- 1(2L + 3)(2L +4)(2L + 5)

The value of the Casimir operator L2 = ]Γ L? in this representation is
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