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Abstract. When one tries to compute large orders in the l/N series "a la
Lipatov" a complicated non-linear equation for the instanton is found in
φA or non-linear sigma models.

We solve here this equation in the one-dimensional case (quantum
mechanics) by inverse scattering techniques. From the instanton solutions
we obtain the Kth order of the 1/JV perturbation theory up to 0(K~1) for
the 0(iV) symmetric anharmonic oscillator and up to a factor 0(K°) for a
non-symmetric model. In the symmetric case we agree with results recently
obtained in quantum mechanics by Hikami and Brezin following a different
procedure. For the non-symmetric anharmonic oscillator we believe our
formulae are new.

1. Introduction

In the last few years a great attention is paid to perturbative expansions in l/N
in quantum field theory, statistical mechanics and particle physics, N being the
size of an internal symmetry group. However little is known in general about
the nature of this expansion.

Typically, the N~1 series follow by expanding the functional integral in an
appropriate representation around some constant stationary point (here labelled
"0"). For example in the ^-component φ* theory with lagrangian

the generating functional can be written as (see ref [1] and section II)

(1.1)

\dvxa{x)2. (1.2)

0010-3616/79/0070/0029/S02.80



30 H. J. de Vega

One gets in this way

-So co j ίn\

§ Σ -$• ( U )

One can look for the large order behavior of the coefficients Iκ "a la Lipatov"
[2, 3]. However this leads, even in one-dimension, to a complicated non-linear
equation for the instanton that would determine the large K behavior. In the
N-component φ* model considered above, this equation is like

1
= aV(x) + b (1.4)

where x = {xx,... ,xv), F(co) = 0 and α,b,μ2 are constants. In the iV-component
non-linear sigma model one finds an analogous equation but with a = 0. The large
orders in l/N have been calculated by Hikami and Brezin in zero and one dimen-
sion for this anharmonic oscillator [4]. In the one-dimensional case they proceed
from the Schroedinger equation in spherical coordinates. Because of the O(N) sym-
metry the problems reduce to large orders in a standard coupling constant in a
radial Schroedinger equation where the methods of ref (3) apply.

In the present paper we find explicitly the instantons that rule the large orders
in N~1 for the 0(JV)-symmetric anharmonic oscillator and also when the quadratic
part of the lagrangian is not 0(iV) symmetric. We do that by inverse scattering
methods. This means in our case a change of variables in the functional integral
(1.1). There, the functional variable a(x) can be considered the potential v(x) of
a one dimensional auxiliar Schroedinger equation times some x-independent
factor. Then we consider, instead of v(x), the scattering data (SV) associated to
it through an auxiliar Schroedinger equation. They are the reflection coefficient,
the bound states energies and the normalization constants of the corresponding
wave functions [5].

The effective action (1.2) separates completely when expressed in SV. This is
not accident and is related to the complete classical integrability of the quadratic
oscillator [6]. To get stationary points we look for extrema of the effective action
varying the SV. This gives simple linear (algebraic) equations which are immediatly
solved (Sect. 2). The instanton so found in the 0(iV) symmetric model is a reflection-
less potential with only one bound state. After computing the small fluctuations
around this instanton (Sect. 3) our final result for the O(N) symmetric model reads

|̂  £ ) J (£)] (1.5)
where
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(1.7)

3g

and the function h(g) is defined by Eq. (2.7). Formulae (1.5)—(1.7) exactly coincide
with the final results obtained by Hikami and Brezin [4] by a different procedure
explained above.

In Sect. 4 we obtain the large orders in l/N for a non-symmetric model with
lagrangian

where we assume that L of the C2

a coefficients differ between them (1 rg L fg N).
For this non-symmetric model we find instantons that rule the large orders in

— by a similar procedure using SV. The stationary point equations in SV present

2L — 1 solutions instead of one. They all correspond to reflectionless potentials
with one, two,... up to L bound states. By inverse scattering techniques all instan-
tons are expressed in closed form in terms of elementary functions [5].

Our final result reads

Here the index s labels the (2L — 1) different instantons and Ms stands for the
number of bound states in the sth instanton. The function ps(g)—the effective
instanton action is given in Sect. 4 (Eqs. (4.17)—(4.18)).

The large K limit in Eq. (1.9) will be dominated by the term of smallest |p s(#)|.
For small g this is done by the instanton with one bound state (in SV) and smallest
eigenvalue. On the contrary for very large g it is also a one-bound instanton but
with the largest eigenvalue which has smallest \ρs\. This is true at least for

1 <̂  g1/3 > 4 Ing. In Sect. 4 we also discuss the case of a model with sym-

metry 0(P) 0 0(N - P).

In conclusion we have reduced the problem of large orders in l/N for the
non-symmetric case to find the roots of a polynomial of degree L(Eq. (4.9)). These
roots are the possible bound states defining the instantons in SV. Then the effective
instanton actions ps are given by (4.17)—(4.18). The action of a multi-bound states
instanton simply adds because of complete separability.

2. 1/N Perturbation Theory and Inverse Scattering

In this section we shall deal with the JV-component anharmonic oscillator with
0(ΛO symmetry. Its generating function for imaginary time (x) reads

Z(N,g) = \Dφ e x p ( - 5[0( )])/Z o (2.1)
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(2.2)

where (f>(x) = (φί,... ,φN(x)\g is a dimensionless coupling constant and μ fixes
the mass scale. Z o is a normalization constant fixed by Z(ΛΓ,0) Ξ g-W2)27\

The expansion of Z(N,g) in powers of 1/JV can be easily generated [1] on the
basis of the identity

exp - j μ 3 1
(2.3)

Upon replacing Eq. (2.3) into (2.1) the φ integration turns out to be gaussian and it
can be evaluated with the result

Z(N,g) = ±- j J/)α(.)expj - y 3/2 y_rμ2 + 4iμ

This functional integral has a stationary point at ot(x) = α 0 , where

V N °

and m2 is the positive root of the equation

(m2 — μ2)m — 2gμ3 = 0.

That is

m2=μ2h{g)

This gives in limiting cases

Hg) =l + 2g-2g2 + 0(g3)

Hg) =

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

The l/N expansion for Z(N, g) follows by expanding the integrand around this
constant stationary point

Z(N,g) = (jj exp j - jί)α( ) e x p ( - S r f f [α( (2.10)
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Here

33

N
Trlog ,\dxυ{x)2

m2 — μ2

\dxυ{x)

T is a large cutoff in the x coordinate and we have set

(2.11)

(2.12)

The ground state energy reads

Eβ=- l i m — log Z(N,g)
Γ->oo

(2.13)

The coefficients Aκ(g) can be computed as sum of Feynman diagrams with pro-
pagators

Δ{P) =
m(P2 + 4m2) ( 1 1 4 )

as lines and vertices coming from functional derivatives of Se f f at a(x) = α0 of
order larger or equal to three. We recall that <5LSeff |α = OC/V1 ~L/2).

We are interested on the behavior of the coefficients Aκ(g) for large K at g
fixed. For K P l,Aκ(g) has the same behavior as the integral

• Λ jv- »yt;!::;; (2.i5)
r ^ 2TJ2πi
1 ~* 00 *J

(2.16)

Here

2δa(x)δa(y) α( ) = αc

m
(2.17)

Now, we proceed "a la Lipatov" [2, 3] and seek for stationary points in (2.15)

°~Ka =N

δv{x)

dx2 rn2

x -•
v(x) + m2 - μ2

(2.18)

with boundary conditions v( ± oo) = 0.
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It is not clear for us how to get v(x) from Eq. (2.18) as it stands. However, the
equation for the instanton is much simpler in another variables. They are the
inverse scattering data associated with v(x) if we regard it as a quantum poten-
tial [5].

That is, we consider the auxiliar Schroedinger equation

We define as usual the inverse scattering variables SV as the set

SV={r(k), - o x k < + GO κl9Cl9l=l,...,NB}. (2.20)

Here r(k) is the reflection coefficient, - κ\ the eigenvalue of the Ith bound state and
Ct the normalization coefficient of the corresponding wave function. NB stands
for the total number of bound states (NB ^ 0) [5].

As it is known there is a one-to-one correspondence between potentials v(x)
and sets SV under some regularity conditions [5]. Thus we can get stationary
points by writing the effective action in terms of the SV and varying them. The
crucial advantage of the SFwill be here the fact that the effective action completely
separates in the new variables.

The functional determinant in Seff [Eq. (2.11)] coincides with the Jost function
associated with the Schroedinger equation (2.19). This Jost function F\k2\v{-)\
as well as the integrals involving v(x) in Eq. (2.11) can be expressed in terms of
SFas

NB ίk— ΊK \ ( 1 + co rlh' \

(by < f ) (221)

j (2.22)
oo 7 = 1

f dxv(x)2 = - - 7 k2dk In [1 - I r(k) \2] + ̂  "f K] (2.23)
- o o π - o o j=l

Eqs. (2.22-3) are the two first trace identities associated to the Korteweg-de Vries

equation [7]. Finally, from Eqs. (2.11)-(2.21-23) we get for the effective action

intheSF

We find Seff independent of the normalization coefficients Cι. This comes from
the translational in variance of Seff in the variables ot(x). The extrema of the effective
action now follows from

J S o _ o o < f e < + o o (2.25)
δr(k)
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— = 0 1SJ^NB (2.26)

dKj

The first one has as unique solution

r(k) = 0 for all k (2.27)

The second equation gives

,_^!_V] = 0 (2.28)

In consequence, we have the non trivial solution

0, - o o < f c < + o o (2.29)

In the former variables this is a reflectionless potential vc(x) with only one bound
state at k2 = — κ2. It is easy to reconstruct vc(x) from the Gelfand-Levitan-
Marchenko [5] equation, with the result

VM)= T T — (2.30)
c cosh2 KX

The trivial solution of Eq. (2.28) corresponds to the constant extremum ot(x) = α0.
The effective action at the extremum (2.29) takes the value
S±=NP±(g)
P±{g) = \ log[%) - 1] - log[V2%) + V 3%) - !]

- —=-y/3hig) - 1 ± y (2.31)

The sign + or - depends on the choice — + ίθ in Eq. (2.24). Both signs lead

to extrema of the action. So, we must sum both contributions obtaining in this
way a real result for Aκ(g) as it should be.

3. Large Orders of the 1/N Perturbative Series

We compute in this section the small fluctuations around the instanton vc(x) found
in the preceding reaction. In this way we obtain Aκ{g) for large K up to corrections
of order K~x.

Our starting point is Eq. (2.16) where we expand 5eff up to second order around

This can be written as

Aκfa)= ~ l i m

Γ^oo l ώ i C '

jfDα( )exp(-<(χ|Mc|α;/

JfDα( )exp(-<α|M0|α>) + C ' C ^ 1 + υ ( * » (iΛ)
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Here, C is a contour in the ΛΓ-plane that begin at N = — oo — iε, encircles the
origin counter-clockwise and ends at N = — oo + iε. Mc stands for the small
fluctuations matrix around ac(x)

r)2<s

" Λ -4^ 3 G c (x,x ') 2 (3.2)(x x

f) = -
c 2

e f f

2 5α(x)δα(x')

Here Gc(x, x') is the Green's function of the Schroedinger equation with vc(x) as
potential

(3.3)
m{nΐ-μ2y

In the derivation we used the relation

δ

δv(y)
G(x,x')= - G{x,y)G{y,x')

One can see immediately from eq. (3.3) that vc(x) verifies the instanton equation
in v variables [Eq. (2.18)].

The small fluctuations matrix Mc(x,y) has a zero mode associated to the
translational invariance of the effective action. That is

(3.4)

The presence of this zero mode tell us that we must extract a collective coordinate
[8] associated to translations in the functional integral (3.1). After this change
of integration variables the functional integral reads for large T

JjiM K
\\Da(-)e-(α|Mo|α)' (3.5)

where

Sc= J dxa'c{xf=-
Nμ2 (3m

- 1
5/2

(3.6)

and λs(T) is a small eigenvalue of the operator Mc that vanishes for T -> oo . The
computation of the infinite determinant in eq. (3.5) and of λs(T) can be greatly
simplified by noting that Gc(x, x')2 and G0(x, x')2 have the structure of one dimen-
sional Green functions. That is, they factorize into a function of x < times another
function of x > . Hence, one can construct second order differential operators
Σc and Σo for whom, G2(x, x) and G2

0{x, x') are their respective Green functions.
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The explicit expressions for them are

Σc\x'>=+δ{x-x')\--f-\-^-Γ

i-lcl I dx \_κ2th2κx• — m d

2{m2 - μ2)(3m2 + μ2) }
+ 2 + -p—\ ^ - — — • — ^ - % Γ Ϊ t (3 7)

L(3m — μ )tn KX — 2m J J
< x | f o | x ' > = δ(x-x') - — y + 4m2 . (3.8)

It follows from (2.17) and (3.2) that

In this way we get

where, in the last step, we have used Van Vleck's formula [9].
The operator Σc is also useful to compute the small eigenvalue λs(T). If we

call ψs to its corresponding wave functions

McΨs = λsψs (3.11)

and we apply Σc on both sides we find

(Σe + 4)φs = - - \ ψs - - 4λsψs (3.12)

Then by wronskian arguments applied to the differential operator (Σc + 4) one
easily finds for large T

λs(T) = no*M^±e-«τ (3.13)
•T-.00 % ) - !

This completes our calculation of the functional integrals over α( ) in Eq. (3.1)
or (3.5). From eqs. (3.1), (3.5), (3.6), (3.10) and (3.13) we obtain finally, upon inte-
grating over N

(3.14)

The two terms here can be combined as it is shown in Sect. 1 Eq. (1.5).
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4. Large Orders in the 1/N Expansion for a Non-Symmetric 0(N) Model

In this section we find the large order behavior of the 1/N expansion in the an-
harmonic oscillator when the mass term breaks the O(JV) symmetry. That is

(4.1)

Here the C2

a(C\ ^ C2

2 S ^ CjJ) are positive dimensionless parameters of order
one. We assume that L of them are inequal and we denote by {d2, oc = 1,..., L}
the set of different C2 parameters {d\<d\<...< d]). (1 ̂  L ^ ΛΓ).

Following the same procedure as in Sect. 3 we can write the generating function
for this model as

= \ Σ TrLog[ —jj^ + μ2C2

a + 4i ^oc( )J +

This functional integral has a constant stationary point at

(4.2)

(4.3)

where z(g) is the positive solution of the algebraic equation

z - — > - — = - = 0

(4.4)

(4.5)

which reduces to Eqs. (2.5)-(2.6) in the 0(N) symmetric case. It is easy to check that
Eq. (4.5) has one and only one positive solution for 0 < g < oo, with the following
limiting behavior

(4.6)

(4.7)

The 1/JV series for the broken — O(JV) model can be obtained by expanding
the effective action in the path integral (4.2) around ocB. Following similar lines
to those of section 2 the ground state energy turns out to be here

Aκ(g,N)

κ = ι

Here the ta are the roots of the algebraic equation

N

• = 0 .
fl'

(4.8)

(4.9)
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This equation has L different positive roots ( ί 1 ? . . . , ί L ) . It must be noted that
the coefficients Aκ now depend explicitly on N but this is always through expres-
sions like

where the Za are of order N°. Thus, the Aκ(g, N) are also of order JV°. For example
the propagator reads here

2a N 1
l (4.10)

Let us now study the large K behavior of the Aκ(g, N). We do that as in section 2
from the generalization of eq. (2.15). We take for a moment another variable,
say N', instead of N inside Aκ and we consider N' fixed and independent of N.

As before we find instantons as reίlectionless potentials but now with a richer
set of possible bound states. The equation for the instantons

§f
gives now eq. (4.9) with κ2 = μ2t2. We find then L different solutions for the
possible bound state energies and hence 2L - 1 different instantons by doing
all possible combinations of energy levels:

L potentials with one bound state

L(L - 1)
potentials with two bound states

) potentials with M bound states
M

1 potential with L bound states

All these instantons can be expressed in a closed form in terms of elementary
functions [5]. They are M-soliton solutions of the K.d.V. equation at initial time.

Limiting expressions for the bound state energies at small and large g respecti-
vely read

( ^ ^ ) 0to2), 1***L (4.11)

t2 = (2g)2'3 + D2

a + 0{g-2t\ 1 ύ α ̂  L - 1 (4.12)

3 1 ΛΓ 1 JV i

f2 _ _CJ \2β Ŷ  p i V̂  V.(\(n~2l^\ (AλVi
ij — \z*(J\ / v_̂  / —p \J\Cf I IT1, 1 j I

α = 1 b= 1 f^2 \ ^ /̂ 2
b *y ΛTL-i a

where the Dα are the positive solutions of the algebraic equation

Σ ^ - i v = 0 (4.14)
a=l Γ2 JΛ2 _ y C2
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and we assume that the C2 are such that the denominators in eqs. (4.13) and (4.14)
do not vanish.

Moreover the following inequalities hold for any positive g

d\ + z(g) < t\{g) <d\ + z(g) <...<d2

L + z(g) < t2

L(g). (4.15)

The contribution of each stationary point to Λκ(g, Nf) follows by the same
methods as in Sect. 3. In the present case a M-bound state potential presents
M zero modes and the jacobian of the collective coordinates is then a M x M
determinant proportional to NM/2. Because of this a M-bound state instanton
ocs(x) contributes to Aκ(g,N') by

(4.16)
pjiβf

where Cs(g, N') (independent of K) is determined by the small fluctuations determi-
nant around as(x) and ps(g) is the sum of M terms like

(4.17)

Here n(α) is the total number of Cτ

a with C2

a^d\. That is

) (4-18)

where α runs over the M bound states associated to ots(x).
The large K behavior of Aκ(g,N') will be given by (4.16) for the ocs(x) with

smallest \ps(g)\.
Let us analyse the limits g -* 0 and g -> oo. For small g we find

Fx(g)=(^-1-lng + 0(l). (4.19)

Then, the one-bound state stationary point with the smallest eigenvalue, κ\ = μ2t\,
dominates the large K behavior of Aκ(g, N'). We have for strong coupling

\ ^ l^αgL-1 (4.20)

^ (4.21)

In the extreme large g limit we find that the dominant contribution to Aκ(g, Nf)
comes from the instanton associated to the bound state of largest eigenvalue
(t2). This is true at least for

^ ^ (4.22)
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For smaller values of g the situation is not so simple because the smallest
ps could correspond in principle to an instanton with several bound states (ί£
among them).

It should be noted that the effective actions never vanish. We have the lower
bound

s(g)\^ (4.23)

As a last example we consider the case of two different masses with arbitrary
N. That is

C\ = C2

2 = ... = C | = d\ = 1 and C2

P+1 = ... = Cj = ά\ = b2 > 1

where P is some integer 1 < P < N. This a model with 0(P) (x) O(JV — P) symmetry.
We can easily discuss two limiting cases

0<b2-l<l and b2 p 1

for arbitrary values of g.
If b2 — 1 <̂  1 the instanton effective actions read

2 ± (4.25)

In the other limiting case bz $> 1 and fixed g we find

(4.26)

(4.27)

For all b we have for the two-bound state instanton

F3(g) = F^g) + F2(g). (4.28)

The l/N expansion for large orders behave as in a model with symmetry
O(AΓ) if b2il and symmetry 0(P) if fetoo. Moreover we see explicitly how the non-
dominant contributions decreases when we approach the symmetry limits.
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