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Abstract. We introduce the surface tension for arbitrary spin systems and
study its general properties. In particular we show that for a large class of
systems, the surface tension is zero at high temperature. We also derive a
geometrical condition for the surface tension to be zero at all temperature. For
discrete spin systems this condition becomes a criterion to establish the
existence of a phase transition associated with surface tension. This criterion is
illustrated on several examples.

1. Introduction

The phenomenon of "phase transition" is one of the important problems of
statistical mechanics because of its physical and mathematical interest. As is well
known several definitions have been introduced to discuss the existence of phase
transitions and the equivalence of these definitions has not always been established.
It seems possible however to classify all phase transitions into two classes, those
which occur with a spontaneous breakdown of the symmetry group of the system
(coexistence of several phases, existence of local order parameters) and those which
occur without any symmetry breakdown1.

One of the standard methods to prove the existence of a phase transition for
lattice systems is the "Peierls argument" its generality relies on the fact that it
takes explicitly into account the underlying group structure of the system [1,7].
However, it is well adapted for systems which have a complete breakdown of the
internal symmetry group at low temperature and does not apply as readily to
describe phase transition associated with partial symmetry breakdown.

In this article, we propose to introduce the surface tension as definition of phase
transition, i.e., we shall say that "there exists a phase transition associated with a

1 In such cases we know that there exist phase transitions associated with the coexistence of several
phases and the existence of a local order parameter however it is not always so: there exist models for
which the Gibbs state is unique at all temperatures and which do exhibit a phase transition there exist
also models which show a phase transition without any local order parameter
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surface tension τ(12) between the phases ω1 and ω2" if there exists a temperature Tc

such that

τ (12) = 0 if T>TC

and

τ( 12) Φ 0, or not defined, if T<TC.

We therefore study general properties of the surface tension and show that for a
large class of lattice systems of arbitrary spin the surface tension is zero at high
temperature we obtain also a condition for the surface tension to be zero at all
temperatures it is then shown that there exists a phase transition associated with
surface tension if this condition is not satisfied. We have thus a criterion to prove
the existence or absence of such phase transition and we shall illustrate this
criterion on several examples.

It should be noticed that using a duality transformation [1] the surface tension
is related to the expectation value of a product of characters on the dual model
therefore our definition of phase transition appears as the "dual" of the definition
introduced in Gauge theory [2].

Let us also recall that since the original work of Onsager [3] the surface
tension has been extensively studied especially for the case of the 2-dimensional
Ising model [4,5] more recently the existence of the surface tension has been
established for general ferromagnetic spin^ systems [6].

In Sect. 2 we recall the standard definitions of arbitrary spin systems and
introduce the groups necessary for the High and Low Temperature expansions.

In Sect. 3 we define the surface tension τ(12) between two phases ω1 and ω2 and
we give bounds valid for any ω\ω2 these bounds yield then a condition for the
surface tension to be zero at all temperatures furthermore the surface tension is
non negative for ferromagnetic systems. In the cases where ω1 and ω2 are related
by internal symmetries the surface tension appears as the expectation value of an
observable associated with the surface of separation and we briefly discuss the
problem of the existence of surface tension; it follows in particular that for
ferromagnetic spinf systems the conditions introduced in [6] to prove the
existence of the surface tension are not necessary since this theorem can be
obtained without duality transformation.

In Sects. 4 and 5 we study the surface tension respectively in the High and Low
Temperature domains it is shown that for a large class of systems the surface
tension is zero at high temperature in the low temperature domain we consider
only discrete spin systems and we derive a geometric criterion for the existence of a
phase transition associated with surface tension.

This criterion is illustrated in Sect. 6 on several examples; these examples
indicate that a surface tension might appear in all cases where there is a
coexistence of different phases.

2. Lattice Systems: Definitions and Expansions

2.1. Definitions and Notations

A "classical spin system" on a lattice can always be defined by the following
structure [1] (see examples of Sect. 6):
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Let 5g be countable set of points in IRV, called ,,sites" with every site x in 3? is
associated a variable θx which belongs to a Locally Compact Abelίan Group $x and
dθx will denote the Haar measure on ̂ x. The configuration group *§ % is defined by

^= Π^χ = {β = (θχ);0χe»x}. (1)
xeJ^

For any MCJ2? and θe^ we introduce the notation:

if xeM

if

|M| = cardinality of M .

The interactions are described by means of a countable set 3S of indices called
"bonds"', with every bond b in ̂  is associated a variable 5b which belongs to a
locally compact abelian group2 @b, a continuous homeomorphism 7&:θH>yb(θ) of
^ onto ̂ , and a real function Fb-Ffe[θJ on &~.

We shall say that the interactions have "finite range" if the homeomorphisms γb

are such

and

The system is a "discrete spin system", respectively a "finite spin system", iΐ<gχ is
discrete, respectively finite, for all x in ££. The system has " "finite density of lattice

site" if sup — - \<£r\V\ < oo.
FcR v \V\

We associate with every bond b in ,̂ the subset Bb of JS? defined by :

(3)

Note that jBb is the base of the cylindrical function on <&# defined by

(4)

which describes an interaction between the "spins" situated on Bb.
With the mapping b\->Bb the set ̂  of bonds becomes a graph : two bonds 51

and b2 are connected if Bbir\Bb2ή^φ.
For any /I £ S£ we introduce :

Tfee "configuration group for A": ^Λ= Y\ ̂  = {Θ^ = (0JX6^}
X6/1

Tfe "bonds intersecting A": &Λ = {be&; Bbr\A^φ}.

The "group of graphs for A": ^^Λ= fl ^& = {ll = (ίb)z,e^} where ̂  denotes
be^yt

the dual group3 of &b.

2 In most application ̂  is isomorphic to a subgroup of f| <2?x where BbC^ is defined by Eq. (3).
xeBb

3 If ̂  is compact for all x in J*?, then ^fc is isomorphic to Zαb the group of integers modulo ocb(αb 5Ξ oo).

Since we shall discuss mostly compact groups we shall write ^ instead of j ί//b
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y:θH>y(θ) homeomorphism of ̂  into ^= f] ̂  defined by [y(θ)]b =
be^

For the "finite system Λc^ with boundary condition θ° in &#\ the
Hamiltonian HΛ 00 is the function on *& A defined by :

-7^,80^)= Σ H[Λ+βUl= Σ ^(ΘΛ+Θ^),
K' * be^U be^U

where T= temperature and the Partition Function Z(Λl θ°) is defined by :

Z(Λ;β°)= j ̂  Π expF^ + θp. (5)

2.2. Expansions

The "High-Temperature (H.T.) Expansion" is an expansion expressed in terms of
the subgroup CJCA of *&®Λ which is the "group of dosed graphs" (or H.T. group), [1] :

(6)
b J

and we have [1],

where :

f(b;lb)= ldBb<lb ,-St >ey«™

^o

i.e.

/(fc .) = 3f(eVb[']) ( = Fourier Transform) (8)

and:

In the following we shall assume that the interactions are such that eKb[db]e J&f1

Another expansion which we also need in the high temperature domain is the
"Cluster Expansion" defined in the following manner :

Let

(9)

and

#i,eo(ej=- Σ
Be^

where
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then

βi connected

where

[/}] = (J B C & (= set of sites covered by β)
Beβ

and

[
1

^ _-,-

In this approach ^x could be any measurable space (not necessarily a group) and
dvx any probability measure on $x (which could also depend on some physical
parameter such as the temperature).

3. Surface Tension: Definition and General Properties

3.1. Definition

In thermodynamics the surface tension τ(12) between the pure phases (1) and (2) is
introduced as

where F(1), F(2) are the free energies of the phases (1) and (2), F is the free energy of
the mixture and A is the area of the boundary between the two phases.

By analogy we consider the following definition of the surface tension for
lattice systems; which it is the direct generalization of the surface tension,
introduced for spin^ [4]:

Let ω1 and ω2 be two states defined respectively by the boundary conditions θ1

and θ2 in ̂  to define the "mixture ω12" of these two states we decompose 3?
into &u and <£ά

and we consider the finite system A with boundary condition Θ12E^ where A is a
parallelipiped with sides (L1? ...,LV_1 52M), symmetric with respect to the plane
xv = 0, and θ12 is the configuration which coincide with θ1 in the upper half of &
and coincide with θ2 in the lower half, i.e.

if

: if

The surface tension τ12 between the states ω1 and ω2 is then defined as:

(-1) 1
τ rlιm Mlm ΓΪ7~9L.-CO M->co J|L. 2
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Fig. 1. Definition of surface tension

From Eqs. (4) and (5) it follows that

Z(/t;θ12)= f dQΛ Π eVb^+Qi^

+ y^θ^-θgi-F^y^ + θg]}, i = l , 2 .

Let us then introduce, as it is usual in the study of symmetric states, the function

/V θό on ̂ = Π &b Defined by:

where

This function satisfies the following important and useful identity

We obtain:

ΓZ(/L;Θ1 2)

4

Z(Λ Q')

and therefore

τ 1 2 = lim lim (~1} 1

LJ-+OO M-+OO

(13)

(14)

(15)

4 It was shown for spin^ systems that this identity yields a definition of "Symmetric Equilibrium
States" [6]
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To state our first result we introduce the "length |9|" of a graph &e f] ̂  as
be^

|9| = cardinality of the set βθ=

and

Theorem 1. // ttoe surface tension τ1 2 exists then it satisfied the following bound

w/zere
K= sup [sup I KM], (16)

-Q, (17)
^-*oo H î

and

CΛ= sup
i = l , 2

m n (18)

This result follows from the fundamental identity Eq. (14), together with the
inequality [obtained from the definition Eq. (13)] :

2sup|Fb(θ)l

The interest of this theorem is given by the following corollary which will be
illustrated on some examples in Sect. 6.

Corollary 1. // for any A there exists some QΛe^Λ such that

IS* I
with lim Ύ-T

Λ = 0, then the surface tension exists and is zero at all temperature.
Λ^^YlLj

Remarks. 1. As we shall show in Sect. 5 (for discrete systems) if the condition of the
corollary is not satisfied then the surface tension is non zero at low temperature (if
it exists).

2. The constant CΛ is most easily evaluated using duality transformation;
indeed by definition of duality, any graph y(Q) becomes a closed graph on the dual
model therefore CΛ is the minimum length of the graphs 1* on the dual, such that
l* + ρ^ is a closed graph (see Sects. 5 and 6). 12

3. Let us also note that by duality transformation — ' . is the expectation
^\ 5 /

value of a product of characters on the dual model. This remark show that the
surface tension is the dual of the definition introduced in Gauge Theory for phase
transition [2].

In the following we shall only consider boundary condition θ1 and θ2 which are
related by "Internal Symmetry, i.e.
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where τx is a measure preserving transformation of $x onto &x such that
Vb(τQ) = Vb(Q) for all b in 3S and θe ̂  we denote by τd the restriction of τ to ̂ d, i.e.

τ β = f θ * ίf

" IτA if

For example the "Internal Symmetry Groups" defined by [1]:

yields a group of internal symmetries for the transformation

(if dvx is invariant under "translation"). In fact for spin^ systems all internal
symmetries are given by the group £f.

For general spin systems there may exist internal symmetries of the type :

In particular if Vb(β)=Vb(-θ) for all b in @ and if dvx(θx) = dvx(-θx) then the
"Inversion τ/?' defined by τxθx = — θx is an internal symmetry.

For boundary conditions which are related by internal symmetry we have
Z(yl;θ1) = Z(yl;θ2) and then

12 r rτ 1 2= hm hm

Property 1 (Ferromagnetic systems). Let τ be an internal symmetry; if the
interactions Vb are such that fb = ̂ eVb ^ 0, then the surface tension between the
states Θ 1 =0 and Θ2 = τθ1 is non negative (assuming it exists).

Indeed, since f(b /) =f(b — /), the condition that f(b /) is non negative implies
that for Θ^O5

Σ f Π /(&Λ)]Re Π <&M
<1

Property 2. Let Θ 2=τθ 1 where τ is any internal symmetry, then

Z(/t;θ12) .
v y-/^ . n i\ ( 1 1 e

where

Q and ^&n^fdΦ0}, (21)

5 We shall always denote by ω(+) the state defined by the boundary condition θ1 = {0}
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and

ϋ)

where

1

= sup
A

Proof.

Log

sup

12)= J

+ θ} „)) -

251

(22)

— maximum density of bonds
which cross the surface.

But using the fact that Θ1 2 = τdθ
1 with τ an internal symmetry, a change of

variables yields :

which concludes the proof of i).
The inequality ii) follows then from

ΓT g-2sup|Fb(θ)|< •/ ΓT e
W < TΊΓ e2sup|Fb(θ)| ^

Remarks. 1. Property 2 shows that if θ2 — τθ1, the surface tension between the states
ω1 and ω2 is related to the incremental free energy of a lattice with the interaction
"crossing" the surface xv = 0, Vb(QΛ-\-Q^c), replaced by Vb(τd(QΛ + Q^c)); it is thus the
natural generalization of the definition given by Fisher and Ferdinand for the
2-dimensional Ising Model [4].

2. This property also shows that the "surface tension" is the expectation value
of a non local observable associated with the dividing surface xv = 0.

3. Furthermore, for systems with finite range interactions, the surface tension
appears as the expectation value of an observable which does not depend on M as
soon as M is large enough in this case C is a finite geometrical constant as soon as
the system has some translation invariance property, independent of the boundary
conditions.

Example. "Spin^r" (see [6]).

and
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i.e.

Let τθ = θ + θ(s) with 0(s)e^ and θ1^!} then

and

3.2. General Properties for τ(s) m 5̂

Let us first remark that for θ2 -θ1 +θ(s) with θ(s)e^ then for all bφ&(S) [Eq. (21)]

)=o. (23)

Theorem 2. // ί/ie following inequalities (I) απίi (II) /zoW then for finite range
interaction the surface tension τ(12) between the states defined by θ1 and
Θ2 = Θ1+Θ ( S ), θ(s)e^, exists and satisfies

(I) .̂ θ^W^μ^ θ^W for all Λ2DΛ

(ii) ^^e^ao μ^θ^aΊ^μ^θ^^+r).

Proo/ Let A = A'uA" where A, A", A are parallelipiped defined by

where

It thus follows from the inequalities (I) and (II) that

furthermore :

where

(5 - sup \3SΛ.(S) n3SΛ,,(S)\ = C L l ? '" ? L v~ 1 .
i

Therefore :

l';θi)^



Surface Tension and Phase Transition 253

Using the subadditivity of the function,

0(L19 ...,LV)= -LogμU;βl)(QΛ-2CKfί ̂
i = ι

we conclude the proof using the same argument as in [6].

Remark. For spin^ ferromagnetic systems it is easily seen that the inequalities (I),
and (II) are satisfied for θ1 =( + ) using the fact that

M0,l}

and

Σ Π

However, we shall not discuss the validity of these inequalities for general system
in the present article.

4. Surface Tension at High Temperature

In the high temperature domain one can use either the "H.T. expansion" Eq. (7) or
the "Cluster expansion" Eq. (10). We shall first study compact groups using the
H.T. expansion and then extend the results to arbitrary groups using the cluster
expansion. Let us remark that it is interesting to discuss both methods since for a
given interaction only one of the methods may be applicable furthermore the
bounds one can obtain may be better with one or the other approach depending
on the interaction. We should also insist on the fact that in the cluster expansion
method the group structure plays no role.

4.1. Compact Groups (H.T. expansion)

Let us first consider the "H.T. expansion" Eq. (7). Since any closed graph k in $fΛ

can be uniquely decomposed as union of "connected closed graphs" where two
graphs k' and k" are said to be disconnected 6 if jβk, and /?k,, are disconnected where

j8k = {be«;fc, = 0}c«; [k] = [j8k]= (J B,C^.
bεβk

The H.T. expansion can thus be written as

oo q

Z(/t;θ°)= X £ ΠΦ°(k ί)G( jβkl,...,/U, (24)
g-0{k1,...,kg}C^"yι i=l

k f connected

6 For all keJf^ such that k = k' + k" with βk, not connected to βk,, then k' and k" are also in tfΛ\

indeed for all ΘE^ Π <W) ί ^> = Π <y^) ί ^> = Π < AΛ' k*> =1

b beβk> b
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where
Φ°(k) - [] f(b kb) <jb(θ°) kby,

Π 9(β\βj),
(iJK {!...«}

Ό if βl is connected to βj

1 1 if βl is not connected to

The expansion can thus be written as:

oo q

Z(Λ;ΘO)= y y\ ' / £^j ί_ι

with

,Notice that for any βC^Λ with |j8| = l there exists no k in 3CA with βk = β.
Let us introduce as usual [5] the space ^Λ of finite (non ordered) subsets with

repetition of the set of all connected graphs βC&Λ with \β\ ̂  2 and V the space of
functions on $Γ together with the ^-product :

(F*G)(Y)= Σ

we obtain for the "H.T. expansion"

[Xz%Λ βeX

where :

G = ΓGT.

Therefore

βeX

Let θ2 ^τθ1 where τ is any internal symmetry which induces a measure preserving
transformation τ of <^ onto ̂  by the relation

(This will be in particular the case for the internal symmetry τ(s):θι->θ + θ(s) in
which case τ = 1 it will also be the case if τ is the inversion in which case τlb — — lb.)



Surface Tension and Phase Transition 255

The transformation τ induces an automorphism τ' of ^b onto ^b such that

This automorphism τ' has the property to leave the group 3CA invariant and is
such that

In then follows that

Φ12(k) = Φ1(k) if

or if

and

But τ'keJf^, βk = βτ>k and f(b',τ'kb) = f ( b ; k b ) implies that:

φ^2(β) = φl(β] either if for any b in j8, £fo is
a subset of &u or ^fd

or if for any b in β, 5& is
a subset of /I.

We have thus established the following result :

Lemma 1. Let Θ 2=τθ 1 where τ is any internal symmetry which induces a measure
preserving transformations of^l onto ̂ .

Then

βeχ

where :Xr\^Λ(S)^φ means that at least one β inX has some b such that Bb intersects
the upper and lower half of 5£ X nδΛ. φ φ means that at least one β in X has some b
such that Bb intersects Ac.

Lemma 2. There exists z0e]0,1] such that

SUB Σ :

[ X ] 3 X , d i a m [ X ] > d

where: \X\= £ |j8| \β\ = cardinality of β in
βeX

β(=X bεβ

The proof of this lemma is given in the Appendix 1.
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Theorem 3. Let {=£?, ^,y, V] be a compact spin system with finite density of lattice
sites and finite range interactions such that

Σ

tends to zero uniformly in b as Λ,-»0.
For Θ2 = τθ1 with τ any internal symmetry satisfying the condition of Lemma /,

there exists a temperature T0 such that the surface tension τ ( l 2 ) is zero for all
temperature above T0.

Proof. Using Lemmas 1 and 2, we have:

Z(Λ;Θ1 2) ̂  vLog

xeΛc

Y\\φ(β)\\GT(X)\

Σ Π \Φ(β)\\GT(X)\
"TO/*

Σ Σ Γ

therefore for

Log
i = 0 xeΛc

\xv\=d

i=l j'Φi

v- 1

j = l

and thus τ(12) = 0 for any T such that \φ(β}\ <z|f!

But for any β = (b1, ...,^g)

^ Σ U\f(b;kbMU(Σ

which concludes the proof by the assumption on the potentials Vb

4.2. Arbitrary Groups

Starting with the cluster expansion Eq. (10), we have

°)= Σ Σ Π VVi;
q {β^. β^} , ί=l

βl connectedC^ i
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Again we consider $CA, the space of (non ordered) subsets with repetition of the set
of all "connected graphs β C 33\" to obtain:

ιV= Σ. βl\ Z-ί

&[β} xe[β] Beβ

v l2(Λ=,J, ]J tπ^π
and we have as before:

Lemma 3

βeX

GT(X).

Theorem 4. //ί/ιe interactions are such that \ιp°(β)\<c(T)\β\ with c(T)->0 as T-^oo,
ί/zβn the surface tension between the states defined by θ1 and θ2 = τθ1 where τ is any
internal symmetry, is zero as soon as T> T0.

Corollary. Let Θ2 = τθ1 with τ any internal symmetry. If the interactions are
uniformly bounded then the surface tension τ(12) is always zero at high temperature.

i
Indeed in that case c(Γ) = UkΓ"SBp|lφB|1^- i j .

5. Surface Tension at Low Temperature for Discrete Groups

In this last section we restrict ourselves to the case where 3?x is discrete for all x in
5£ and therefore ̂  is also discrete for all b in 38. The boundary conditions we
shall consider are θ1 =0 and Θ2e^; we denote by " + " the boundary condition
defined by Θ^O.

To discuss the properties in the low temperature domain we shall follow the
method introduced to construct duality transformations [1]. In fact, as we shall
see on explicit examples (Sect. 6), the duality transformation provides a technique
to evaluate the constant C\2 Eq. (17), i.e., to obtain a lower bound on the critical
temperature. We should insist at this point on the fact that ̂  could be of infinite
order (as far as low temperature properties are concerned the results for all
examples of Sect. 6 remain in particular valid with ^x — Z).

Let Γ, Γα), Γ(/) be the groups defined by means of the homeomorphism y as

where ̂ , ̂  denotes respectively the complete direct sum of {^x}, {^}, while
^ φ r, ^i f denotes the direct sum.

-z- ) J <Λ>> J
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Furthermore let jf and tff denote the group of closed graphs and the group of
closed graphs with finite length, i.e.

To construct duality transformations one introduces first a family k(Λ, je J of
generators for the group jf(/), i.e.

VjeJ

and

fteΓ iff <»;kω> = l V jeJ .

Using this family of generators we introduce on the set $ of bonds a "dual" graph
structure

51 and έ>2 are ^-connected if there exists some j in J such that fcj^φO and
fc^ΦO.

We shall then denote by J** the set J* with this dual graph structure.
The study of the surface tension at low temperature start from the "Low

Temperature Expansion" [I]7

Σ Π αXMi + βa)

where ̂ = [] ^;-{a-(^b)} is discrete

Following the procedure of Sect. 4 any element fteΓ^ can be uniquely decompose
into ^-connected component in Γn^^, where ft' and ft" are said to be
disconnected if the graphs β$,Cέ%* and β$»C&* are ^-disconnected. Indeed if
ft = 3' + ft" with ft' and ft" ^-disconnected, then

= != Π <%(ej;^> Π
b be)3θ, bej89»

and

Π<7b(βJ;^> = l for all
6e%

therefore

7 In the case of compact group such an expansion can also be obtained from the H.T. expansion by
means of Poisson Formula [1]
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In conclusion if the system satisfies the condition

then any element of ΓΛ can be uniquely decomposed into ^-connected components
which are also in ΓA.

Let us then introduce :

Since any graph βc^* can be uniquely decomposed into ^-connected component
we can write

where the βt are connected to β0 while the /jj are not therefore

,ΣΛ%ΣA 9Σ^

= _ = < / Σ ΛJ _Σ ^ %Σ ΣΛ
/?! *-conn to βo βj not *-conn to βo β^+Q-β β^ + Q-β

It then follows that:

μ(Λl+)(QΛ)^ _ Σ β ) Π f _Σ Π ω[fe;^+et]
^ι = *-conn to j3o

and thus

/ \ -̂̂  \~~^

βi = *-conn to βo

where

ί^SUp X β-(^b[0]-Fb[ί

b U b Φ O

Theorems. (Θ1=0;θ2e«^)
Lei {£^3$,y, V] be a discrete system in IRV, wίί/i /miίe density of lattice sites and
finite range interaction.

If the interactions are such that i) 3Γf separates 3$
ii) ΓA = Γn^^Λ for a sequence of parallelipiped /t-»IRv

iii) there exists a family of generators kϋ) for 3Cf which separates 0H ana such
that

iv) Vb[0] > Vb[_&b~] for all Bb Φθ and eVb[}£^1 then there exists a temperature Tj
such that the surface tension τ(12), if it exists, satisfies the inequality :

^C2C72 for

where C2 is a positive constant and C*2 is the constant introduced in Theorem i.
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Remarks. 1. The condition i) means that for all b^b2 in $, 3keJ#} such that
fcftlΦθandfc,2 = 0.

2. The condition ii) in Theorem 5 is equivalent to the conditions

b) For any Qe&# f the condition yb(θ) = 0 for all bφ^A implies that there exists
θ^e^ such that θ θ^e^.

Condition a) is an essential condition which appears in all discussions on
Peierls arguments. On the other hand condition b) is expected to be always
satisfied for ^-invariant systems.

3. The condition iii) appears because we have no assumptions on 5£ \ in
particular it is known that if ϊ£ = Έ* and if the system is TD invariant then this
condition will always be satisfied.

4. Using the family kϋ) of generators for Jf(/) we can construct the dual
system; i f & x = Zq, g^oo, Vxe^f then

^* - J y^ TLq. if k
ω is of order q. < oo ,

otherwise,

Since <y(θyl);kω> = l for all j we have < y(θyl); y*(θ*»)> = l for all θ*,e^*, and
using the condition i)-iii), we have :

s.t.

We thus have:

C*2= limsup γ^—CΛ

CΛ = min |y(θ) + y(θ|d)n^| = min |k* + ρ*|
Ό^^Λ * ejΓ/L*

= length of the shortest graphs l*e^* such that 1* — ρ* is a closed graph.

Proof of Theorem 5. To prove this theorem we need the following lemma whose
proof is given in Appendix 2.

Lemma 5. The number of graphs βC^A with \β\ = q such that all its connected
components are connected to a given β° is bounded by

4V if qWQ\

if q^\βQ\.

To prove Theorem 5 we first remark that if C\2 = 0 then Theorem 1 implies that
τ(1 2) = 0. Let us then assume that C\2 > 0 using Lemma 5 and the fact that CΛ ̂  \QΛ\
we have :

/^;+)(cΛ^ Σ 4'e-'ίV+ X (4ία)«
q = cΛ q>\QΛ\
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as soon as 4αί < 1, which is satisfied as soon as T< TQ because of the condition on
the potential.

Therefore

log—H
aι

which concludes the proof because of the condition on the potential, and the fact

that γ=;— IρJ is uniformly bounded (since Θ2e ̂  and <$? has finite density of lattice
11A

sites).

Conclusions

For finite spin systems with finite range interaction such that Fb[0] > J^[$b] and
which satisfy condition i) and ii) of Theorem 5 we have obtained the following
criterion for any boundary condition θ1 =0,

either limsup γ=p— —0, in which case the surface tension τ(12) is zero for all
A~*^ 11 ι' temperature

or lim sup =4— > 0, in which case there exists a phase transition associat-
Λ-*& ίl ί ed with surface tension, i.e.

τ (i2)__Q aj j^gk temperature

τ<
1 2>φO, or does not exist, at low temperature.

6. Examples

In this section we shall illustrate our results on explicit examples; it should be
remarked that all these examples have a phase transition in the usual sense.

/. Generalized Potts Models on Square Lattice

yb=ΊLq if

%b = Tl if 4 = 00,

Vb(Q) = V<xy>[θx — θy] where <xy> denotes oriented nearest neighbours on TL2.

Therefore, in this example

Let us then take the boundary conditions
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We then have :

θ(s} if b = <xy

Q otherwise .

J. R. Fontaine and Ch. Gruber

with

C p O O O Φ φ Θ O φ

' . _ 4 _ 4 _ 4 _ _ 0

X---

0--*--f--4— 4—

o-

o--- mixm
'—t— i—r—O

— Θ

- i i i - l t i *• "^-

Λ = [ ]

θ f«=o i f χ ε [ o ]

Fig. 2. Generalized Potts Model with boundary condition θ12

Using the duality transformation (see Fig. 3), Q^^Q* where

&* [0 otherwise

the shortest graph 1 *̂ such that 1̂ * — ρ* ^s a closed graph has length L.

0Λ f>Λ fl4

(Q) ( b )

Fig. 3. a Duality transformation for Potts model, b ρj

Therefore if the potential is such that

and ^<3fy

then τ ( 1 2 )Φθ at low temperature.
Furthermore for q<cowe conclude that there exists a phase transition associated

with surface tension.

2. Triangular Model with 3 Body forces

& = triangular lattice; for all xeJSf, ^x = ̂ q <2^°o

Vb(β)=V<xyz>[θx + θy + θz~] where <x^z> denotes elementary triangles.
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In this case:

J> = $fi = {b = <xyz> (x, y,z,)C&} = elementary triangle,

** = z« if g<oo
if 4=00,

where j£P = J2?^uJ^βu^c (see Fig. 4).
Let us then take the boundary conditions,

we then have :

if

if

otherwise.

i f x ε l ]

Fig. 4. Triangular model with 3-body forces and boundary condition

Using a duality transformation [1] b±->b* = b and

if

^(θ*)=-(0;+0*+0?) if \/
X

it follows that the shortest graph IJ; such that 1J; —

Therefore if the potential is such that

fora11

>* is a closed graph has length L.
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then there exists a phase transition with surface tension, if g < oo. Note that for q = GO
we can conclude that the surface tension is non zero at low temperature if Fb[0]

3. Ashkin-Tellefs Model

JSf = Z u Z for all

(xy) CZ2

A

(x'y')C%2

B

or

Let us then take the boundary condition

^=(0) Θ2 = θ"

we then have:

= =1 if ί» = x

Z 2

B - - l χ }

2-body forces —

4-body forces

Fig. 5. Ashkin-Teller model

i) Θ2=Θ ( Π )

QΛ = = 0 otherwise

ii) Θ2=Θ<Π1)

^

=ι if
= 0 otherwise

iii) Θ2-Θ(IV)

> = 1 if

L = 0 otherwise.
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Applying a duality transformation, [1]

f

Ox*^m b*=3-body forces

265

W

Fig. 6a

we obtain for ρ^ the graph:

b*- 3-body forces

Fig. 6b

Therefore for each site x*eJzf*, except xf, i = 1, ...,4, the number of bonds of ρ^
incident on x* is even: it thus follows that the shortest graph 1*[* such that l J* — ρ* is
closed has length of the order of L. Again, we then conclude that there exists a phase
transition with surface tension if the interactions are ferromagnetic.

4. Generalized Potts Model on Cubic Lattice

Vb(B) = V<xyy[θx — θy] where <xy> denotes oriented nearest neighbours on J?.

Let us take the boundary conditions θ1 - (0) θ2 - (θ(*} = θ(s}).
Again introducing a duality transformation we conclude that there exists a

phase transition associated with surface tension, if q<co.
If q = oo the conclusion is the same as in Examples 1 and 2.

5. "Plaquettes"

The model is defined on Fig. 7

Fig. 7. The "Plaquette" model

for all x c <

= sef of 4 sides on each

face of elementary cubes

or "Plaqueftes"
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To define the interactions Vb we associate with each site x of the plaquette b a given
sign εx (see Fig. 7) and we have:

[xeb

i.e.

Taking the boundary conditions

θ(1) = 0,θ(2)e^,i.e. £ ε^2)=0 we have:
xeb

_ JO if b does not intersect xv = 0
Qb ~ \Θ(2} if & intersect x = 0 and x e b n JSf " .

Furthermore we note that the condition θ^e^ implies

Σ ε*£z> = ° where εb* = εbnj^.
beElementary cubes
Intersecting xv - 0

The standard duality transformation yields the generalized Potts Model on Ί? with
fe* = <x*y*>= nearest neighbour orthogonal to the plaquette b oriented along the
axis indeed

Ύ(θχ) = χ i f b B x otherwise

Fig. 8a

Generators of ΓΛ< >Generators of
duality

For this duality transformation β$ is a subset of the bonds in the xv = 0 plane and
we have for all x*eΛ*\dΛ*

£ εfo*ρfc* = 0 where e b *=+l if •->—
b*3jc* x*

εb, = -1 if -̂ - ^*
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[—]= bonds on the boundary

of Λ*

Fig, 8b. The xμ = Q plane for the dual of the "Plaquette" model

By induction on the bonds on the boundary of/I* (see Fig. 8) we can always find
k* in JT* such that Iρ^ + k*!^!^+L2

Therefore for any θ(s) in ̂  the surface tension is zero between the state ω(+) and
at all temperature.

ω(s)

This result suggests that the surface tension could be non-zero only between
distinct states since it is known that ω( + } = ω(s\
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Appendix 1

Let <%Λ be the family of bonds intersecting Λ\bγ and b2 in $Λ are connected by a line
if Bbι r\Bb2 Φ 0. We consider 3CΛ the space of subsets with repetition of the family of
connected graphs βC&Λ with |j8|^2. For allX = (j81, ...J

G(x)= [] g(fr^j)>
(β\βjKX

|T if βt is not connected to βj

if /?. is connected to /?,,

beβ
= sites of ££ covered by X .

Lemma 2. There exists z0e]0, 1] such that

sup

[X]3X

diam[X]>d

βeX

\β\ = cardinality of β C ΛA .

Proof. This proof is the immediate generalization of the one given in [5] for the Ising
niodel and we shall indicate only the changes to be introduced.

Let

then

and φτ(X) = 0 if X is not connected.
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Since the first part of [5] are purely algebraic relations Eq. (4.27) of [5] becomes

r ^r Ά r v L

/ m + 1 ^ / m z 2 e x p Σ z

[β' connected/?

Let a be the maximum coordination number of the graph &Λ (where the
coordination number of b is the number of b' such that Bbr^Bbf =f=0), then

Σ z1 / 2 | / r | = Σ z l/2" (# of β' witn \β'\=n connected to β.)
β'connected β n ^ 2

But the number of β' containing a given b, with \β'\ = n, is bounded by α(2n~2);
therefore

Λ",

I 1 _ / 72^1/2
β' connected β n^2 λ u Δ

and:

with

It follows that there exists z 0<α~ 4 such that

Im+l^Imzκ with l/2<?c<l for z<z0.

Furthermore L = sup\φ(β)\z~ί/2^= sup z1 / 2 |^<z which yields Im<zκm.
l βr\Ύ\rj\ \β\^2 ~ m~

Introducing δ= sup(diam5b) we conclude the proof as in [5].
b

Appendix 2

Lemma 5. The number of graphs βC^Λ with \β\=q, such that all its connected
components are connected to a given β0 is bounded by :

4V if q*\β0\, (1)

4lft>"α« if q£\β0\. (2)

Proof. Define Aq = l f q ; f>:ίl\β0\]^[Qq] and ^ f(p) = q\ with

Each /4 defines for each beβ0 the length of the connected component of β which
is connected to it. Since the number of connected graphs of length q containing a
given b is bounded by aq (Appendix 1) to each f there corresponds at most xq

graphs which satisfies the conditions of our lemma. It remains therefore to bound
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for

for

q^\βo\\ ° I = ° (2)

By application of the Stirling's formulae:

1
nn]/2πn exp — n^nl^n"l/2πn exp

One has:

Ϊ2n~n

α«. (φ ̂ ) gives for cases (1) and (2) the desired bounds.
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