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a Gibbs Random Field
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Abstract. We extend the validity of the implication of a local limit theorem
from an integral one. Our extension eliminates the finite range assumption
present in the previous works by using the cluster expansion to analyze the
contribution from the tail of the potential.

1. Definitions and Results

1.1. Assumptions

We consider a v-dimensional lattice spin system, to each χeZv is associated a spin
sx that can take all the integer values lying between the two integers n,m. We
denote by σ the max(| n , | m\ ), A configuration SΛ in a subset Λ, A c Zv is given by
an element of {n, ...ra}A, If Λ9M are two disjoint subsets of Zv, we denote by
SΛ v SM the spin configuration in Λ u M individuated by SΛ,SM. The interaction
is given by a pair long range potential of the form J(x — y)sxsy where J is a real
function on Zv. We assume that:

1.2. Definition. Let A be a finite subset of Zv. The Gibbs conditional distribution
on the set of configurations in Λ, with condition szv\Λ is defined as:

ί V }
PΛ(SΛ\SZ*\Λ) = exP) X^A J(x ~ 3^Λ + Σ Ms* V\J \/ZA(h,J)'

(~ xφy xeΛ }

where

ftχkkv)= Σ ./(x-yKΛ + noK2 (1.3)
yeZv\Λ

and Z^(/ι, J) is the partition function for the set of spins in A9 with pair interaction J,
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and external field h:

Σ J(x-y)sxsy+Σhx(sx\sZΛΛ)\ (1.4)
SΛ .x,yeΛ,x^y xeΛ )

1.3. Definition. We call a Gibbsian sequence a sequence of pairs ipΛk('\s^v,Λk\
00

5zv\^k) where Λk is a sequence of cubes in Zv, such that Λk(^Ak+ί and (J /Lfc = Zv,
k = l

and s^Λk is a sequence of configurations in Zv\Λ f c . Let Ek denote the expectation,
and Ph the probability computed by means of the probability distribution

PΛk('\ 4v\Λk)
 and f°r each k> let £* > %k be ti16 random variables

where Dk = £fc((£k - £fe(£fc))2) denotes the variance of ξk.

1.4. Definitions. We say that the integral central limit theorem holds for the
Gibbsian sequence (pAk( \ sk

z^Ak\ sk

IΛΛk) if:

(i) H m D f c / | Λ j = α
k->oo

(ii) α > 0
x

(iii) limPk{ξk^x}= J exp(- z2/2)dz/^/2π
k-*oo .̂

We say that the local central limit theorem holds for the Gibbsian sequence

(PΛfc(' 1 5ZΛ^k)' 5zv\yi J if (i)» (ϋ) are verified and

lim sup \^DkPk{ξk = p}- exp( - (p - Ek(ξk))2/2DJ/j2ic\ = 0. (1.5)
k-» oo p

The aim of this paper is the proof of the following:

1.5. Theorem. Under the assumption 1.1, if the integral central limit theorem holds
for a given Gibbsian sequence, then the local central limit theorem holds for the same
Gibbsian sequence.

The method of the proof follows the one introduced for independent random
variables [1], and extended to lattice spin systems with short range interaction
[2, 3]. We briefly describe it in Sect. 2, where we reduce the proof of Theorem 1.5
to estimates for the characteristic function of a sum of "almost independent"
random variables. These estimates are obtained in Sect. 3, expressing the charac-
teristic function as a ratio of partition functions of suitable "polymer models"
with hard core interaction, that can be estimated by a cluster expansion.

Our result can be extended to more general lattice spin systems, including the
case of more general two body and many body potentials; assumption (1.1) on
two body potential can also be weakened, and we limit the proof to the model
described above for the sake of simplicity.

2. Method of the Proof

In this section we show the line of the proof of Theorem 1.5. Let r0 be
an integer, and ̂ V0) the sublattice of Zv defined by the set of v-ples {n^r^ , . . . , nvr0
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n.eZ, i=l , . . . , v } . With the notation of Sect. 1, let Λk = Λ f cnZv(r0) and
Ek('\sΛk\Λk) denotes the expectation with respect to the probability distribution

Pλk('\sΛk\λk

 v SZ^ΛJ)- The characteristic function fk = Ek(e\p(itξk)) satisfies the
inequality:

^ sup μ

If r0 is large enough, the spins in Λk are "almost not interacting", and one can
expect that the r.h.s. of (2.1) behaves as the characteristic function for a sum of
independent random variables. This is indeed the meaning of the following lemmas.
We assume that 1.1 holds.

2.2. Lemma. There is a positive constant D, not depending on 4Λylk, such that,

ifδ.r'1 are small enough and \t\ ^ δ^/l\, then:

\Ek(exp(it Σ sx/^/D~k)\sA^λl)\ ^exp(- t2\Άk\D/Dk) (2.2)

uniformly with respect to sΛk^k

2.3. Lemma. For every finite δ, there is a positive constant C, not depending on the

sequence s^v,Λk, such that, ifδ^/Dk rg 1 1 ^ n\/Dk>
 and r0 is large enough, then

uniformly "with respect to sΛk^k.
In [2] it was sufficient to take r0 bigger than the range of the potential in (2.2),

(2.3), to have them satisfied. In the case of long range potential we cannot have the
conditional independence of the random variables sx,xeΛk, under the conditions
sΛk\Λk •> but we can show, using a cluster expansion, that the long tail of the poten-
tial causes the addition of a term φ(r0) in the arguments of the exponentials in the
r.h.s. of (2.2), (2.3) which becomes infinitesimal if r0 is large enough.

Proof of the theorem. Assuming that Lemmas 2.2, 2.3 hold, the proof of the theorem
may be obtained following the one for independent random variables, by

sup \^DkPk(ξk = p) - exp(- (p - Ek(ξk))2/2Dk)/^2π\
P

g J |E,(exp(/tξ))-exp(-ί2/2)|dί
-A

+ f exp(-t2/2)dt+ J Ek(GXpitξj))\dt (2.4)

J \Ek(exp(itξk))\dt

If A is large enough, the second term in the r.h.s. is small and, for every A, if the
integral central limit theorem holds, the first term is also small, for large k. It is
easily shown, using (2.1), (2.2), (2.3) and the assumptions (i), (ii) of (1.4) that r0, δ
may be chosen in such a way that the last two terms decrease to zero as k increases.
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3. Proofs

In this section we will use a Mayer expansion to get the estimates (2.2), (2.3). The
construction of the Mayer expansion, that is described in [4] for a gas of interacting
particles in (Rv, has been carried out by various authors for systems similar to the
one we will have to deal with [5, 6]. We then only state in the following the main
definitions and results that we will use, and refer to the literature for more details.

3.1. Definitions

Let 2F be a family of non-empty subsets/ c Zv, consisting of at most two points.
A polymer R is a set [f^ , . . . ,fp} of distinct elements ̂ ej^, that is connected in the
following sense: for anyfl9fmGR, there exist /kι, ... ,/k eR such that/kι =fι,fk =fm

and/kj. nfkj + l^= 0. Let ̂  be the set of all polymers and, if R e<%9 denote by R the

subset of Zv, R = ( J f ; the activity ζ is a function ζ :& -> C, such that \ζ(R)\ is
/e*

bounded and the partition function for a gas of polymers, with activity C, and hard
core interaction, in a subset A c Zv, is defined as :

_ ί=l
RίcΛ,RinRj=φfiγj

We state now the main properties of the "low activity" expansion of the partition
function (3.1).

3.2. Theorem. Let ψ be a real, positive function on Zv such that

Σ OAM)1/2 — K < oo and z0 a positive number such that^fz^K < 1. Assume that :

= sup A(x-j;) (3.2)
feR x,yef

Define on & = \J $n the real function φτ as
n^l

φτ(R1,...,Rn)= Σ (-l)#^'«Vn!

n(R19...,Rn) is the set of connected graphs with n vertices (!,...,«)
(1,7) corresponding to pairs Rt , Rj such that Rt n ̂ . ̂  0. FF^ set the sum

equal to zero if$n is empty and one ifn = l. Then

Σ \ζ(R)\£B(z0,K) (3.3)
R.R3X

and, ifz0 exp (B(Vz0 ,K)) = C(z0 ,K)<1

(3 4)
ί = l
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Σ Σ \φτftι,.. ,RJ\Π\W\

- _C(z0,K)/(l-C(z0,K)) (3.5)
l l v zo

Proof (3.4) and (3.5) may be deduced with standard methods (see for example
the proof of 4.32 in [5]) if (3.3) holds. The absolute convergence of the series (3.4)
can be derived from (3.5). We then prove only (3.3), that is the main "model depen-
dent" statement of the theorem.

Let <yχ be the set of walks on Zv, starting from x, that is

^Γ = {(x x} n>\ x GZV x = x\

It is easy to check, by induction on the number of elements in R, that to every R,
xεR, may be associated a non-void subset Tx(R)a^~χ such that the walk
(x0,...,xL)eTx(R) if V i — 0,. . . ,L— 1,{χ.,χ.+ 1}eJR and if for each two point
sεtfεR there are exactly two indeces 0^i<j^L— 1 such that {x ί5x ί+1} =
{ X j , x j + 1 } = /and for each one point set/ejR there is exactly one index 0 r g z :gL— 1
such that {x.} = {χ.+ 1} =/ It is clear that if R φ R', Tx(R)n Tx(Rf) = 0. Then

if t: Zv x Zv -> U is defined as φc, x) = z0, t(x, y) = (z0ψ(x - j))1/2, x ί y:

g v-o- =B(zQ9K) (3.6)

We will also make use use of the following :

3.3. Proposition. Let xeΛk, and px(s\szv^Λl) be the probability distribution on the
values of the spin in x:

m

Σ exp(MskΛyίk)) (3 7)

and denote with Ex the expectation with respect to px . Then there exists a positive
constant d such that

(i) Ex((s-Ex(s))2^d

and, for every 0 < δ < π, there exists a strictly positive constant c such that:

(ii) I Ex(exp (its) ) \ < exp (- c) for δ ^ t \ ̂  π

uniformly with respect to s%v^k

Proposition 3.3 is a direct consequence of the uniform lower bound:

Rcfcl Vvϋ ^ eχp( - 2°2 I I J I I )/lm - n\
where I I J ||= ^\J(t)\.
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We proceed now to prove the lemmas. We start from the identity:

£t(exp(iί Σ (sx - Ex(sx))/^D~k)\s Ak) = ZAk(H, J)/ZAk(h°, J) (3.8)

that follows from (1.2) and the definition of Ek( \ );J is the restriction to
of J, and :

Introducing now suitable "polymer models", we will get estimates of the ratio
in (3.8) by low activity expansions, as a consequence of theorem (3.2).

Proof of Lemma 2.2. Let 2F be the family of all the non-empty subsets of ^V(r0)>
with at most two points, and let ψf be the function on the spin configurations
in /defined as:

(3.10)

Define on the set of polymers & constructed by 3F the activity function:

p (s \ s v ) X ψ (s ) (3 ii)
\SR xeR feR

where px( \') is the probability distribution (3.7). Using the inequalities |ιA{;c}(s)| ̂

2σδ for t \ < δ^/D~k, \ Ψ{X9y}(sx,sy)\ ^ σ 2 1 J(x - y)\ exp( JrQσ2) where Jro -
sup |J(ί)|? and assumption (1.1) on the pair potential, it is easily seen that, if

r~1 and δ are small enough, the polymer model just defined satisfies the hypotheses

of theorem 3.2 (choose for example z0=max{2σδ,σ2Jroe
Jr°σ2} ψ(t) = \J(t)\/Jro,

t φ O (̂O) = 1) and that it is such that:

i(Q (3.12)Zjβt,y)= Π Σ
xeΛk \ s = n

The statement (3.4) of Theorem (3.2) gives then:

£fc(expOί Σ (Sfc-

Expanding the exponent in series of ί, we get, for a suitable θ,θ<^v ̂ k

] Σ 9T(R,,.--,R
i = l

Σ Σ ΨT(Rt , , Rn) Re Π ί,W
n^l (Rι,...,Rn)

1)
t = θ_\/

(3.13)
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Σ

\<PT(Rlt...,Rj\
n,Rι,...,Rn

~2 Π c,aτ i=1

(3.14)

where £* ranges over n-ples R19...,Rn such that £ | JR. | Ξg 2. Observe now that

if R = x,φτ(R) = ί ζt(R) = Ex(εxp(ίt(sx - Ex(sk))/^Dk) - 1) so that the first factor

in (3.14) may be estimated using Proposition (3.3) by:

V Re—-^E(ί t(s γ — Ev(sv)/ v/βJ — ϊ)< — \Λ,\(d + φ(δ))/DJf'~ ut Λ ^ ^ Λ Λ ^ Λ" V «,' I ft. I ' ' ft.

where |<p(<5)| ^ 16σ4δ2. The terms appearing in Σ* with n = 2 and Rί = R2 = x
give a contribution equal to Cφ(δ) where C is a constant not depending on r0, δ, k.

This can be obtained easily using that \ζ't(R)\ ^const δ/^/L^, if |#| = 1. The
remaining terms may be estimated using again the theorem 3.1. A direct compu-
tation gives in fact:

Re
d2

Π

if \t\ rg Σ I Rt I ̂  2, where iff can be chosen as above and z is such that

+κ with N ^ 2, K ̂  1. It is easy to see that it is sufficient to take

> 2~2/3

N/z0 if z0 < 1/16. For r"1,^ small enough one gets that:

-N-2 + K
^0

Σ Σ - C(z,
f<=R

(3.15)

where φ(r0, δ) -> 0 if δ -> 0, r0

 1 -> 0 and the lemma is proven.

Proof of lemma 2.3. Let now 2F be the family two points subsets of ^V(r0)> and
let ̂  denote the set of polymers constructed by 3F.

Define on ̂  the real activity function

sf) (3.16)

where c is a positive constant, and ψ{x y} is given by (3.10). It is easy to show that
if r0 is big enough, theorem 3.2 applies to the polymer model defined above
(choose for example z0 = Jroσ

2 exp( Jroσ
2 + 2c), and ψ as above).
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It is now easy to check that:

,«A ))• (3-17). - \^lfcy y N '
XeΛfc S

( / n \ \

Σ ( Π hcWl ) Π exp^lEjexp^/v/D^))!)
n,Kι,...,.Rn \ i = l xe^ Γl ~

then, if c is such that Proposition (3.3) applies, one finds, for δ ̂  1 1 |Λ/Ϊ\ ^ π:

^exp(- c \ Λ k \ ) Ξ j ( \ η c \ ) / Ξ A ( η 0 ) (3.18)

Using again (3.4), (3.5), the ratio in the r.h.s. can be estimated as:

SA(hcl)/sAfoo)^e^^ (3 19)

where, for fixed c, z0 -*> 0 for r0 ->• oo, and the lemma is proven.
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