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Abstract. We extend the validity of the implication of a local limit theorem
from an integral one. Our extension eliminates the finite range assumption
present in the previous works by using the cluster expansion to analyze the
contribution from the tail of the potential.

1. Definitions and Results

1.1. Assumptions

We consider a v-dimensional lattice spin system, to each xeZ" is associated a spin
s, that can take all the integer values lying between the two integers n,m. We
denote by ¢ the max(|n|,|m|), A configuration s, in a subset A, A = Z* is given by
an element of {n,...m}* If A, M are two disjoint subsets of Z*, we denote by
S, V 8, the spin configuration in AU M individuated by s,,s,,. The interaction
is given by a pair long range potential of the form J(x — y)s.s, where J is a real
function on Z'. We assume that:

YO =y< o (L.1)

teZ¥

1.2. Definition. Let A be a finite subset of Z*. The Gibbs conditional distribution
on the set of configurations in A, with condition s, , is defined as:

pA(sA|sZV\A) = exp{x;y1 Jx—y)s,s, + Y h(s,] sZV\A)%/ZA(h, J)
xFYy xeA

where

hx(sxlszv\A) = Z J(X - y)SxSy + J(O)Si (13)

yeZv\A

and Z ,(h, J) is the partition function for the set of spins in A, with pair interaction J,
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and external field h:

Z (D)= exp{ Y Jx—yss,+ hx(sx]slv\A)} (1.4)

sa x,yed,x #y xeA

1.3. Definition. We call a Gibbsian sequence a sequence of pairs (p,, (*| sgv\ A

s 4,) Where /, is a sequence of cubes in Z, such that A, = 4, ., and () 4, = 2",
k=1

and sﬁv\ 4, 18 a sequence of configurations in Z*\/4, . Let E, denote the expectation,

and P, the probability computed by means of the probability distribution

P4, (*|$5v 4,) and for each k, let &, , €, be the random variables

=Y s, &= —ECEID,

xedi

where D, = E ((¢, — E,(,))?) denotes the variance of &, .

1.4. Definitions. We say that the integral central limit theorem holds for the
Gibbsian sequence (p,,, ("] sy 4,)> Sy 4,) if:

() limDy/[A4,[=e
(i) «a>0
(i) lim P{&, <x}= [ exp(—z%2)dz/\/2n
k= o0 -
We say that the local central limit theorem holds for the Gibbsian sequence
P4, |50 1) S5 4, 1f (D), (id) are verified and

lim sup|\/D,P{¢, = p} — exp(— (p — E|(&))%/2D,)/r/2x| =0. (1.5)

k— o0 3
The aim of this paper is the proof of the following:

1.5. Theorem. Under the assumption 1.1, if the integral central limit theorem holds
for a given Gibbsian sequence, then the local central limit theorem holds for the same
Gibbsian sequence.

The method of the proof follows the one introduced for independent random
variables [1], and extended to lattice spin systems with short range interaction
[2,3]. We briefly describe it in Sect. 2, where we reduce the proof of Theorem 1.5
to estimates for the characteristic function of a sum of “almost independent”
random variables. These estimates are obtained in Sect. 3, expressing the charac-
teristic function as a ratio of partition functions of suitable “polymer models”
with hard core interaction, that can be estimated by a cluster expansion.

Our result can be extended to more general lattice spin systems, including the
case of more general two body and many body potentials; assumption (1.1) on
two body potential can also be weakened, and we limit the proof to the model
described above for the sake of simplicity.

2. Method of the Proof

In this section we show the line of the proof of Theorem 1.5. Let r, be
an integer, and Z*(r,) the sublattice of Z* defined by the set of v-ples {n,r, ..., nr,;
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neZ,i=1,...,v}. With the notation of Sect. 1, let /Tk =A4,n2Z"r,) and
E(|s 40.4,) denotes the expectation with respect to the probability distribution
PS4 i v Sswy,) The characteristic function f, = E, (exp(itZ,)) satisfies the
inequality:

|fk(t)' = 'Ek(Ek(exP(itEk)lSAk\/ik)),
< sup |E(exp((it Y, 5N/ D570l (2.1
SAR\/Ik xeAk
If r, is large enough, the spins in /~1k are “almost not interacting”, and one can
expect that the r.h.s. of (2.1) behaves as the characteristic function for a sum of
independent random variables. This is indeed the meaning of the following lemmas.
We assume that 1.1 holds.

2.2. Lemma. There is a positive constant D, not depending on s’iv\ 4> Such that,
if 6,r5 ! are small enough and |t| < 6/D,, then:
|E, (exp(it Z SN DS 40 1) S exp(— 12 |4,|D/D,) (2.2)

xeAp
uniformly with respect to s Ry

2.3. Lemma. For every finite 0, there is a positive constant C, not depending on the
sequence sy, 4., such that, if 6/ D, <|t| </ D, andr, is large enough, then

|E (expit 3, 5,/ Dy)ls4,5)] Sexp(—c|4,]) (23)

xeAx
uniformly with respect to s 4, . -

In [2] it was sufficient to take r,, bigger than the range of the potential in (2.2),
(2.3), to have them satisfied. In the case of long range potential we cannot have the
conditional independence of the random variables s, xeﬂk, under the conditions
S 4.4, » DUt We can show, using a cluster expansion, that the long tail of the poten-
tial causes the addition of a term ¢(r,) in the arguments of the exponentials in the
r.h.s. of (2.2), (2.3) which becomes infinitesimal if r, is large enough.

Proof of the theorem. Assumingthat Lemmas 2.2, 2.3 hold, the proof of the theorem
may be obtained following the one for independent random variables, by

sup |/ D P&, = p) — exp(— (p — E((&))%/2D)//2n|

< [ |E (exp(it€)) — exp(— t?/2)|dt
"y

+ [ exp(—t*/2)dt + ] |E, (expit&,))| dt (2.4)
ltlz4 A<t <6yDx
+ B |E, (exp(it&,))|dt

6y/Dic S t| Smy/Dc

If A is large enough, the second term in the r.h.s. is small and, for every A, if the
integral central limit theorem holds, the first term is also small, for large k. It is
easily shown, using (2.1), (2.2), (2.3) and the assumptions (i), (ii) of (1.4) that r, é
may be chosen in such a way that the last two terms decrease to zero as k increases.
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3. Proofs

In this section we will use a Mayer expansion to get the estimates (2.2), (2.3). The
construction of the Mayer expansion, that is described in [4] for a gas of interacting
particles in R”, has been carried out by various authors for systems similar to the
one we will have to deal with [5, 6]. We then only state in the following the main
definitions and results that we will use, and refer to the literature for more details.

3.1. Definitions

Let # be a family of non-empty subsets /' = Z*, consisting of at most two points.
A polymer R is aset {f,,....f,} of distinct elements f;€ #, that is connected in the
following sense: for any f,,f, €R, there exist f, , ..., f, €R such that f, =f,.f, =1,
and fkj N fk, .. # . Let Z be the set of all polymers and, if ReZ, denote by R the
subset of Z*, R= | ) f; the activity { is a function {:2 — C, such that |{(R)| is

feR
bounded and the partition function for a gas of polymers, with activity {, and hard

core interaction, in a subset A = Z°, is defined as:

EO=1+Y > [lar) G.1)

n=1 _ {Ri,...,Rn} i=1
RicARinR;=¢,i%j

We state now the main properties of the “low activity” expansion of the partition

function (3.1).

3.2. Theorem. Let  be a real, positive function on Z° such that Y(0)=1,
Y. W(x))'? = K < 0 and z, a positive number such that\/z_OK < 1. Assume that :

xeZ¥

[LR| < [T 200(f), ¥(f)= sup p(x - y) (3-2)

feR x,yef

Define on 2 = | ) R" the real function ¢ as

nz1

(pT(Rl""’Rn)z z (_1)# edgesmg/n!
ge¥n(R1,...,Ryp)

where 9 (R,...,R,) is the set of connected graphs with n vertices (1,...,n) and
edges (i, ]) correspondmg to pairs R;,R; such that R mR # (. We set the sum
equal to zero if 9, is empty and one lfn = 1. Then

Y JUR)| £B(zy,K) (3.3)

R.R>x

and, if z, exp(B(y/z, , K)) = Clzo,K) < 1

2,0 _exp<z Z ¢( ..,Rn)ﬁC(Ri)> (3.4)
i=1
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Y% 10 R R TTIER))

nz1 (Rt,...,Rn).
3Ri=R

_ )

Y VEN

feR

C(zy,K)/(1 = C(z,,K)) (3.5

Proof. (3.4) and (3.5) may be deduced with standard methods (see for example
the proof of 4.32 in [5]) if (3.3) holds. The absolute convergence of the series (3.4)
can be derived from (3.5). We then prove only (3.3), that is the main “model depen-
dent” statement of the theorem.

Let 7, be the set of walks on Z°, starting from x, that is

T,={(x;....x,), n=1, xe€Z' x,=x}.

It is easy to check, by induction on the number of elements in R, that to every R,
x€R, may be associated a non-void subset T (R)c 7, such that the walk
(Xgs---»x )ET(R) if Vi=0,...,L—1,{x;,x,,,}€R and if for each two point
set feR there are exactly two indeces 0 <i<j <L—1 such that {x,x,,,} =
{x;,x;, 1} = fand for each one point set f€ R there is exactly oneindex 0 <i < L— 1
such that {x;} ={x,,,} =/ It is clear that if R# R, T(R)Nn T (R') = &. Then
if t:2"x 7" >R is defined as #(x,x) = z,, {(x, y) = (z,¥(x — )2, x # y:

n—1
Z ﬂzolp(f)é > I_[ 1x;5%; 1 1)

R.Rsx feR (X0s+eesXn)€T 5 i=0
zo K
< NEoo  _ B(z,.K) (3.6)

T1-z,K

We will also make use use of the following:

3.3. Proposition. Let xe/~1k, and px(s[szv\ 4,) be the probability distribution on the
values of the spin in x:

Pl 52.4) = €xP(hyfs]57..3,) / 5 explhs| sz i) (3.7)
and denote with E_ the expectation with respect to p,.. Then there exists a positive
constant d such that
(i) E((s—E())) =d
and, for every 0 < 0 <, there exists a strictly positive constant c¢ such that:

(i) |E (expl(its))| < exp(—c) ford <|t|<n
uniformly with respect to sz, j, -

Proposition 3.3 is a direct consequence of the uniform lower bound:

P(s] 5z 5) Z exp(— 20 [ T [)/|m = n|V sz, 5,
where ||| = Y. [J(2)].

teZ¥
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We proceed now to prove the lemmas. We start from the identity:

Efexp(it Y, (s, — E(s )N/ D s4.0) = Za 0, D/ Z 5,10, T) (3.8)

xeAx

that follows from (1.2) and the definition of Ek(-|-);f is the restriction to Z°(r,)
of J, and:

R8s, |Szm 4) = By(s, ] spm 1) + i85, — E(5))/</Dy (3.9)

Introducing now suitable “polymer models”, we will get estimates of the ratio
in (3.8) by low activity expansions, as a consequence of theorem (3.2).

Proof of Lemma 2.2. Let & be the family of all the non-empty subsets of Z*(r,),
with at most two points, and let ¥ be the function on the spin configurations
in f defined as:

lp(x)(sx) = exp(it(sx - Ex(Sx))/\/B_k) -1

lp{x,y}(sxasy) =CXp J(x - y)sxsy -1 (310)
Define on the set of polymers # constructed by & the activity function:
ISR | FXCKEAD IR ACH (3.11)
|sR xeR f€R

where p,(-|) is the probability distribution (3.7). Using the inequalities |/,,(s)| <
206 for |t|<4./D,, |lﬁ{x’y}(sx,sy)| <a?|J(x—y)|exp(J, 0°) where J =
sup |J(#)|, and assumption (1.1) on the pair potential, it is easily seen that, if
[tlzro

ro P and é are small enough, the polymer model just defined satisfies the hypotheses

of theorem 3.2 (choose for example z, = max{265,62J, ™"} Y(t) = |J(t)|/J,,,
t # 0;¥(0) = 1) and that it is such that:

Z; W, n=1] (i eXp(hx(SISZV\zk)>E,;k(C,) (3.12)

xedx \s=n

The statement (3.4) of Theorem (3.2) gives then:
Eexp(it Y. (s, — E(5))/+ /Dk)|sAk\/;k)

xeAx

=E; )/ EL ()
= exp( Y Y e'R,,... ,Rn)[ [T4LR)—-T] CO(R,.)}> (3.13)
2 i=1

i=1

Expanding the exponent in series of ¢, we get, for a suitable 0, 0 < /D,

eXP( )ID) wT(Rpm»Rn)[ ﬂ LR — ﬂ Co(Ri):|)
i=1 i=1

nZ1 (Ry,....Rn)
t=0:|>

R,c Ak

t2 d2 n
éexp<—2— )ID) <0T(R1a~~’R,.)Re[W [T4R)
i=1

nZz1 (Ry,....Rn)
Ric Ak
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)

t2 r dz
<exp 5 Y o (R)ReWC,(R)

R.Jﬁ/]{=1
ReAy
t2 d2 n
(5 T 1ol o] ) 614
nR1,...,Rn i=1 t=0
Ric Ak

where Y * ranges over n-ples R, , ..., R, such that ) |R,| = 2. Observe now that
i=1

if R=x,90"(R)=1{(R) = E,(explit(s, — E,(s,))/x/D,) — 1) so that the first factor

in (3.14) may be estimated using Proposition (3.3) by:

Y, Re s 2 Eits, = Es)/v/D) = 1) < = | 4,](d + (0))/ D,

xeA;c

where | (3)| £165*0%. The terms appearing in Z* withn =2 and R, =R, = x

give a contribution equal to C¢(J) where C is a constant not depending on r, 6, k.

This can be obtained easily using that |(/(R)| <constd//D,, if |R|=1. The

remaining terms may be estimated using again the theorem 3.1. A direct compu-

tation gives in fact:

Re Izd?z n z,(R,.)’ <Dy I1 I1 20()

i=1 feR,

if |t| <6y/D,, Y. |R,| =2, where § can be chosen as above and 7 is such that

i=1
NZZN 2K < VK with N > 2, K > 1. It is easy to see that it is sufficient to take
z2>2728/z, if z, < 1/16. For r;',d small enough one gets that:
1EK(eXp(it Z (s, — E\(s))/~/ Dk)}SAk\/fk‘

xedy

__<_exp<£2—[——(d+(p(5))|/~1k'/D +
+@/D) Y, Y ([IVEH )C(z,K)/(l—C(z,K))>

xedx R.Rax feR
t2
éeXP<7(—d+co(ro,é))lAkl/Dk> (3.15)

where ¢(r,,0) = 0if § > 0,7, ! —> 0 and the lemma is proven.

Proof of lemma 2.3. Let now & be the family two points subsets of Z*(r,), and
let # denote the set of polymers constructed by #
Define on £ the real activity function

r’c(R) = eCUil Z H px(sx ‘ SZV\/Ik) H ‘//f(sf) (316)
SR xeR SeR

where c is a positive constant, and lﬁ{x’y} is given by (3.10). It is easy to show that
if r, is big enough, theorem 3.2 applies to the polymer model defined above
(choose for example z, = J, o* exp(J, 6 + 2¢), and ¥ as above).
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It is now easy to check that:

Z30%,J)= T1 (X puls]szm 1)) E,0n0)

xedx s
Z/fk(ht’ ‘7) é exp(— CI ;lkl) H (pr(s’sl"\/ik))' (317)
xedx s
< Y <H |11£(Ri)|> H exp(c)]Ex(exp(itsx/@m)
P % 7y TP wed) U &,

=1

then, if ¢ is such that Proposition (3.3) applies, one finds, for § < | t| N D Em:

|E(explit Y, s,/\/D)Ispm i) < exp(—c| A1) E4(|n.))/Ez,n0) (3.18)

xeAx

Using again (3.4), (3.5), the ratio in the r.h.s. can be estimated as:

Bz (In.)/E (o) < exp{z| A,| B&/ 2, K)Clzo, K)/(1 — C(zo, K)) } (3.19)

where, for fixed ¢, z, = 0 for r; — 0, and the lemma is proven.
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