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Abstract. We introduce the surface tension for arbitrary spin systems and
study its general properties. In particular we show that for a large class of
systems, the surface tension is zero at high temperature. We also derive a
geometrical condition for the surface tension to be zero at all temperature. For
discrete spin systems this condition becomes a criterion to establish the
existence of a phase transition associated with surface tension. This criterion is
illustrated on several examples.

1. Introduction

The phenomenon of “phase transition” is one of the important problems of
statistical mechanics because of its physical and mathematical interest. As is well
known several definitions have been introduced to discuss the existence of phase
transitions and the equivalence of these definitions has not always been established.
It seems possible however to classify all phase transitions into two classes, those
which occur with a spontaneous breakdown of the symmetry group of the system
(coexistence of several phases, existence of local order parameters) and those which
occur without any symmetry breakdown'.

One of the standard methods to prove the existence of a phase transition for
lattice systems is the “Peierls argument”; its generality relies on the fact that it
takes explicitly into account the underlying group structure of the system [1,7].
However, it is well adapted for systems which have a complete breakdown of the
internal symmetry group at low temperature and does not apply as readily to
describe phase transition associated with partial symmetry breakdown.

In this article, we propose to introduce the surface tension as definition of phase
transition, i.e., we shall say that “there exists a phase transition associated with a

1 In such cases we know that there exist phase transitions associated with the coexistence of several
phases and the existence of a local order parameter ; however it is not always so: there exist models for
which the Gibbs state is unique at all temperatures and which do exhibit a phase transition ; there exist
also models which show a phase transition without any local order parameter
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surface tension t'? between the phases ' and w?®” if there exists a temperature T,
such that

=0 if T>T,
and

12 +0, or not defined, if T<T,.

We therefore study general properties of the surface tension and show that for a
large class of lattice systems of arbitrary spin the surface tension is zero at high
temperature; we obtain also a condition for the surface tension to be zero at all
temperatures; it is then shown that there exists a phase transition associated with
surface tension if this condition is not satisfied. We have thus a criterion to prove
the existence or absence of such phase transition and we shall illustrate this
criterion on several examples.

It should be noticed that using a duality transformation [1] the surface tension
is related to the expectation value of a product of characters on the dual model;
therefore our definition of phase transition appears as the “dual” of the definition
introduced in Gauge theory [2].

Let us also recall that since the original work of Onsager [3] the surface
tension has been extensively studied especially for the case of the 2-dimensional
Ising model [4,5]; more recently the existence of the surface tension has been
established for general ferromagnetic spin systems [6].

In Sect. 2 we recall the standard definitions of arbitrary spin systems and
introduce the groups necessary for the High and Low Temperature expansions.

In Sect. 3 we define the surface tension t'*? between two phases ' and w? and
we give bounds valid for any w!, »?; these bounds yield then a condition for the
surface tension to be zero at all temperatures; furthermore the surface tension is
non negative for ferromagnetic systems. In the cases where w! and w? are related
by internal symmetries the surface tension appears as the expectation value of an
observable associated with the surface of separation and we briefly discuss the
problem of the existence of surface tension; it follows in particular that for
ferromagnetic spin} systems the conditions introduced in [6] to prove the
existence of the surface tension are not necessary since this theorem can be
obtained without duality transformation.

In Sects. 4 and 5 we study the surface tension respectively in the High and Low
Temperature domains; it is shown that for a large class of systems the surface
tension is zero at high temperature; in the low temperature domain we consider
only discrete spin systems and we derive a geometric criterion for the existence of a
phase transition associated with surface tension.

This criterion is illustrated in Sect. 6 on several examples; these examples
indicate that a surface tension might appear in all cases where there is a
coexistence of different phases.

2. Lattice Systems: Definitions and Expansions

2.1. Definitions and Notations

A “classical spin system” on a lattice can always be defined by the following
structure [1] (see examples of Sect. 6):
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Let % be countable set of points in R, called ,,sites; with every site x in & is
associated a variable 6 which belongs to a Locally Compact Abelian Group % and
d0 . will denote the Haar measure on ¢ . The configuration group ¥, is defined by

Go=1]9,={0=(0,);0.9,}. (1)
xe¥
For any M C % and 8e%, we introduce the notation:
0, if xeM
O = {0 if x¢M )
=M
|M| = cardinality of M.
The interactions are described by means of a countable set # of indices called
“bonds” ; with every bond b in Z# is associated a variable 3, which belongs to a
locally compact abelian group? ,, a continuous homeomorphism 7, :0+>7,(0) of
9, onto %,, and a real function V, =V,[9,] on ,.

We shall say that the interactions have “finite range” if the homeomorphisms 7,
are such

sup [{x374(0,) 0} < 0

and
sup [{b;7,(0,)* 0} < 0.

The system is a “discrete spin system”, respectively a “finite spin system”, if 4__is
discrete, respectively finite, for all x in . The system has “ “finite density of lattice

site” if Sup = | LV|< 0.

We assoc|1‘;|te with every bond b in 4, the subset B, of . defined by:
={xe¥;30c%,s.t.7,(0,)*0}. (3)
Note that B, is the base of the cylindrical function on ¢, defined by
Vi(0)=V,[7,(0)] 4)

which describes an interaction between the “spins” situated on B,

With the mapping b+ B, the set # of bonds becomes a graph: two bonds b,
and b, are connected if B, "B, #+ ¢.

For any AC.¥ we introduce:

The “configuration group for A”: 4 ;=[] 4. ={0,=(0,)..4)-

xed
The “bonds intersecting A”: B ,={beB; B,nA%£}.
The “group of graphs for A”: %, = [] %,={1=(,),.,,} where %, denotes
beBa

the dual group® of %, .

2 In most application %, is isomorphic to a subgroup of [] %, where B,C.Z is defined by Eq. (3).

xeBp
3 If 9, is compact for all x in &, then %, is isomorphic to Z,, the group of integers modulo o, (o, < 00).

Since we shall discuss mostly compact groups we shall write Y instead of | di,
1,e%p
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7:07(8) homeomorphism of ¥, into ;= [[ ¥, defined by [y(0)],=7,(0).
beR
For the “finite system AC.% with boundary condition 0° in %,”, the

Hamiltonian H 4 4o is the function on ¥, defined by:

1

i Hanl0)= ¥ V0,5 0501= 3 V0,405,
where T=temperature and the Partition Function Z(A;0°) is defined by :
Z(A;0%= [ d6, [] exp V,0,+0%). (5)
G 4 beB 4

2.2. Expansions

The “High-Temperature (H.T.) Expansion” is an expansion expressed in terms of
the subgroup 2, of %, which is the “group of closed graphs” (or H.T. group), [1]:

A= {k:(kb)eg%; ];[ (7,(0); k> =1V0e %} (6)
and we have [1],

Z(4;0%9= 3 [] f(b:k,)<»,0%):k,>, ()

ket 4 beB,

where:

fbsl)= [ d9,<l,; —9,>e "9
EN

ie.

f(b;)=F (")) (=Fourier Transform) (8)
and:

eVtl= % (1,9, f(bsl,).

lpbe¥%y
In the following we shall assume that the interactions are such that e"*1**le #1(%;)
and f(b;1,)e Z1(%,).
Another expansion which we also need in the high temperature domain is the
“Cluster Expansion” defined in the following manner :

Let

BL={B=B,nA;beB }C¥ )
and

HA,QO(OA) == Z ¢B(BA _’_900)’

Be%Yy

where

Pp®)=kT Y V(0

beB 4
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then
Z(A,OO)Z Z Hw(A;BO)(ﬁi)a (10)
Bi,..., Ba} @
Biconnected
BiC BY
[Biln[Bj1=¢
where

[f1= ) BC¥ (=set of sites covered by f)
Bep

and

w(A;eo)(ﬁ)z !~ l—[ dﬁx n [eﬁ¢3(94+991e)_ 1} ) (11)

G4 xed Bep

In this approach %, could be any measurable space (not necessarily a group) and
dv, any probability measure on ¢, (which could also depend on some physical
parameter such as the temperature).

3. Surface Tension: Definition and General Properties
3.1. Definition

In thermodynamics the surface tension t!% between the pure phases (1) and (2) is
introduced as

F=F0{ F® 4 402

where FV, F® are the free energies of the phases (1) and (2), F is the free energy of
the mixture and A is the area of the boundary between the two phases.

By analogy we consider the following definition of the surface tension for
lattice systems; which it is the direct generalization of the surface tension,
introduced for spin} [4]:

Let w! and w? be two states defined respectively by the boundary conditions 0*
and 0% in %, ; to define the “mixture w'?” of these two states we decompose &
into #* and #*

P'={xe¥; x,>0}
L= P\P"

and we consider the finite system A with boundary condition 0'?e %, where A is a
parallelipiped with sides (L, ..., L,_,2M), symmetric with respect to the plane
x,=0, and 0'? is the configuration which coincide with ' in the upper half of &
and coincide with 02 in the lower half, i.e.

g2 [0 i xe 2
02 if xe.
The surface tension t'2 between the states w! and w? is then defined as:

(=D 1(,  Z(4:0') Z(4:0'2)
12 _ .
©= fim hm L 2 Log 7 ton Tho8 Zi109 [

(12)
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74

Fig. 1. Definition of surface tension

From Egs. (4) and (5) it follows that
Z(A ;012)= j‘ deA 1—[ eVb(9A+9iAf) H

Y4 beB 4 beB 4
exp{ V,[7(0,+ 060 +7,(0"2 — 01,01 — V, [0, + 00,01}, i=1,2.
Let us then introduce, as it is usual in the study of symmetric states, the function

Iase ON Gy = [] %, defined by:

beB 4

Ha;00(34) <HeW”b> , (13)
(4;07)

beB,

where

Wi5,0.0) =V, [0, +0%c)+ 91— V[0, +05)].
This function saﬁsfies the following important and useful identity*:

Heaz0n(30) = a0 (3, +70,) V0,9, (14)
We obtain:

Z(A;6'%) i ‘
Z.0) Hae(@) =12

=040 =0y, e 03 =7,(03:— 0L
Qb = yb((')l u evzgm)

and therefore
w2 gim im0 (Log(02) + Logaan @) (15)
Li~w M= [[L; (4;61124 (4;02)\@4)5 -

4 Tt was shown for spin} systems that this identity yields a definition of “Symmetric Equilibrium
States” [6]
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To state our first result we introduce the “length |9 of a graph e [ ¥, as
beR

|9| =cardinality of the set f4={be%#;9,+0}
and
$nz,= {Qb}bega,l :
Theorem 1. If the surface tension 112 exists then it satisfied the following bound

[t12|<2KCY,,

where_
R=supl sup (5,1, (16)
bedB | 9pe¥s
CY,=limsup 1 C (17)
12 A o0 HLl A2
and
€= sup, [ min 10,)+ ¢ (18)
i=1,2|04e%4

This result follows from the fundamental identity Eq.(14), together with the
inequality [obtained from the definition Eq. (13)]:

e~ 2sup|Vu(6)| < Hia:on (3/1) é H eZsup|Vb(9)| .
b:9pF+0 b:9, 0

The interest of this theorem is given by the following corollary which will be
illustrated on some examples in Sect. 6.

Corollary 1. If for any A there exists some 0,€% , such that
0 +70,)=9,

: . 9 :
with jlm lI_IALI =0, then the surface tension exists and is zero at all temperature.
—> 0 .
J

Remarks. 1. As we shall show in Sect. 5 (for discrete systems) if the condition of the
corollary is not satisfied then the surface tension is non zero at low temperature (if
it exists).

2. The constant C, is most easily evaluated using duality transformation;
indeed by definition of duality, any graph y(8) becomes a closed graph on the dual
model ; therefore C , is the minimum length of the graphs 1* on the dual, such that
1* 4+ % is a closed graph (see Sects. 5 and 6). 2(4:01)

3. Let us also note that by duality transformation 20100 A" on is the expectation
value of a product of characters on the dual model. This remark show that the
surface tension is the dual of the definition introduced in Gauge Theory for phase
transition [2].

In the following we shall only consider boundary condition 0! and 6 which are
related by “Internal Symmetry”, 1.e.

0*=1 0! 02=10",

x7'x
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where 7, is a measure preserving transformation of 4, onto ¥, such that
V,(10) = V,(0) for all b in Z and Be %, ; we denote by 7, the restriction of 7 to £, i.e.

0, if xe¥
wd= {rxex if xeZ?. (19)
For example the “Internal Symmetry Groups” defined by [1]:
S ={09e%,;7,09=0 VbeH} (20)

yields a group of internal symmetries for the transformation
9 0>0+09

(if dv, is invariant under “translation”). In fact for spin} systems all internal
symmetries are given by the group &.
For general spin systems there may exist internal symmetries of the type:

1.0, =(—1y~0_.

In particular if V,(0)=V,(—0) for all b in & and if dv (0,)=dV (—0,) then the
“Inversion t™ defined by 7,0 = —0, is an internal symmetry.

For boundary conditions which are related by internal symmetry we have
Z(A;0Y)=Z(A;0?%) and then

_ (=1 Z(4;0")
vt= fim i ﬂL Log 7407

Ill_{l’io &1_1}10 1—[ LOgﬂ(A on(Q4)

Q4= {7 es’d— gd)}beea,, .

Property 1 (Ferromagnetic systems). Let © be an internal symmetry; if the
interactions V, are such that f,=%¢"»20, then the surface tension between the
states 0' =0 and 0% =10! is non negative (assuming it exists).

Indeed, since f(b;])=f(b; — ), the condition that f(b;[) is non negative implies
that for ' =03

> [H f(b; k,,)}Re T 9k

ke 4 |beBa beBa

i 3= Y [ I1 fb’kb)]

kEy/A bE@A

I\

Property 2. Let 02 =10 where t is any internal symmetry, then

Z(4;0'2)

) == e ,
Z(4;0%) <b593,1(5) >(A;(')‘)
where
B(S)={beB; B,nL*+0 and B, L %0}, (21)

5  We shall always denote by w'*) the state defined by the boundary condition 8' = {0}
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and
W0 )= V,(t,0,+0.)—V,0,+0.). (22)
.. 1 Z(4;0'%) —
L <2KC
VoL o e | 22
where
K=sup sup |K[9,]|
beB Ype9,
and
C=sup 1 45! =maximum density of bonds
« 14 which cross the surface.
Proof.
Z(A ;912)= j‘ dﬁA H eVb(9A+01/12c) n eVb(eA"'elAZ‘).
%4 bedBa®S) beBA(S)

But using the fact that 0'?=7,0' with 7 an internal symmetry, a change of
variables yields:

Z(A; 0! 2) - 5 e, H o Ve(ta(0a+040) H o Vo(0a+040)

Ya beBA(S) be¢B A(S)
beB 4

which concludes the proof of i).
The inequality ii) follows then from

e—zsuplvb<9)|§< I eWb> < [T exswelvon,
(4;01)

beRB 4(S) beB A(S) beBa

Remarks. 1.Property 2 shows that if 2 =10?, the surface tension between the states
! and w? is related to the incremental free energy of a lattice with the interaction
“crossing” the surface x,=0, V(0 ,+0%.), replaced by V,(t,(0,,+6.); it is thus the
natural generalization of the definition given by Fisher and Ferdinand for the
2-dimensional Ising Model [4].

2. This property also shows that the “surface tension” is the expectation value
of a non local observable associated with the dividing surface x,=0.

3. Furthermore, for systems with finite range interactions, the surface tension
appears as the expectation value of an observable which does not depend on M as
soon as M is large enough ; in this case C is a finite geometrical constant as soon as
the system has some translation invariance property, independent of the boundary
conditions.

Example. “Spin3” (see [6]).
9. ={1,-1}=9,29%9,={0,1}=2Z,,
BCP(ZL) and B,=b,
yb: BH n Gx’

xeb

1
V@) =Ky,0), fb;)=3 3 9,

$=-1
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ie.

f(b;1)=sinhK,, f(b;0)=coshK,.
Let 10=0+0% with 0®¢.% and 0' = {1} then

W30 )= K740 1) [7,(69%) — 1]
and

Z(A;0'?) — 2Keys
EZIES V8 | M Y
BAS)={beB; bnA+0, 7,(05)=—1}.

3.2. General Properties for 1 in &

Let us first remark that for 02 =0! +0© with 09¢c.% then for all b¢%(S) [Eq. (21)]
9= "/b(e?fd - G,ITd) = Vb(efé)d) =0. (23)

Theorem 2. If the following inequalities (I) and (1I) hold then for finite range

interaction the surface tension t? between the states defined by 0' and
02=0!+09, 0.7, exists and satisfies

[t <2KC
D By 00O S ps,008) forall 4,04, 8€95,
D) frson®) s o8 i 00 (¥ +9).
Proof. Let A=A"uA” where A', A", A are parallelipiped defined by
(Lyy..o L., L,_,2M), (Ly,...,L{,...L,_;,2M), (L,...L;+L{,....2M)
Q4= (Qp)bes ais)=Qu TQa 004 4>
where
0047, 4» == Cpep a(9)nBur(5)-
It thus follows from the inequalities (I) and (II) that
Hea;01(@4) Z Hars o1y (@) M, 0 (@) i a; 01 (9Q)
furthermore:
Heason (00,0 1) Ze 2R,
where
L,,...L,_,
L, '

1

5=sup|B (S)nAB .AS)|=C

Therefore:

Logpi s,01)(Q4) ZLOG L 47; 01y(Q4) + LOG L1 4, 01)(Q47) — 2K5.
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Using the subadditivity of the function,

- v—1 1
g(Lla ~~7Lv)= —LOgH(A;Gl)(QA)—Q’CK l_[ Li (Z f)
i=1

it
we conclude the proof using the same argument as in [6].

Remark. For spini ferromagnetic systems it is easily seen that the inequalities (I),
and (I) are satisfied for ' =(+) using the fact that

% =(tanhK,) 1€{0,1}
and
> 11 oy
Heg; +/8)= keysz begﬁ ik
ked 4 beBa

t,=tanK,e[0,1].

However, we shall not discuss the validity of these inequalities for general system
in the present article.

4. Surface Tension at High Temperature

In the high temperature domain one can use either the “H.T. expansion” Eq. (7) or
the “Cluster expansion” Eq. (10). We shall first study compact groups using the
H.T. expansion and then extend the results to arbitrary groups using the cluster
expansion. Let us remark that it is interesting to discuss both methods since for a
given interaction only one of the methods may be applicable; furthermore the
bounds one can obtain may be better with one or the other approach depending
on the interaction. We should also insist on the fact that in the cluster expansion
method the group structure plays no role.

4.1. Compact Groups (H.T. expansion)

Let us first consider the “H.T. expansion” Eq. (7). Since any closed graph k in ¢,
can be uniquely decomposed as union of “connected closed graphs” where two
graphs k' and k” are said to be disconnected ® if §,. and B, are disconnected where

B, ={beB;k,=0}CH; [k]:[ﬁg:b\g B,CZ.

The H.T. expansion can thus be written as

0 q

Z(4;0% =) Y DK G(Byss - s Pra) » (24)
=0 e

6 For all ke # such that k=Kk'+k” with f, not connected to f,. then k" and k” are also in #,:
indeed for all 0%, [ ] <2,(0); k> = [T <3,0); k> =TT 3Oy k> =1
b b

beprcs
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where

P°(k)= b]; T3k (0(0°): K>

G(Bl, ~~~’Bq): l—[ g(ﬁiaﬁj)a
jcii...q)
0 if p'is connected to B
1 if p¥is not connected to 3.

9B, )= {

The expansion can thus be written as:

0

q .
Z(4;0% =} > [T 6°B) G(B*, ... B9
70 proorciiedcaa |

with
P°B)= Y. k).
kedy
Bx=p

Notice that for any fC %, with |f|=1 there exists no k in #7, with f, =p.

Let us introduce as usual [5] the space Z, of finite (non ordered) subsets with
repetition of the set of all connected graphs fC %, with |f|=2 and V the space of
functions on & together with the *-product:

(F+G)X)= ) F(X,)G(X),),
X=X1uX>
21
IGr= Y 1GF=1+4G.,
Gr=r1a+6,)= Y "6
= +)= P

n=1

we obtain for the “H.T. expansion”:

Z(A;0%=exp| Y [ ¢°B)G(X)

>

XeZ 4 BeX
where :
G=IGy.
Therefore
Z(A:;0'?)
CLosZM T T
T 7100 i,

feX peX

[1o'B)- 11 d>”(ﬁ)]GT(X)-

Let 02 =10! where 7 is any internal symmetry which induces a measure preserving
transformation % of 4, onto ¢, by the relation

29,(0)=7,(z~ '9).

(This will be in particular the case for the internal symmetry t:0—0+0% in
which case 7 =1; it will also be the case if 7 is the inversion in which case ©l, = — 1)
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The transformation % induces an automorphism 7’ of 4, onto %, such that
<rp(0); 71y = <7p(T0) 51y -

This automorphism 7’ has the property to leave the group 5, invariant and is
such that

flb:7l)=f(b;ly).
In then follows that
P2k)=d (k) if [k]c4
orif [k]Cc#*
and

<P”(k)=bf!af(b;kb)@b(ﬂl);t’kQ if [klcz”.

But ke, B=P. and f(b;7'k,)=f(b;k,) implies that:

$*2(B)=¢'(B) either if for any b in B, B, is
a subset of #* or ¥4

or if for any b in f, B, is
a subset of A.

We have thus established the following result:

Lemma 1. Let 0% =10! where t is any internal symmetry which induces a measure
preserving transformations of 4, onto 9, .

Then

Log 20 o T At

Lot~ 2 [[Lo0 [Levjo.
Xr\ﬁAAS¢:§ﬂ

where : X N %,(S)# ¢ means that at least one f in X has some b such that B, intersects
the upper and lower half of £ ; X n0A # ¢ means that at least one f§ in X has some b
such that B, intersects A°.

Lemma 2. There exists z,€ 0, 1] such that

su Z Z!OX||GT(X)|§(CI +C2dv)e_c3d'/2,

x€ XeZa
[X]ax,diam[X]>d

where: [X|= Y |Bl \B| = cardinality of B in P(A)
BeX

x1={) UB,.

BeX bef

The proof of this lemma is given in the Appendix 1.
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Theorem 3. Let {&, B,7, V} be a compact spin system with finite density of lattice
sites and finite range interactions such that

2 7T

Iy +0

tends to zero uniformly in b as 1—0.

For 02 =10 with © any internal symmetry satisfying the condition of Lemma 1,
there exists a temperature T, such that the surface tension t*% is zero for all
temperature above T,.

Proof. Using Lemmas 1 and 2, we have:

Z(A;0'2)
Log————5 £2 G (X
gZ(A;Gl) = x;af,l IE{W(ﬁ)H X))
XNBA(s)+ 0
XNnoAF0

<23 Y [1IeBNGX)

xede XeZa peX
XnBa(s)F0
[X]=x

Y Y Y 166

d=0 xed, XeZs PeX
|xy|=d [X1sx
diam([X]=d

therefore for

p(B)l <z

Z(4;0'?)

’Log Z(4:00

<2 Z Y (e +e,d)e
d=0 xed,

[xv|=d

<2(Z HL>%+<H L> (¢, +c,M)e™ M

i=1 j+i

and thus 112 =0 for any T such that |(B)| <zlf!.
But for any f=(b,,....b,)

dBI= Y T bk H< > lf(b;lb)l)
lﬁ{ﬁ bef bep\lp 0

which concludes the proof by the assumption on the potentials ¥

4.2. Arbitrary Groups
Starting with the cluster expansion Eq. (10), we have

q

Z(A4;0% =} ) nl Waz00/(B)GB ... BY).

q . (pr.pe . i=
Bt connectedC B4
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Again we consider 4 ,, the space of (non ordered) subsets with repetition of the set
of all “connected graphs fC 4% to obtain:

Z(A;0'%) L 2
7000 —x;@ ﬁllw () ﬂl}(w B)

vip= | T @, H(eflf“"""“’"’-l),

%181 xelB] Bep

1 15
p2B= | T[] &5, H(eﬁmew,,c)_l),

Y1py xelB] Bep

- LOg GT(X) s

and we have as before:

Lemma 3
Z(AOIZ)
—Log——"—" = Y(p) - P(B)| GpX).
e S A
Xm.%h(s)#@
XnoA+o

Theorem 4. If the interactions are such that |p°(B)| < c(T)#' with ¢(T)—0 as T— oo,
then the surface tension between the states defined by 8 and 0*> =10' where 1 is any
internal symmetry, is zero as soon as T> T,

Corollary. Let 0*=10' with t any internal symmetry. If the interactions are
uniformly bounded then the surface tension 12 is always zero at high temperature.

1
Indeed in that case c(T):(eﬁ sulienlly. 1)_

5. Surface Tension at Low Temperature for Discrete Groups

In this last section we restrict ourselves to the case where % is discrete for all x in
& and therefore ¥, is also discrete for all b in %. The boundary conditions we
shall consider are 8' =0 and 8?¢ %, ; we denote by “+” the boundary condition
defined by 0*=0.

To discuss the properties in the low temperature domain we shall follow the
method introduced to construct duality transformations [1]. In fact, as we shall
see on explicit examples (Sect. 6), the duality transformation provides a technique
to evaluate the constant CT, Eq. (17), i.e., to obtain a lower bound on the critical
temperature. We should insist at this point on the fact that ¢, could be of infinite
order (as far as low temperature properties are concerned the results for all
examples of Sect. 6 remain in particular valid with 4 _=7).

Let I', I'"), I, be the groups defined by means of the homeomorphism y as

I'={3=90)e9,. 0%} =1my,
= {3=70)e%;; eegy,f},
Iy=T'n%g .

where 4, %, denotes respectively the complete direct sum of {%_}, {%,}, while
Yy » 9  denotes the direct sum.
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Furthermore let 4" and ', denote the group of closed graphs and the group of
closed graphs with finite length, i.e.

H ={keD,; (30); k> =1 V0ed, ),
Hipy=H Gy ="

To construct duality transformations one introduces first a family kY, jeJ of
generators for the group 7, Le.

ke, Vjel
and

Ser iff (9;kYVy=1 VjeJ.

Using this family of generators we introduce on the set % of bonds a “dual” graph
structure;
b, and b, are *-connected if there exists some j in J such that k{’+0 and
KD 40,
We shall then denote by #* the set # with this dual graph structure.
The study of the surface tension at low temperature start from the “Low
Temperature Expansion” [1]7

Yo ] ob;9,+a,)

g o (@) = tTabeta
v Y, [ w®:9)
$el'y beB 4
where ¥, = [] 9, ={8=(9,)} is discrete

beB 4
[={9=70,e%; ;0,69,CY, ,
o(b; 9,)=exp{V,[9,] -V [0]}; ¢,= yb(e_zyd) .
Following the procedure of Sect. 4 any element 3¢ I, can be uniquely decompose
into *-connected component in I'n%g , where § and 3" are said to be

disconnected if the graphs fy, C#* and fg, C#* are *-disconnected. Indeed if
3=9+9" with § and 9" *-disconnected, then

[Tk =1= [T <00,0:k> TT <3u0,0: k7>
b

befy bepyr
and
H <Vb(e/1)§k§,j)>=1 for all jeJ
befy
therefore

06O} pep, €M% 5,

7  In the case of compact group such an expansion can also be obtained from the H.T. expansion by
means of Poisson Formula [1]
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In conclusion if the system satisfies the condition

Iy=In%,,

then any element of I', can be uniquely decomposed into *-connected components
which are also in I',.
Let us then introduce:

Bo=1{b;0,#0} By=1{b;3,%0}.

Since any graph  C #% can be uniquely decomposed into *-connected component
we can write

ﬁ = U ﬁi U [}j >
i Jj
where the f; are connected to f, while the f§ ; are not; therefore

Qery BC@Z Ser,
ﬂ3+Q=ﬂ

= % o X2

B=@1,.ba)  B=(r...f)  Sela _ Tels

B, *-conn to By /}Jnot*-conn o fo By+g =P8 Py+e=8

It then follows that:

Hia; +(@4) = ) [1] X [l olb;9,+e,]

B=B1,..., Bg) i=1 Selrs  bep;
B =*-conn to fio By+o="5

and thus

q

#(A;+)(QA)§ 2 n tl/m,
p=(B1,....Bq) i=1

s
fBi=*-conn to fig

where

t=sup
b

Z e~ {Vbl0] = Vu[%l} .
Ip 0

Theorem 5. (01 =0;0%c %)
Let {%,B,y,V} be a discrete system in IR", with finite density of lattice sites and
finite range interaction.

If the interactions are such that i) A, separates % ;

i) Iy,=I'n%, for a sequence of parallelipiped A>R";

iii) there exists a family of generators kY for A + which separates % and such
that sup|{jeJ; k) +0}|=a*<c0;

beR

iv) V,[0]1>V,[9,] for all 3,0 and e"*le #* then there exists a temperature T},

such that the surface tension 112, if it exists, satisfies the inequality :

W2D>C,CY, for T<Ty

where C, is a positive constant and CY, is the constant introduced in Theorem 1.
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Remarks. 1. The condition i) means that for all b;,b, in %, Ike #; such that
k,, #0 and k, =0.

2. The condition ii) in Theorem 5 is equivalent to the conditions

a) L=

b) Forany0e%,, , the condition y,()=0 for all b¢ % , implies that there exists
0',€% , such that 0-0',c.7.

Condition a) is an essential condition which appears in all discussions on
Peierls arguments. On the other hand condition b) is expected to be always
satisfied for Z’-invariant systems.

3. The condition iii) appears because we have no assumptions on .#; in
particular it is known that if #=7" and if the system is Z’ invariant then this
condition will always be satisfied.

4. Using the family k" of generators for [, we can construct the dual
system; if ¥ =7, q< o0, Yxe Z then

L*=J  G.=7, if kY is of order ¢;< o0,

4G =TW otherwise,
B =K Y,.=%,,
V0= Y. 07k
jeJ
Since (y(0,);kY»=1 for all j we have (y(8,);7*(@0%))=1 for all 8%.€%%, and
using the condition 1)—iii), we have:
{FA > ={k*e A ke A [}
A*={j;IbeB, st kP =*0}.
We thus have:
1
Cl,=1 ——
12 131_'501313 1L €a
4= min [y(8) +y(0%)NA,|= min [k*+g}l
0% 4 k*e %
= length of the shortest graphs I*e€% 4, such that I* — g% is a closed graph.

Proof of Theorem 5. To prove this theorem we need the following lemma whose
proof is given in Appendix 2.

Lemma 5. The number of graphs fCAB , with |Bl=q such that all its connected
components are connected to a given B° is bounded by

At il qz|p°)
4ol i g=|p°].
To prove Theorem 5 we first remark that if C7, =0 then Theorem 1 implies that

12 =0. Let us then assume that CY,>0; using Lemma 5 and the fact that ¢, <|o |
we have:

|24]
.“(A;+)(QA)§ Z 4lealpay 4 z (4to)

qg=ca q>10Q 4|
t)CA (at)lQAl 4]94[
<4le4l G < £)°4
= (1—o¢t+1—4o¢t S T ™



Surface Tension and Phase Transition 261

as soon as 4at <1, which is satisfied as soon as T< T, because of the condition on
the potential.
Therefore

1 1 1
- ﬁfiloguu; He)= L (log(l —4at)+c, loga —lel 10g4>

13

which concludes the proof because of the condition on the potential, and the fact

1 - . .
that H—L lo 4| is uniformly bounded (since 0%c & and & has finite density of lattice

1
sites).

Conclusions

For finite spin systems with finite range interaction such that V,[0] > ¥,[3,] and
which satisfy condition i) and ii) of Theorem 5 we have obtained the following
criterion for any boundary condition 8' =0, 8’ ¥ :

Cy

either lim sup T =0, in which case the surface tension 1% is zero for all
sz |14 temperature
. Cy . . : . .
or lim sup >0, in which case there exists a phase transition associat-
a-z [1L ed with surface tension, i.e.

t12=0 at high temperature

11240, or does not exist, at low temperature.
6. Examples

In this section we shall illustrate our results on explicit examples; it should be
remarked that all these examples have a phase transition in the usual sense.

1. Generalized Potts Models on Square Lattice
=1 %.=1, g Vxe¥
Y,=1, if gq<oo;
4, =T" if g=o0,
Vy0)=V,,,,[0,—0,]1 where {xy) denotes oriented nearest neighbours on /Al
Therefore, in this example
B=R"={b={xy); (x,y)CL*|x~y|=1},
Y, =9,
7(0)=0,—0,modg; & ={0"=(0P=0);0%eZ,;}.
Let us then take the boundary conditions

=0 0P=0Ycy.
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We then have:

0,=0% if b=(xy) with xeA!;yed"

— (s) =
0, =7(05)n%, {szo otherwise.

L
9900900000
Ty
b dbe B

g0 M Byl

‘T | il 1
| o
o
4

' B0 if xc (o]
e v 8%-8%fxc [x]

XX X % X % x x %
Fig. 2. Generalized Potts Model with boundary condition 02

Using the duality transformation (see Fig. 3), o, @% where

P L (xFy*y C{x¥=0}
%=10 otherwise
the shortest graph 1%, such that I¥,— 0% is a closed graph has length L.

b
— |==5 - —I— .

"0
{b == X
¢
(a) (b)

Fig. 3. a Duality transformation for Potts model. b @%

Therefore if the potential is such that
Ve [01> Y, [017040 and e o»lle 21(z,)

then 1'% %0 at low temperature.
Furthermore for g < co we conclude that there exists a phase transition associated
with surface tension.

2. Triangular Model with 3 Body forces
& =triangular lattice; for all xe #, ¥ =7, g< o0

V@)=V, [0,+0,+0,] where {xyz) denotes elementary triangles.
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In this case:

B=RB'={b={xyz)>;(x,y,2)C YL} =elementary triangle,
- Y,=Z, if gq<o©
% =1, g, =TY if g=o0,

75(0)=0,+0,+0,modgq,

S ={09;00=0,cZ, if xeg4
0V =0,eZ, if ye¥®

00 = —(0,+0,)=0, if ze %},

where ¥ = P40 LB ZC (see Fig. 4).
Let us then take the boundary conditions,

0'=0 02=0cy

we then have:

0 syey = 0% if xe? (yz)ce
@=7(090) =1 01y, =09 +00 if (xy)C L'z 2"
Qxyey =0 otherwise.
G- R AR R AR R Bt
‘ 2L (0,0]
i
Z5 om)

8o if xe [oan]
6y 6q if x € (@]

¢ M N Y W NN WM ey i e ]
2L {8+ 6p)
ifx e [m]

8°By ¢ Ll

Fig. 4. Triangular model with 3-body forces and boundary condition

Using a duality transformation [1] b—b*=5b and

Vi0%) = 0% + 0% + 07 it /Y

V0¥ = — (O3 +03+67) it/

263

it follows that the shortest graph I* such that I} — o% is a closed graph has length L.

Therefore if the potential is such that
V,[0]>V,[0] forall 00
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then there exists a phase transition with surface tension, if g < co. Note that for g = oo
we can conclude that the surface tension is non zero at low temperature if V,[0]
>V,[0] and e"ve £

3. Ashkin-Teller's Model
F=130Z5 foral xeZ, 9 .=1,,
B={{xp), Xy, xpx'yys () CZy Ix—yl=1
xy)czy X -yl=1

A x—x'|<1 —y'|<1},
9 -7, | | y—=y|<1}

7(0)=0,+0,mod2 if b=<{xy) or X'y,
7(0)=0,+0,+0,.+0,mod2 if b=<{xyxy),
1 if xe Zj}

=00 =(0): I_(1)- I __

. BIV — 911 + elll} .

Let us then take the boundary condition
0'=(0) 0*=0"
we then have:
0,=1 if b=<{xy) xeA'yeA*
0,=70%)Nn%B,=130,=1 if b=(Xy) XeAYeA
0,=0 otherwise.

forces —— x—x

forces 2z#*

Fig. 5. Ashkin-Teller model

i) 0% =00
o [=1 i be(ly
47 lo,=0 otherwise

ii) 62 =0

fg,=1 i be{l Z}
247 10,=0 otherwise

i

iii) 02=01v
=
. ={g,,=1 if be{] =}
47 lo,=0 otherwise.



Surface Tension and Phase Transition 265

Applying a duality transformation, [1]

y 1

b I —— M B = 3-body forces
X '
y X .

b I — M b*=3-body forces
x’ %

Fig. 6a

we obtain for g% the graph:

Therefore for each site x*e £*, except x¥, i=1,...,4, the number of bonds of g%

i
incident on x* is even: it thus follows that the shortest graph I*, such that I, — g% is
closed has length of the order of L. Again, we then conclude that there exists a phase
transition with surface tension if the interactions are ferromagnetic.

4. Generalized Potts Model on Cubic Lattice
L=7>; forall xe¥ ¢ =7, q=o,
V0)=V,,,[0,—0,]1 where{xy) denotes oriented nearest neighbours on Z3.
9, =1,
Let us take the boundary conditions 8! =(0)  6*=(6% =0").
Again introducing a duality transformation we conclude that there exists a

phase transition associated with surface tension, if g < co.
If g= oo the conclusion is the same as in Examples 1 and 2.

5. “Plaquettes”
The model is defined on Fig. 7

Lot

for all x €

jx =;g:; =compact

.73 =set ofk sides on each
face of elementary cubes
or "Plagueftes”

-

Fig. 7. The “Plaquette” model
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To define the interactions ¥, we associate with each site x of the plaquette b a given
sign ¢, (see Fig. 7) and we have:

V,(0)= V[ 2 8x0x]

xeb

750)= ) 0.

xeb

Taking the boundary conditions

00 =0,0P 7, ic. Y 6,02 =0 we have:

xeb

_ [0 if b does not intersect x,=0
= 0? if b intersect x,=0 and xebn Z*.

Furthermore we note that the condition 8*e.% implies

£ — k
ef0,=0 where &f=¢, 4u.
beElementary cubes
Intersecting x, =0

The standard duality transformation yields the generalized Potts Model on Z* with
b* = {x*y*> =nearest neighbour orthogonal to the plaquette b oriented along the
axis; indeed

)’(Qx)= {f)x *if b x otherwise Duality

*ex
+ex _ex
-8
8 "
S)
o/ oL
-0
+ex X
Fig. 8a

Generators of I'j<—=>Generators of A }.

duality

For this duality transformation S is a subset of the bonds in the x, = 0 plane and
we have for all x*e A*\0A*

Y e0,,=0 where g,=+1 if o

*
b*sx* X

tp=—1 if ——ex

ie. JTGRO%); gy =1 Vx*eA¥\04*
b*
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————pm——— ~——— ——mqmm—

Blcl—]

[----]= bonds on the boundary
{ . of A"

[ S

Fig. 8b. The x,=0 plane for the dual of the “Plaquette” model

By induction on the bonds on the boundary of A* (see Fig. 8) we can always find
k* in A 7f such that |@¥ +k*|S2(L,+ L, +2).

Therefore for any 09 in & the surface tension is zero between the state »'™ and »®
at all temperature.

This result suggests that the surface tension could be non-zero only between
distinct states since it is known that o™ =w®.

Acknowledgements. One of us (C.G.) would like to thank Prof. J.-P. Antoine for his kind invitation at the
University of Louvain-La-Neuve, where this work was started.

Appendix 1

Let % , be the family of bonds intersecting A ; b, and b, in & , are connected by a line
if B, nB,,=+0. We consider 2, the space of subsets with repetition of the family of
connected graphs fC%  with |f|=2. For all X =(f", ..., f9e %,

6= [ aB.p.

(B BHcX
o 1 if P, is not connected to f;
9B Y= o a !
0 if B is connected to f8;,

X1= [U Bb} =sites of & covered by X .
peX |bep

Lemma 2. There exists z,€ 0, 1] such that
su Yo 2GS (e, +e,d)e o
xe XeX 4

[X]ax
diam[X]>d

¢; 20,
IX|= Y Ipl |Bl=cardinality of fC%,.

peX

Proof. This proof'is the immediate generalization of the one given in [5] for the Ising
model and we shall indicate only the changes to be introduced.
Let

PX)=2¥16(X)
then
¢r(X)=2%1G(X)
and ¢ (X)=0 if X is not connected.
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Since the first part of [5] are purely algebraic relations Eq. (4.27) of [ 5] becomes

161 L8
1,,,<I,z2 exp[ Y zzl.
B’ connected 8
Let a be the maximum coordination number of the graph # (where the
coordination number of b is the number of b such that B,nB, +0), then

Yoo ZURFI= Y 212 (4 of B with |[f|=n connected to f8.)
p’ connected n=2

But the number of f containing a given b, with |f'|=n, is bounded by a'®"~?);
therefore

. _ a*z
Lo 2@ DIp Y e =(a+ DIBI T aim

B’ connected n=2 l—a Z

and:
2,-u
U a‘e

L1 =1, explp] —§+(a+1)W
with

z=e K.

It follows that there exists zy<a™* such that

I, =1,z with 12<x<1 for z<z,.
Furthermore I, = sup |p(p)|z~ V21 = sup) z12181 <z which yields I, <z

Introducing = sup (diamB,) we conclude the proof as in [5].

Appendix 2

Lemma S. The number of graphs fC%, with |B|=gq, such that all its connected
components are connected to a given f, is bounded by :

ot if qzIPol, (1)
Aolys if g<IB,. 2

pel1Boll

Proof. Define A‘1={f‘1; f:[1Bo1-[0g] and ) f"(p)zq} with

[1BolJC N, [0g] CN.

Each f“ defines for each be f§, the length of the connected component of f which
is connected to it. Since the number of connected graphs of length g containing a
given b is bounded by o (Appendix 1) to each f? there corresponds at most o
graphs which satisfies the conditions of our lemma. It remains therefore to bound
# A%

#Aq=(lﬁol+q—1>

q
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for

qzwol('ﬁ"'*q"“ jE (zqq’ . (1)
for

asipl( P4 < (), @)

By application of the Stirling’s formulae:

1
n"|/2nnexp—n=n!<n")/2nnexp [F —-n}
n

One has:

(211- 1) <4
n

od. (4 A9) gives for cases (1) and (2) the desired bounds.
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