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Abstract. Quantum field theory in curved spacetime is examined from the
Euclidean approach, where one seeks to define the theory for metrics of
positive (rather than Lorentzian) signature. Methods of functional analysis are
used to give a proof of the heat kernel expansion for the Laplacian, which
extends the well known result for compact manifolds to all non-compact
manifolds for which the Laplacian and its powers are essentially self-adjoint on
the initial domain of smooth functions of compact support. Using this result,
precise prescriptions of the zeta-function, dimensional, and point-splitting type
are given for renormalizing the action of a Klein-Gordon scalar field. These
prescriptions are shown to be equivalent up to local curvature terms. It is also
shown that for static spacetimes, the Euclidean prescription for defining the
Feynman propagator agrees with the definition of Feyman propagator
obtained by working directly on the spacetime.

I. Introduction

In quantum field theory, it is common to derive in a formal way expressions for
quantities of physical interest. Taken literally, these expressions frequently are
either meaningless or infinite. Thus, a major task in quantum field theory is to give
a well defined, finite meaning to these formal expressions.

The theory of free quantum fields in curved spacetime is sufficiently simple that
much of it - for example, the derivation of the ^-matrix - can be mathematically
formulated in a perfectly well defined manner (see e.g. [1]). However, even in this
simple case there are two major problems that confront one: (1) the definition of
"in" and "out" particle states (or, equivalently, the definition of the Feynman
propagator) in general circumstances - in particular, for spacetimes with initial
and/or final singularities (2) the definition of finite, mathematically well defined
expressions for physical quantities whose formal expressions are nonlinear in the
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quantum field. A prime example of such a quantity is the stress-energy tensor of
the quantum field.

One approach toward dealing with these issues is to work directly in the
(Lorentz signature) spacetime under consideration. This approach has the advan-
tage of yielding a direct, physical interpretation of the results obtained. However,
with regard to problem (1) above, although some proposals have been given (see,
e.g. [2, 3]), no natural generally applicable prescription for the Feynman pro-
pagator has been proven to exist. With regard to problem (2), Fulling et al. [4]
have recently shown that if the two-point function (φ(x)φ(xf) + φ(x')φ(x)y (where
φ denotes the quantum field) is initially a distribution of the Hadamard form, then
it is of the Hadamard form throughout the spacetime. Hence, in this case, the
point-splitting prescription for renormalizing the stress-energy tensor is a ma-
thematically well defined algorithm. That this prescription yields physically
correct results (up to local curvature terms) can be seen from the fact that it
satisfies conditions 1-4 of [5, 6] and that these conditions uniquely determine a
prescription for Tμv up to local curvature terms. Thus, provided the definition of
states is such that the two-point function is of the Hadamard form, the problem of
renormalizing the stress-energy tensor has been solved (up to local curvature
terms) in this approach.

An alternative approach - which will be the subject of this paper - is to attempt
to define all quantities on a Riemannian manifold (i.e., a positive definite metric).
This has considerable mathematical advantages since elliptic operators are much
easier to deal with than hyperbolic operators. However, the physical interpretation
is much less direct since our universe is a Lorentzian rather than Riemannian
spacetime. The point of view usually taken is that the Lorentz spacetime results are
to be obtained by analytic continuation of the Riemannian results. This viewpoint
has obvious difficulties, since even if one restricts oneself to analytic spacetimes,
many Lorentz spacetimes of interest may not be sections of 4-dimensional
complex manifolds which also have Riemannian sections (and even if they do, the
Riemannian section might not be unique). Thus, the general issue of extracting
physics from the Euclidean approach is a difficult one for which much further
investigation is needed. Nevertheless, use of this approach in special cases where
the analytic continuation can be done - most notably the Schwarzschild spacetime
[7] - has elegantly reproduced results obtained with much greater labor by the
direct spacetime approach. Furthermore, although the theory of quantum fields in
curved spacetime is sufficiently simple that most results can be obtained by the
direct spacetime approach, this is not true of quantum gravity itself, where most
progress has been made via the Euclidean approach [8].

In this paper, we will focus on the formulation of quantum field theory in
curved spacetime in the Euclidean approach, specifically on the two problems
mentioned above. In the Euclidean approach, the definition of the "Feynman
propagator" (i.e., the Green's function) is much more straightforward than in the
Lorentz case. As discussed in Sect. II below, in many cases the "wave" operator for
the field will uniquely determine a Green's function and even in those cases where
a unique Green's function is not determined, there still exists a natural choice for it.
Thus, the main problem on which we will concentrate is the renormalization of
quantities of physical interest; specifically we will consider the effective
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Lagrangian. (The stress-energy tensor can be obtained from the effective
Lagrangian by functional differentiation with respect to the metric.) Our pro-
cedure for doing this is as follows: We express the effective Lagrangian as an
integral involving the "heat operator" of the "wave" operator of the field. We show
in Sect. Ill that if the "wave" operator and its powers are essentially self-adjoint
on smooth functions of compact support - as is always the case for complete
Riemannian manifolds - then the heat operator can be expressed as an integral
kernel with singularity structure of the standard DeWitt-Schwinger form. (This is
well known for the case of compact manifolds [9, 10].) Using this result, mathe-
matically well defined prescriptions for the renormalized effective action can be
given and equivalence of them (up to local curvature terms) will be shown in
Sect. IV.

Finally, in Sect. V we shall examine static spacetimes. In this case, a "Euclidean
section" exists, so the Euclidean approach can be used to define the Feynman
propagator on the Lorentzian spacetime. On the other hand, since one has a
natural notion of "positive frequency", the Feynman propagator could also be
defined directly on the spacetime. We will show that these two definitions agree.

Throughout the paper we will consider only the Klein-Gordon scalar field,
whose "wave" operator is

i.e., A is the Laplacian of the manifold plus a constant. We do not assume mΦθ
(although if w = 0 and the manifold has finite volume we must project out the
constant functions to make A positive definite). However, the results of this paper
should be applicable to any other field whose Euclideanized "wave" operator is
self-adjoint, elliptic, and positive definite.

II. Self-Adjointness, the Feynman Propagator, and Some Preliminaries

Let M be a manifold with Riemannian metric gab defined on it. We can view the
operator

as an operator on the Hubert space, L2(M), of square integrable functions on M.
Initially, we may define A in the obvious way on the dense domain C^(M) of
smooth (C00) functions of compact support. Defined in this way, A will be
symmetric but not self-adjoint1. Our first task is to extend the domain of definition
of A to make it self-adjoint.

Since A is unbounded, by the Hellinger-Toeplitz theorem [11, 12] no self-
adjoint extension can act on all vectors in L2(M). The choice of functions that A
acts on, i.e., the choice of self-adjoint extension of A, is intimately related to the
choice of boundary conditions on the Green's function associated with A. Namely,
once we have extended A to a self-adjoint operator (and assuming that the

1 The adjoint, B\ of an operator B :H~+H is defined as follows: If (y, Bx) = (z, x) for all xedom(β),
one says yeάom(B^) and defines B^y — z. B is symmetric if dom(J3T)Ddom(#) and the restriction of £f to
dom(β) equals B. B is self-adjoint if it is symmetric and dom(jBt) =
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extended operator is positive), we may use the spectral theorem to define the
"Green's operator" A~l as a densely defined self-adjoint operator. [It will follow
from later results (see Sect. IV) that if A and its powers are essentially self-adjoint
(defined below) then in most cases Green's operator A~l can be realized as a
kernel zlF(x, x') with singularities only at x = x'.] Since the range of A~l is, of
course, precisely the domain of A, the specification of what functions A acts on is
equivalent to the specification of what functions can result from action by the
Green's function. Thus, the problem of defining the "Feynman propagator" (i.e.,
the Green's function A"1) is equivalent to the problem of defining a self-adjoint-
extension of A.

Since A is positive on its initial domain C^, there always exist self-adjoint
extensions of A - indeed, positive self-adjoint extensions of A always exist [13].
Thus, the only obstacle to defining the Feynman propagator is that more than one
self-adjoint extension may exist. However, in one very important case - namely,
when A is essentially self-adjoint on CQ - no ambiguity can arise. The notion of
essential self-adjointness is defined as follows: The graph of A is defined as the
subset of L2(M) x L2(M) consisting of the pairs <x, Axy for all xedom(A). If we
take the closure of this subset, it will - since A is symmetric - define the graph of an
operator, denoted A (called the closure of A). A is clearly an extension of A. If A is
self-adjoint, then A is said to be essentially self-adjoint and A is the unique self-
adjoint extension of A. Note that the domain of A is the Cauchy completion of the
domain of A in the norm | |χl | 2 -h Mχ||2.

Thus, if A is essentially self-adjoint, there is a unique natural solution to the
problem of defining the Feynman propagator. When is A essentially self-adjoint?
Gaffney [15] has shown the essential self-adjointness of A for all manifolds with
"negligible boundary". This includes all complete Riemannian manifolds as well
as some incomplete ones (such as Euclidean space with a point removed). On the
other hand, essential self-adjointness does not hold manifolds with boundary, nor
would it be expected to hold for most manifolds with singularities.

If A is not essentially self-adjoint, then a choice of self-adjoint extensions must
be made to define the "Feynman propagator". (In more intuitive terms, further
boundary conditions must be imposed.) One condition to impose on the self-
adjoint extension is that it preserve the positivity of A, but this condition alone
need not uniquely determine a self-adjoint extension. It appears that the most
natural choice of self-adjoint extension is the Friedrich's extension [13]. This
extension preserves the positivity of A and is the unique extension with domain
contained within the Cauchy completion of the original domain of A under the
norm ||χ||2 + (χ, Aχ). Since there are at present no strong grounds for arguing
which definition of the "Feynman propagator" is physically correct, it cannot be
claimed that this solves the Euclidean version of the problem of defining the
Feynman propagator on an arbitrary curved spacetime (possibly with singula-
rities), but it is interesting that a natural, mathematically well defined prescription
always exists.

For the remainder of this paper we will focus on the second problem
mentioned in the introduction, namely, the definition of finite, mathematically well
defined expressions for quantities of physical interest, in particular, for the effective
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action. For this purpose, we will restrict ourselves to the case where A is essentially
self-adjoint on C^ and will further assume that powers Ak of A are also essentially
self-adjoint. By a theorem of Cordes [16], this holds for all complete Riemannian
manifolds. It would be interesting to see to what extent the results of this paper
would also hold without these assumptions. Essential self-adjointness of A is
certainly not necessary for the validity of the heat kernel expansion (see Sect. Ill)
as it holds for compact manifolds with boundary [9] where A is not essentially
self-adjoint. Indeed, it is possible that (choosing, say the Friedrich's extension of A)
the heat kernel expansion is valid in all cases. The essential self-adjointness
assumption will be use_d only in the proof of the following lemma. Since only the
self-adjoint extension A of A will be considered in the remainder of the paper,
from this point on the bar will be dropped and A will now denote the self-adjoint
extension.

Lemma. Let A and its powers be essentially self-adjoint on C^. Suppose φeL2(M) is
in the domain of Ak for all positive integers k. Then φeC00 and for every compact
subset ^ of M and for k sufficiently large (specifically 4k>n = dim(M}) there is a
constant K (independent of ψ) such that for all xeΉ \ψ(x)\^K(\\ψ\\ + \\Akψ\\).
Similar bounds also hold for the derivatives of ip.

Proof. We prove first that if ιpeάom(A) and /eC^ then fψeάom(A). Using the
essential self-adjointness of A, we know that ψ is in the Cauchy completion of C $
under the norm ||χ| |2+ Mχ||2. Hence, there is a sequence {gn} of C^ functions
which is Cauchy in this norm and converges to ψ in the ZΛnorm. Consider the
sequence {/#„}. We have

\\fgn-fgn\\2£max\f\2\\gn-gj2. (2.2)

Using the explicit form of A, Eq. (2.1), we also have,

A(fgn) =f(Agn) + (Va Vaf}cjn + 2VJVagn . (2.3)

Note that

= max\Faf\
2(g,,,(A-m2)gn)

rSmaxllT/ΠlflJ \\Aga\\. (2.4)

Consequently, we have

$\\A(fga-fgJ\\2£max\f\2\\A(ga-gJ\\2

+ 2max|Fa/|2 \ga-gj \\A(ga-gJ\\ . (2.5)
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From Eqs. (2.2) and (2.5) it follows that the sequence {fgn} is Cauchy in the norm
I I /dl 2 + II Aχ I I 2 and consequently its ZAlimit, namely, fψ, is in the domain of A.

By similar brute force arguments, one can show more generally that if
ψEάom(Ak), then fψedom(Ak).

If we choose the support of / to be contained within a coordinate patch, we
may view fψ as a function on IR". Since for functions with support in a fixed
compact set the norm ||χ||2+ M fcχ||2 is equivalent to the 2/c-Sobolev norm on IR"
(see [14]), it follows that/φ is in every Sobolev space. Thus,/φ, and hence ψ itself,
must be C°°. The bounds on ψ(x) and its derivatives follow in a straightforward
way from the fact that the 2/cth-Sobolev norm of fψ is bounded by \\ψ\\ + \\Akψ\\
together with the standard Sobolev bounds [14] on Rn.

The main utility of this lemma for our purposes is as follows. Using the spectral
theorem [11, 12], we can define the "heat operator" exρ( — τA) associated with the
operator A by

(2.6)

where Eλ is the spectral family of A. Since A is positive, exp( — τA) is a bounded
operator and, indeed, for all positive k, AkQxp( — τA) is also bounded.
Consequently, for every ψeL2(M), exp( — τA)ψ is in the domain of Ak for all fc.
Therefore, by the above lemma for any φeZ?(M), the function

h(τ, x) = exp( - τA) ψ (2.7)

is C00 in x for each τ >0. Furthermore, by the type of argument used in the proof of
Stone's theorem [11] it follows that, viewed as a τ-dependent vector in Z?(M), h (as
well as powers of A applied to h) is differentiable in τ with derivative

dh
-- = -Ah=-Ae~τAψ. (2.8)

The bound given in the above lemma shows that this Hubert space differentiability
implies differentiability in the ordinary function sense i.e., for fixed x, h(τ,x) is
differentiable in τ. More generally, we find that h(τ,x) is C00 in τ, and its τ-
derivatives, all are of the form Aje~τAψ and therefore are all in the domain of Ak

for all k. Consequently, they are C°° functions of x and thus h(τ,x) is jointly C00 for
τ>0. If ψ itself is in the domain of Ak for every k (e.g., if ψeC%), this result can be
extended to include τ = 0. Thus, noting that \\e~τAψ\\ ^ ||φ|| we have shown the
following result which will be used in Sect. III.

Proposition. If A and its powers are essentially self-adjoint on CQ and φeC^, then,
for τ ̂  0, h(τ, x) = e~ τAψ is C°° inτ and x and for any compact set Ή and k > n/4 there
exists a constant K' such that for all xe^ and all τΞ>0, \h(τ,x)\^K'(\\ψ\\ + \\Akψ\\).

The reason for introducing the heat operator e~τA is that quantities of
physical interest can be expressed in terms of it. For example, using the functional
calculus of self-adjoint operators (see [11,12]), the "Feynman propagator" A~l
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can be expressed as,

A~l = ]e~τAdτ. (2.9)
o

[Equation (2.9) - as well as the other similar equations below - is to be understood
in the following sense: For each ιpeάom(A~ί\ the integral of the vector e~τAιp
converges strongly to A~lιp.~\ In Sect. Ill we shall show that e~τA can be expressed
as a smooth integral kernel for τ >0 with a calculable asymptotic behavior as τ-»0.
Thus, using this result and barring the possibility of "infra-red" divergences
discussed in Sect. IV, one can show that A~1 can be expressed as a kernel ΔF(x, xf)
which is smooth except for x = xf and the divergence behavior as x-*x' can be
calculated.

Our main focus of attention for the remainder of the paper will be on the
effective action, S, of the quantum field. In the path integral approach, the effective
action is formally given by an integral over field configurations

_ — S Γ \~ /J A\~\ /->— l/2(φ..4φ) /o 1 AΛe — J L ^ ψ J ^ (2.1UJ

If we pretend that the space of field configurations is finite dimensional (so that φ
is a vector in a finite dimensional vector space and A is a self-adjoint linear map on
that space), the integral would simply be a Gaussian, and ignoring overall
numerical factors (which affect S only up to an additive constant), we would have

If, at this point, we return to infinite dimensions but now attempt to view In A as an
integral kernel L(x, x'\ we have,

(2.12)

Thus, the effective Lagrangian is

JSf(x) = |L(x,x). (2.13)

Quantities of physical interest can be obtained from jSf . In particular, the stress-
energy tensor is given by,

«U0ln>

The derivation above is, of course, entirely formal. As we shall see below In A
can indeed be viewed as an integral kernel for xΦx' but, like A~l, is singular for
x = xr. Thus, Eq. (2.13) is meaningless and our aim is to give it a finite, well-defined
meaning. We will do so by expressing it in terms of the heat operator. From the
functional calculus [11, 12] together with the corresponding equation for positive
real numbers, we have

(2.15)
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where / denotes the identity operator and y is Euler's constant,

oo

y= \e-
λ\nλdλ. (2.16)

o

Thus, by determining the structure of the heat kernel we can develop prescriptions
to give Eq. (2.13) well defined meaning.

III. The Heat Kernel

In this section we will show that the heat operator e~τA can be expressed as a
smooth integral kernel and derive an asymptotic expansion for it near τ = 0.
These results are well known for the case of a compact manifold only the method
of proof and the extension to non-compact cases where A and its powers are
essentially self-adjoint are in any way new.

We begin by explicitly constructing what mathematicians would call a
parametrix and what physicists would call a WKB approximation to e~τA.
Following the mathematicians Minakshisundaram and Pleijel [9], Patodi [10],
and others and the physicists Schwinger [17], DeWitt [18], and others, we
define for τ > 0,

Σ Afa*)J . (3.1)

Here σ is the square of the geodesic distance between x and x', χ(x, x') is a smooth
function which, for each fixed x' is identically 1 in a neighborhood of x' but
vanishes outside a normal neighborhood of x7, and the Aj(x, x'} are determined by
recursion relations obtained by formally substituting F (with χ set equal to 1) into
the heat equation. The presence of χ is necessary to keep the expression for F
(which involves σ) well defined and smooth when more than one geodesic connects
x and x'. Note also that the series is truncated at a finite integer N. The infinite
series probably does not converge in general.

The function F has the following properties : It is smooth in x, x', and τ. If we
view F as an operator on I?(M) via

(Fip) (x) = J F(τ, x, x'}ψ(x')dVf (3.2)

then F approaches the identity operator as τ->0. Finally, F nearly satisfies the heat
equation in the sense that if we define p(τ, x, x') by

(τ,x9x
f) (3.3)

(where A acts on the x-variable) then p is C°° in x,x',τ, and for fixed x', is of
compact support in x and, most importantly, for fixed x and x', p(τ, x, x') vanishes
as τ-»0 at least as rapidly as τ

N ~"/ 2 ~ 2

?

\p(τ9x9x')\£CτN-nl2-2. (3.4)

The I?-norm of p (viewed as a function of x with x' fixed) as well as powers of A
applied to p are also bounded in τ in a similar manner. The full details of the
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construction of F and the demonstration of the above statement can easily be
extracted from the above-cited references and will not be reproduced here. Note
that the construction of F does not depend on the nature of the manifold and
would also work for a metric of non-positive signature.

It is sometimes assumed (either implicitly or explicitly) by physicists that F
(with χ= 1 and N=co)ίs the heat operator e~τA. However, except in trivial cases
(such as flat space) this cannot be true. In the first place, without the presence of χ
and a finite N, the expression for F is ill defined. More fundamentally, the
construction of F is entirely local while the heat operator e~τA is highly non-local,
i.e., a bump of curvature in one place will affect the heat kernel everywhere.
Nevertheless, we shall now show that the difference between e~τA and F is a
smooth function which vanishes rapidly as τ-»0. Thus, e~τA is given by a smooth
integral kernel and F provides an asymptotic expansion for e~τA about τ = 0. The
idea of the proof is to analyze the correction term Q (defined below) which needs to
be subtracted from F to make it satisfy the heat equation. Then we use the heat
equation evolution2 to show that F — Q must in fact be the heat operator e~τA.

To begin, we define g(τ,τ',x,x') for τg iτ 'grO by

q ( τ , τ ' 9 x , x ' ) = e-*-*)Ap(τ'9x9x')9 (3.5)

where here and in the following the operator acts on the x-variable. We claim that
q is C°° in all its variables. Namely, for fixed τ' and x', smoothness of q in τ and x
follows directly from the proposition of Sect. II. Smoothness of q in the remaining
variables τ', x' follows from arguments similar to those used in the proof of the
proposition, using also the smoothness of p in these variables. Furthermore, the
proposition of Sect. II implies that for each τ' and xf and for x in a fixed compact
set #, we have

l^τU^Ol^K^τ^xOίliP^^xOII + ll^τV^OII). (3.6)

Using the bounds on p for small τ, we find that given any integer M>0 we can
always choose the series truncation integer N sufficiently large that,

τ ' , x ' ) τ f M . (3.7)

Letting K = maxK2(τ',x') over all x'eΉ and τ'e[0,τ] we find that for all x,x'e^,

l4(τ,τ',x,xOI^KτM. (3.8)

Next, we define the "correction term" Q by

Q(τ9x9*)=]q(τ9τ'9x9x')dτ'. (3.9)
o

Thus Q is smooth and vanishes as τ-»0; in particular, for x,x'6#,

\Q(τ,x,x')\^KτM+1. (3.10)

2 The idea of using the heat equation evolution was first suggested to me by M. Sweeny
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Furthermore Q satisfies

d^=q(τ^x^')+]^dτ' (3.11)
ϋτ o ^τ

= p(τ,x,x')-4β (3-12)

Consequently, using the definition of p, Eq. (3.3), we find that

^(F-Q)= -AF + p-p + AQ = -A(F-Q) (3.13)

that is,

H(τ, x, x') = F(τ, x, x') - β(τ, x, x') (3. 14)

satisfies the heat equation, and thus is an excellent candidate to be the heat opera-
tor e~τA.

To prove that H is indeed the heat operator, we define the operator (9(τ) by

β(τ) = e-τA-H(τ)9 (3.15)

where H is now interpreted as an integral kernel operator as in Eq. (3.2). Our aim is
to prove that Θ(τ) = 0. We shall do so by showing that sufficiently many of its
matrix elements vanish. Letting ψeC^ (to avoid any potential domain problems
or convergence problems with the integrals), we have

= -A(9(τ)ιp. (3.16)

Furthermore, since e ~ τA and F both approach the identity operators as τ -»0, whereas
using Eq. (3.5) and the bounds on p, it is not difficult to show that || Qip \\ goes to zero,
we have ]|0(τ)φ||->0 as τ~»0. Thus, if we fix τ0>0, let φ'eL2(M), and define

b(τ) = (e-(τ°-τ)Aψ'9Θ(τ)ψ) (3.17)

we have b(0) = 0. Furthermore,

(τ°-τ)Aψf

9 -AΘ(τ)\p)9dτ

= 0, (3.18)

Thus, we have

ft(τ) = 0 (3.19)

for all τ <τ0. Since this is true for all φe C^, all φ'eZ?(M), and all τ0, it follows that
0(τ) = 0,i.e.,

e-
τA = H ( τ 9 x , x f ) . (3.20)

Thus, recalling the definition of H and the fact that Q rapidly goes to zero as τ-»0,
we have the following theorem :
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Theorem. // A and its powers are essentially self-adjoint on CQ, then for τ>0 the
heat operator e~τA is given by a smooth integral kernel H(τ,x,xr) defined by Eq.
(3.14). Furthermore, F(τ,x,x') defined by Eq. (3.1) yields an asymptotic expansion of
the heat kernel about τ = Q.

(Please see "Note Added in Proof at end of article.)

IV. Renormalization of the Effective Action

As already mentioned in Sect. II, A~l (as well as all powers As of A) and In A can
be expressed in terms of the heat operator by integrals of the form

00

Z(s)= f έΓ'V-^τ. (4.1)
o

Specifically, for sΦO, we have

As = Z(-s)/Γ(-s) (4.2)

whereas Z(0) is related to In A by Eq. (2.15). Since for τ>0, e~τA is given by a
smooth integral kernel ίf(τ,x,x'), the operator Z(s) can fail to be given by a
smooth integral kernel Z(s, x, xf) only on account of divergences in the integral at
the upper and lower ends. We will refer to divergences at the upper end (τ-> oo) as
"infra-red divergences", while divergences at the lower end (τ-»0) will be called
"ultra-violet". We first examine the infra-red divergences.

There are two important cases where infra-red divergences cannot occur in
Z(s, x, xr) for any value of s: (a) when m φ 0 or (b) when the manifold M is compact.
The reason is that in both these cases the spectrum of A will have a positive lower
bound. In case (a), λ0 = m2, is such a bound. In case (b), since e~τA is given by an
integral kernel and M is compact, it follows that e~τA is a compact operator [12]
and since it is self-adjoint by the Hubert-Schmidt theorem [12] it has a discrete
spectrum (with zero the only possible accumulation point). Thus the spectrum of A
itself is discrete. Since zero is not an eigenvalue of A - if m — 0 then as remarked at
the end of Sect. I, we project the constants out of Z?(M) - A has a minimum
eigenvalue λQ>0 which yields a positive bound for A. Consequently, in both cases
(a) and (b) we have,

\\e-τA\\^e~τλo. (4.3)

Using the type of estimates derived in Sect. II, we can exponentially bound the
function H(τ,x,xf) in τ and thus assure convergence of the upper limit (τ—»oo) of
the integral, Eq. (4.1), for any value of s.

If w = 0 and the manifold is non-compact, we can still bound e~τA by a
constant and thereby bound H(τ, x, x') by a constant as τ->oo. This ensures that
no infra-red divergences can occur if s<0. If 5 = 0 (the case of interest for the
effective Lagrangian, In A) it seems highly unlikely that infra-red divergences ever
occur, as only a very modest fall-off in τ of H(τ, x, x') is required for convergence
of this integral. However, infra-red divergences for the Green's function or
"Feynman propagator" A'1 =Z(1) can occur. The heat kernel in ^-dimensional
Euclidean space in the massless case is simply

H*(W/)= (4 4)
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Consequently, if n = 1 or 2, the integral for Z(l, x, x') will fail to converge. This type
of infra-red divergence behavior for a massless quantum field in two dimensions
has been noted previously [19]. However, by the same reasoning, infra-red
divergence will occur for the Green's function in 4-dimensions if the Riemannian
manifold M is a product M3 x IR or M2 x IR2 (with a flat metric on IR2) with M3

and M2 compact (unless all functions which are constant on M3 and M2 are
projected out of I?(M)). For larger values of s, infra-red divergences in Z(s) would,
of course, become a much more common phenomenon in the massless non-
compact case.

We now turn to the ultra-violet divergences. The asymptotic expansion
F(τ,x,x'), Eq. (3.1), for the heat kernel gives us all the information we need to
calculate these divergences. First note that for x Φ x', F vanishes as τ->0 faster than
any power of τ. Thus, the integral [Eq. (4.1)] is well behaved as τ—»0 for xΦx'.
Consequently, except for the possibility of the infra-red divergences discussed above,
Z(s) (and thus in particular A~l and In A) is given by an integral kernel Z(s,x,x')
which can be singular only in the coincidence limit x = x'. Furthermore, the formula
for F shows that if s > n/2 the integral is well behaved even at x = x', so in this case
(barring infra-red divergences) Z(s, x, x') is continuous everywhere.

For 5 ̂  n/2, Z(s, x, x') is singular when x = x', but the divergence behavior as
x->x' can easily be calculated from F. This has been done for the "Feynman
propagator" A~l=AF(x,x') by DeWitt [18] and others although an asymptotic
expansion in powers of 1/m2 (which, for the purpose of studying the singularities
structure is entirely unnecessary) is also made there. It is found that ΔF(x,x') has
singularity structure of the Hadamard form [4] as x->x'. Since, in space time, the
Feynman propagator is equal to the anti commutator of the field operator at
space-like separations, this suggests - but does not prove - that the anticom-
mutator will be a Hadamard distribution in spacetime if definitions are made by
analytic continuation from a Euclidean section. The importance of this remark is
discussed in [4] and at the end of Sect. V below.

We now consider the problem of renormalizing the effective Lagrangian, Eq.
(2.13), i.e., giving finite, well defined meaning to the values of In A viewed as an
integral kernel L(x,x') in the coincidence limit x = x'. Our first step is to throw
away the δ-function (i.e., the multiple of the identity operator) term in Eq. (2.15)
thereby writing,

L(x,x')=-Z(0,x,x'). (4.5)

In particular, we have formally,

00 dτ
&(x) = iL(x, x) = - \ J H(τ9 x, x) -. (4.6)

o τ

As remarked above, it is extremely unlikely that infra-red divergences can ever
occur for L (even for non-compact manifolds with m = 0) so we will focus only on
the ultra-violet divergences. From the formula for F, it can be seen that (for n = 4)
only the first three terms (/ = 0,1,2) of the series contribute divergences to L(x,x).
The important point to notice is that, in this well defined sense, the divergences in

are proportional to A0(x,x), A^(x,x\ and ,42(x,x). Since the recursion
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relations for the Aj(x, x') determine these quantities in a completely local manner,
the divergences in the effective action are thus proportional to local curvature
terms. Indeed, /I0(x,x) = l, and on dimensional grounds it is easy to see that
y41(x,x) is proportional to the scalar curvature R, whereas A2(x,x) is quadratic in
the curvature. The prescriptions we shall consider for making £f(x) finite all
involve the subtraction of terms proportional to A0, A^ and A2 in the heat kernel.
The subtraction of terms proportional to A0 and Aί can be interpreted,
respectively, as a renormalization of the cosmological constant and the gravi-
tational constant, as these terms are of the same form as appear in the action of the
gravitational field. The A2 term, however, does not appear in the Einstein
gravitational action.

Perhaps the simplest prescription for defining £f(x) is to subtract from
H(τ, x, x) the term

thereby removing the divergence of the integral, Eq. (4.6), as τ-»0. The factor of

e-τm2 (whiςh is not essential for cancelling the ultraviolet divergences) ensures that
the entire heat kernel will be subtracted in flat spacetime and also improves the
infra-red convergence. However, if w = 0, the subtraction of the term A2(x, x) will
result in an infra-red divergence in the integral for τ-»oo. To avoid this difficulty,
we introduce a cutoff in the last term at τ = μ by multiplying v42(x, x) by θμ(τ) where
θμ(τ) = 1 for τ ̂  μ and θμ(τ) — 0 for τ > μ. We cannot simply set μ equal to a definite
numerical value (e.g., μ= 1) because we want £? to change only by an overall scale
factor when we change the metric by a scale factor gab->Λ2gab (with A constant) so
that physical predictions will remain unchanged. This requires that μ must
transform as μ-*/L2μ, i.e., μ has dimensions of (length)2. If mφO we get no infra-red
divergence even if we do not introduce the cutoff μ. However, this would still be
unacceptable because the limit as m->0 of the massive theory would be singular
rather than continuously approaching the m = 0 theory. Thus, we define a
prescription for =S?(x), which we will call heat kernel renormalization as follows : We
define

Kμ(τ, x) = H(τ, x, x) - e-™2(4πτΓ 2{AQ(x, x)

+ Al(x,x)τ + θμ(τ)A2(x,x)τ2} (4.7)

and set

^(x)=-HKμ(τ,x)-. (4.8)
o τ

This yields a mathematically well defined formula for «5?(x).
A change in the value of μ merely changes JS?(x) by adding a multiple of

A2(x, x). However, an important contribution is made by μ when we vary J5? with
respect to gμv to obtain the stress energy tensor. Assuming that μ obeys the above
scaling law when the metric is scaled but remains unchanged when the metric is
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infinitesimally varied by a tensor whose integrated trace is zero, we have — —

= μgμv. Consequently, an "anomalous term" proportional to gμvA2(x9x) will
appear in the expression for Tμv due to the variation of μ. This is identical to the
"correction term" added in to a point-splitting renormalization prescription for
Tμv which was required in order to make Tμv conserved [6]. The trace of this term
yields the well known trace anomaly.

The above heat kernel renormalization prescription is rather ad hoc. We can
reformulate it in a possibly more appealing manner as follows: As mentioned
above, except possibly for infra-red divergences, Z(s,x,x') is well defined for all
x, x' (in particular for x = x') if s > 2. Indeed, allowing s to be complex, Z(s, x, x) is
an analytic function of s for Res>2. We can extend the definition of Z(s, x, x) to
Res 5^2 by analytic continuation. We consider first the case where no infra-red
divergences occur for any value of s (i.e., mΦθ or M compact). Since τ2ίf(τ, x, x) is
smooth in τ, for Res>2 we may integrate by parts to obtain,

00

Z(s, x, x) - J (τ2 H(τ, x, x)) τs ~ 3 dτ
o

= ~ -7 - r; - 7 ? (τ2H}"'τsdτ , (4.9)
s(s-l)(s-2)J v ; V '

where the primes denote derivatives with respect to τ. The right-hand side of Eq.
(4.9) defines an analytic function of s for Res > — 1 with simple poles at s = 0, 1, 2.
We may define — 2JS?(x) by subtracting the pole at s = 0 from this function to
define an analytic function 3f(s, x) and then setting s — 0. Noting that

ίτs 1\
lim --- =lnτ (4.10)
s-^O \S SJ

we obtain

5r(s = 0,x)=-|J(τ 2 H) / / / lnτdτ + Jα2(x), (4.11)
o

where α2(x)^(τ2ίf)"|τ = 0. We may make Eq. (4.11) more recognizable by breaking
up the integral into an integral from 0 to μ plus an integral from μ to oo and
integrating each integral by parts, choosing initial conditions in each case on
integrals of derivatives of τ2H so as to get vanishing contribution from boundary
terms, respectively, at 0 and oo. The final result is,

)= J H- % - ̂  -K(τ)α2- +^2\nμ, (4.12)
o [ τ τ j τ

where α 0=τ 2ί/| τ = 0, α 1=(τ 2H)Ί τ = 0. The right-hand side of Eq. (4.12) is μ-
independent. As noted above, this is unsatisfactory since one wants JS?(x) scale
homogeneously when the metric is scaled. To accomodate this requirement, we
modify the prescription by dropping the term ^α2 Inμ. With this term dropped, it is
easily seen that the analytic continuation prescription for defining — 2j£f (x), Eq.
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(4.12) is identical to the heat kernel renormalization prescription when m = Q and
differs only in a trivial manner - namely, by finite multiples of A0, A1, and A2 -
when mφO. (Thus when raφO a correction must be made to the analytic
continuation prescription in order to get vanishing effective Lagrangian in flat
spacetime.)

If infra-red divergences do occur for large enough s, Z(s, x, x) may not be
defined for any value of s. However, we may break-up the integral for Z into an
integral from 0 to μ plus an integral from μ to oo. The former integral is analytic
for Res>2, while, as discussed above, the latter integral is almost certainly always
finite for s = 0. Thus, we may leave the second integral unchanged and analytically
continue the first integral as above. The final result is again Eq. (4.12). Thus, infra-
red divergence for s > 0 pose no difficulties for this prescription.

The above analytic continuation prescription for defining JS?(x) can be
interpreted as dimensional renormalization [20] as follows. If the self-adjoint
operators Bί and B2 commute, then e~τ^Bί+B2) = e~τBle~τB2. Consequently, if the
Riemannian manifold (M,g) is a product of the manifolds (M^g^) and (M2,#2),
then the heat kernel for the Laplacian on (M, g) will be the product of the heat
kernels on (M^g^) and (M2,g2). Since the heat kernel for the Laplacian in fc-
dimensional flat space in the coincidence limit x = xf is simply

HE(τ,x,x) = (4πτΓkl2 (4.13)

we see that - except for the extra /c-dependence of the factor 4π (which leads to
entirely trivial consequences for the prescription) - adding on extra flat dimensions
to the original manifold is equivalent to changing the value of s in the integral for
Z(s), Eq. (4.1). Thus we may view the procedure of considering values of s for which
the integral for Z is well defined followed by analytic continuation to 5 = 0 as
adding on extra flat dimensions followed by analytic continuation to n = 4.
Unfortunately for this interpretation the number of flat dimensions that must be
"added on" to make the integral well defined is negative (k < — 2). It should be
emphasized that this "dimensional renormalization" prescription is equivalent to
the above analytic continuation prescription only when done precisely in the
manner described here. If the dimension is varied in a different manner (e.g., non-
flat dimensions are "added on") or if other quantities (such as the form of the
equation) are allowed to vary with dimension, different results may be obtained.

A slight variant of dimensional regularization is the following zeta-function
procedure [21]: Instead of considering Z(s,x,x) we consider the ζ-kernel defined
by

ζ(s,x)=—Z(s,x,x). (4.14)
1 \S)

In the same manner as for Z, it follows that except for infra-red divergences if M is
non-compact and m = 0, £(s, x) is analytic in s for Re 5 > 2 and can be defined for all
s by analytic continuation. Whereas Z(s) has poles at all integer values of s ̂  2, ζ(s)
will have poles only at s = l, 2 since the poles in Γ(s) cancel those of Z(s) at the
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other values of s. Using Eq. (4.9) for Z(s), we calculate the derivative of ζ(s, x) at
s = 0 to be,

(4.15)

where y is Euler's constant, Eq. (2.16). Comparing this with Eq. (4.11), we see that if
we define the zeta-function renormalization [21] prescription for 2jS?(x) to be
— Γ(0,x) plus ^α2lnμ (to get the proper scaling behavior of <£\ this prescription
differs from the analytic continuation prescription only by the entirely trivial term

2V α 2
The intuitive motivation for the zeta-function prescription is as follows : If M is

compact, we may define the (-function by

ζ(s)= f C(s,x). (4.16)
M

For Res>2 we have,

where λj are the eigenvalues of A. For Res ̂ 2 the sum does not in general
converge but formally we have

ζ'(0)= - Σ\nλj = -IndetX. (4.18)
j

Thus, formally — ^£'(0) is the effective action, Eq. (2.11). It is gratifying therefore
that the zeta-function renormalization yields essentially the same prescription for
JS?(x) as dimensional renormalization and heat kernel renormalization.

The heat kernel fί(τ,x,x') becomes singular when both τ = 0 and x = x'. In the
prescriptions given above, we set x = x' and modified the τ behavior of H to yield
finite results for j£?(x). An alternative approach is initially to keep xΦx'. The τ-
integral is then finite but divergences occur when the coincidence limit x-»x' is
taken. However, the "divergent part" of this expression can be explicitly calculated
from the asymptotic expansion of H near τ = 0 and we may obtain a prescription
for J5?(x) by subtraction of this divergent part from L(x,x') before taking the
coincidence limit x-»x'. This defines the point-splitting renormalization pre-
scription [23], which may be stated more explicitly in this case as follows.

For xΦx', we have,

L(x,x')=- jtf(τ,x,x')-. (4.19)
o τ

By inspection, the divergences in L(x,x') when x-»x' can be attributed to the first
three terms in the asymptotic expansion F of H. Using the definite integral [22]

(4.20)
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where Kv denotes the modified Hankel function [22], we find that the first three
terms of F contribute to L(x, x') the terms,

m 2 1 / 2

(4π)2

(4.21)

where we have cut off the last integral at τ = μ to prevent infra-red divergences
when w->0. The point-splitting renormalization prescription for defining j£?(x)
consists of subtracting the above expression from L(x, x') and then taking the
coincidence limit x->x'. Defined in this manner it is clear, that point-splitting is
identical to heat kernel renormalization, which, as shown above, differs from
dimensional renormalization and zeta-function renormalization by at most finite
multiples of the local curvature terms AQ, A19 and A2.

As discussed in Sect. II above, the stress-energy tensor is obtained by
functional differentiation of jS?(x) with respect to gμv. Most of the point-splitting
prescriptions have been given directly for renormalization of the stress-energy
tensor Tμv rather than for the action [23, 6]. A formal calculation indicates that the
above point-splitting prescription for JS?(x) followed by functional differentiation
with respect to gμv is essentially equivalent to the direct prescriptions for Tμv. [Note
that the functional derivative of the subtraction term for L(x, x') yields both the
subtraction terms needed to make Tμv finite plus the "correction term" mentioned
above arising from the functional derivative of μ and required for a conserved
stress-tensor.] Thus, the point-splitting prescription for &(x) given above should
be equivalent (up to finite multiples of functional derivatives of A0(x, x), ^41(x,x),
and ,42(x,x) with respect to gμv) to the direct stress-energy point-splitting
prescription. However, a proof of this statement would require a careful treatment
of functional derivatives of operators, which we shall not attempt to do here.

Up to this point, we have focused on the question of whether the various
prescriptions for defining jSf(x) are mathematically well defined, not on the
question of whether they are physically correct. This latter question is difficult to
analyze, since the prescriptions here are defined for Riemannian manifolds while
the physics takes place on Lorentzian spacetimes. However, the point-splitting
prescription for Tμv is also mathematically well defined on a wide class of
Lorentzian spacetimes [4]. There it yields a renormalized Tμv which is consistent
with causality, conservation, and other requirements [5, 6]. Since these require-
ments uniquely determine Tμv up to local curvature terms [5, 6], we have strong
grounds for believing that the point-splitting prescription on spacetimes is
physically correct (up to the local curvature terms). If the field theory on spacetime
is defined by analytic continuation from a Euclidean section, the point-splitting
prescription for Tμv defined directly on the spacetime should be equivalent to
analytic continuation of the point-splitting prescription for Tμv defined on the
Euclidean section, which should be equivalent to functional differentiation of the
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point-splitting prescription J2?(x), which, in turn, is equivalent (up to local
curvature terms) to heat kernel, dimensional, and zeta-function renormalization.
Thus, we have strong grounds for believing that all the prescriptions considered
above are physically correct (up to addition of local curvature terms). In
particular, this argument strongly suggests that if heat kernel, dimensional, or
zeta-function renormalization is performed on a Euclidean section and continued
back to spacetime, it will satisfy the causality axiom of [5]. This is rather
remarkable in view of the fact that the notion of causality cannot be meaningfully
expressed in the Euclidean section.

V. Static Spacetimes

In the previous sections we have discussed the definition of the "Feynman
propagator" and the renormalization of the effective action in a "Euclidean
section" of curved spacetime, i.e., on a Riemannian manifold (M, gab). We have
avoided the question of how one finds this Euclidean section and how one
continues the results back to the Lorentz spacetime. As remarked in Sect. I, these
are very difficult issues. However, in the case of a globally static spacetime, there is
a natural prescription for obtaining a Euclidean section. If we label the hyper-
surfaces orthogonal to the timelike Killing field by the Killing parameter ί, then
the "Wick rotation" £-> — it yields a Riemannian metric. Thus, in the static case we
may attempt to define the Feynman propagator by Wick rotating f-> — it,
obtaining A~l as in Sect. II, and then Wick rotating back t->iί. On the other hand,
in static spacetimes one has a natural motion of "positive frequency" and can
define the Feynman propagator directly on the spacetime. It is of interest,
therefore, to see if these two definitions agree. In this section we shall show that
they do. We begin by deriving an expression for the Feynman propagator
obtained directly in the Lorentz spacetime from the natural notion of positive
frequency.

The wave operator in a static curved spacetime can be written as,

-PαF f l + m2 = 7-2-^+£, (5.1)

where V2= —gQQ>Q is the squared norm of the timelike Killing field and B is a
positive elliptic operator which is independent of ί and thus may be viewed as
acting on L2(M3) where M3 denotes the 3-manifold orthogonal to the Killing field.
We define the operator C by

C=V2B. (5.2)

If we let L2(M3) be the Hubert space of square-integrable functions on M3 with the

volume element ]/g^/V (where ]/g^ denotes the natural volume element obtained
from the induced metric on M3), then C:Z2(M3)—»L2(M3) is a positive symmetric
operator on C^(M3), and hence can be extended [13] to a positive self-adjoint
operator, which we shall also denote by C.
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We define the one-particle Hubert space ffl of positive frequency solutions to
the wave equation as follows: Let /edomC1/2CL2(M3). Then

F(t,x) = e-icl/2tf (5.3)

will be a solution of the wave equation, which we shall call "positive frequency".
[Note, incidentally, that if C and its powers are essentially self-adjoint on C^(M3)
and /e C$9 then the arguments of Sect. II show that F(t, x) is C°° in t and x]. The
Klein-Gordon inner product of F and G = e~icl/2tg with gedomC1/2 is

M3

\J J J ' - f r

(5 4)
Thus, the Klein-Gordon norm (F,F) is positive definite. We define the Hubert
space ffl of all positive frequency solutions to be the Cauchy completion of this
space in the Klein-Gordon norm. The Hubert space of all states of the quantum
field is taken to be the Fock space constructed from J^7.

The quantum field operator φ may be defined by

φ(t, x) = £ TO *K + F*(t, x)αj], (5.5)
i

where {FJ is an orthonormal basis of positive frequency solutions, ai and a\
denote the annihilation and creation operators associated with F , and both sides
of the equation are to be interpreted as distributions. In the following we will
ignore technical issues relating to the convergence of the sums. [In the unlikely
event that any convergence problems arise in the derivation, we could simply take
Eq. (5.8) below to be the definition of the Feynman propagator.] In terms of the
field operator φ, the Feynman propagator is,

, x f, x') = <Q\T(φ(t, *)φ(t, x))|0>

x'^fM) t'^t (5.6)

For each value of ί, we may view each test function ιp(ί,x) on which ΔF acts as a
vector φίeZ2(M3). We may also take the orthonormal basis {FJ to be of the form

pi = e-ic^ with y:edomC1/4 [so that {|/2C1/4/;.} is an orthonormal basis of
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L2(M3) according to Eq. (5.4)]. Assuming that F2ιp ίedomC~1 / 2

? we find

ΔF(t',x';ψ)=Σ'Fi(t',x')
ί t^

+ t>tf term

Λ> y Ψt)L*(M3)
— oo

+ 1 ;> t' term

cr1'4*-*1'2'' f
— oo

+ 1 ̂  ί' term

(5.7)

Thus, if for each t and t' we view AF as a map from L2(M3) into L2(M3), we obtain

u*c-ί/2V2 t'^t

^£- \l2y2 ^ < ̂  (5 ^)

where here F2 denotes the operation of multiplication by the function V2. Our aim
now is to compare this expression with the Euclidean expression for the Feynman
propagator.

Making the "Wick rotation" t-> — z'ί, we convert the wave equation into the
Laplace operator

(5.9)
01"

If we define the operator A by

A = V2A=--fi-2+C (5.10)

then the Feynman propagator A ~ * is given by

A~l=A-lV2. (5.11)

Since the operator A is self-adjoint with the natural volume element V]/g^ on the

4-dimensional manifold M (where ]/g^ is the natural volume element on M3), A

will be self-adjoint with the volume element ]/gi^/V on M.
We can express A ~1 in terms of its heat kernel by,

Ά-l=]e-τλdτ. (5.12)
o
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The reason for introducing A is that it is the sum of the two commuting self-
adjoint operators —d2/dt2 and C. Hence, its heat kernel is the product of the heat
kernels of the individual operators. But the heat kernel of — δ2/dt2 is well known
to be

.-(ί-ί')2/4τ
( _ 02/0,2) _ C (£- ns

(4πτ)1

Thus, we have,

Je- ( ί-' ' ) 2 / 4 τέΓ τ Cτ- 1 / 2ί/τ. (5.14)
/4π o

Using the fact that for α and β positive real numbers,

r (5.15)
o ]/ P

(see § 3.472 of [22]) we obtain,

A-1=A~iV2=-

Hence, if we Wick rotate Eq. (5.16) back to the spacetime by setting ί-»ι'ί, we
obtain precisely, AF, Eq. (5.8). Thus, in the static case, the Euclidean procedure for
defining the Feynman propagator agrees with the direct spacetime construction of
it.

It is worth remarking that, as already noted in Sect. IV above, except for the
possibility of infrared divergences when m = 0, the Euclidean Feynman propagator
always is given by a kernel with singularity structure of the Hadamard form as
x-*x'. This strongly suggests that in static spacetimes (at least when mΦθ) the two-
point function (φ(x) φ(xf) + φ(xf) φ(x)y - which is equal to the Feynman pro-
pagator when x and x' are spacelike separated - will be a Hadamard distribution.
If this holds, then the result of Fulling et al. [4] proves that in any initially static
spacetime, the two point function will be a Hadamard distribution everywhere, and
thus the point-splitting prescription for renormalizing Tμv (defined directly on the
spacetime) will be well defined. Furthermore, the proof of [1] could be directly
taken over to prove existence of the S-matrix in a spacetime which is initially and
finally static and has compact spacial sections (i.e., a closed universe).
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Note Added in Proof

The essential self-adjointness restriction on A and its powers can be removed and the theorem can be
generalized to prove the validity of the local heat kernel expansion of the operator e~τAE where AE

is any self-adjoint extension of A which is bounded from below. To do so, we construct F as before,
or better yet (to avoid the technical inconvenience of working with a finite N) pick a small neighbor-
hood Λf of x', construct a compact manifold (for which the above result already applies) with a
neighborhood isometric to Jf, and let F denote the heat kernel of this manifold multiplied by a smooth
cutoff function χ(x, x') which is 1 near x' but vanishes outside ΛΛ The failure, p(τ, x, x'), of F to satisfy
the heat equation will be a smooth function which vanishes as τ-»0 faster than any power of τ and thus
can be extended to a C°° function for τ ̂ 0 by setting p = 0 there. If we again define the correction term

(5 by Q= j e~(τ~τ)AEpdτf for τ ̂  0 and now set Q = 0 for τ <0, then we can no longer use our estimates to
0

prove directly that Q is smooth, but viewing Q as an L2-vector for each τ and x', it will satisfy dQ/dτ
+ AEQ = p., where the τ-derivative is understood in the (strong) Hubert space sense. Consequently,
if we view Q as a distribution acting on test functions of (τ, x) in IR x Jί', we see that Q is a weak solution
of the heat equation with smooth source p. Since the heat equation is hypoelliptic (see L. Hormander,
Commun. Pure Appl. Math. 11, 197-218 (1958)) this implies that, in fact, Q is given by a C°° function.
Since Q = Q for τ<0, this function vanishes faster than any power of τ as τ—>0 from above. Since the
argument that e~τAε = F- Q goes through as before and the above theorem holds for F, this establishes
the result for e~τAε. (The bounded from below property of AE was used here only to ensure that the
heat operator is bounded, thereby avoiding possible domain problems.) I wish to thank M. Atiyal for
helpful discussions on this argument.




