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Abstract. We consider the spatially inhomogeneous Gibbs states for the three
dimensional Ising and Widom-Rowlinson models. We prove the analyticity
in z=exp(— 2pJ) for small |z| of the spin correlation functions of these Gibbs
states and of the surface tension.

1. Introduction

We consider the three-dimensional Ising model, with nearest neighbor ferro-
magnetic interactions, in a box with + boundary conditions (b.c.); the spins
surrounding the top (bottom) half of the box are equal to + 1 (— 1). It is known
[1,2] that, at low temperatures, these b.c. lead, in the thermodynamic limit, to an
extremal non-translation invariant Gibbs state whose correlation functions cluster
exponentially.

In this paper we prove that these correlation functions are analytic in the
variable z = exp(— 2fJ) for |z| sufficiently small; f§ is the inverse temperature
and J is the coupling. We also study the surface tension t, i.e., the thermodynamic
limit of the difference in free energy per unit cross-section between the system with
+ b.c. and one with + b.c. (all spins on the boundary equal to + 1). We show that
T — 2fJ is analytic in z at low temperatures. Moreover, we extend our results to
Widom-Rowlinson models on a lattice; the systems discussed in the first two
papers of this series [3, 4].

The method we use is a low-temperature expansion of the Minlos-Sinai or
Kirkwood-Salzburg type. (This is similar to the method used by Gallavotti in
his work [5] on the two-dimensional Ising model with + b.c.) The Minlos-Sinai
equations [ 6] were originally developed for studying the low-temperature behavior
of the pure phase, i.e., the state obtained with the + b.c. The configurations of the
system with + b.c. are described by means of contours and Minlos and Sinai
apply Kirkwood-Salzburg equations to the ‘gas’ of contours. The factor
exp(— 2fJ) plays the role of an activity.
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In the =+ b.c., we first remark that for each configuration there is an interface,
i.e., a contour that is connected to the part of the boundary separating the + and
— spins. By definition, this interface divides the box into two regions having pure
+ or — b.c. Our strategy will be to concentrate on the interface and then use the
Minlos-Sinai low-temperature expansion for the pure phases.

Dobrushin has shown that the interface can be decomposed into elementary
excitations in the following way: in the ground state, the interface is perfectly
flat. At non-zero temperatures, however, the interface will be deformed: these
deformations are called walls in [1] and, once specified, completely determine the
interface. We do a low-temperature expansion for the correlation functions of
these walls. Unlike the contours which interact only through a hard-core, our
walls have in addition complicated (effective) interactions. These come about
because a modification of the interface also changes the regions with pure + and
— b.c. On the other hand, very large walls are unlikely in the system with + b.c.
for the same reason that long contours are unlikely with + b.c. It turns out that
all we need to control the interactions between the walls is good control on the
pure phases and this is given by the Minlos-Sinai expansion. We can then apply
amore or less standard Kirkwood-Salzburg expansion for the correlation functions
of the walls.

Associated with these walls is a free energy that turns out to be related to the
surface tension and therefore our expansion shows also the analyticity of the latter.

One may ask: what is the relationship with Gallavotti’s work mentioned
above? There, the physical situation is completely different, since the same b.c.
leads to a translation invariant Gibbs state in two dimensions. However, to show
that the separation line (analogue of our interface) fluctuates, Gallavotti uses
essentially the same decomposition into walls and then does a low-temperature
expansion to show that these walls (called ‘jumps’) are almost independent. The
difference between two and three dimensions is geometrical. It comes from the
fact that in two dimensions large deviations of the interface from its flat ground
state can be produced by the addition of a large number of small jumps, while in
three dimensions this is impossible.

Let us mention that we use the ‘algebraic formalism’ instead of the equations
in Banach spaces to perform our expansions. Although we strongly rely on [5],
we assume only a knowledge of the algebraic formalism as expressed, e.g., in [7].

We also recall without proofs the results of Dobrushin [1] on the geometry
of the interface.

Since we are interested in quantities whose existence in the thermodynamic
limit follows from correlation inequalities for real values of fJ, we simplify matters
somewhat by using Vitali’s Theorem to prove analyticity of the limit functions.
This requires only giving uniform bounds for the quantities under consideration
rather than controlling the expansion term by term.

Outline

In Sect. 2 we state the main results (Theorem 1). Section 3 is devoted to the case
of the pure phases. We introduce the contours and give in Theorem 2 (which is
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not proved because it is standard) the main estimates on these. Theorem 3 gives
an expansion for the spin correlation functions in the pure phase which is very
convenient for our purposes. This is proven in Appendix 1 and is due to Kunz
and Souillard [8].

Section 4 deals with the + b.c. and the geometry of the interface. We give there
the connection between the interactions of the walls and the properties of the
pure phases. Also given there is the relation between the spin correlation functions
for the + b.c. and the correlation functions of the walls. In Theorem 4 we state
the necessary estimates on the correlation functions of the walls. This is the ana-
logue of Theorem 2 for the pure phase.

In Sect. 5 we give and prove the basic ingredients for the proof of Theorem 4,
that is the estimates on the potentials (interactions) between the walls. This relies
basically on Theorem 2. The actual proof of Theorem 4 is deferred to Appendix 2.

Section 6 gives the proof of Theorem 1, combining Theorem 3 (expansion of
the spin correlation functions in the pure phases) and Theorem 4 (estimates on the
correlation functions of the walls).

Appendix 3 is devoted to the Widom-Rowlinson models [3,4]. With the
correct definition of contours, all our results extend immediately and we do not,
therefore, give many details.

2. Main Results

Leti=(iy,i,,i;)€Z> specify a lattice site and ¢, be a spin variable with values + 1.
A configuration on A = 73 is 0, = (6;,i€ A). We put 6,3 =0. Given A< 7> we
can always write ¢ = (0,0 ,.) where A°=27Z3\A. We denote by <{i,j> a pair of
nearest neighbors sites i and j of Z®. The energy of a configuration ¢ ,, given
0 4., A finite, is
H(o|l0,)=—=J ) o0;, J>0
<>

where the sum is restricted to all {i,j > such that ie 4. We choose now a special set
A:A=A =1{ieZ’: —M<i <M, —-L<i,,i;<LjL and M being positive
integers. We define three boundary conditions for A4, ,,, the +b.c, the —b.c,
and the + b.c., by specifying the values of g, for je A7 ,, as follows

+ or —bc.io;=+1or —1VjeA]

+1 j; =0
tbc.io;= = Vjedi u.
T b0.C Jj { _ l jl < 0 J LM
Let « be +, —, or +. The energy of the configuration o, , given the o b.c. is

denoted by H; (o AL,M]oz). The corresponding partition function is

ZZ,M= Z exp(_ﬁHL,M(O'AL,MM))

g =%1
€Ay m

where 8 > 0 is the inverse temperature. We denote by - >} ,, the expectation value
for the Gibbs state in 4. .. with o b.c. Let B be a finite subset of Z>. We define
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o® =] ]o; and the spin correlation functions by {¢”>{ , . These functions depend
i€B

on fBJ. At low temperature the =+ b.c. yields, in the thermodynamic limit, a non-

translation invariant Gibbs state in which the two pure phases, obtained for o = +

and o = —, are separated by an interfacial region. The surface tension 7 between

these two phases is defined by [9]

1 Ziy
lim lo .
B w  ZE
Theorem 1. Let z = e~ ?#). Then there exists r > 0 such that :
(a) for real z,0 <z <r,©(BJ) exists and 1(pJ) —2BJ is an analytic function of
7|z <r;
(b) for every finite B Z°

lim lim <{o®)}, =<e®>* is analytic in z,|z| <r.

Lo M—>x
Remarks. The existence of the limits in Theorem 1 can be proven with the method
of this paper, or by using correlation inequalities [9, 10]. Actually using correlation
inequalities one proves existence for all fJ. The proof of the analyticity of { ¢ > *(z)
is done by showing first that A}im (o®) [ \(z)is analytic in z, | z| < r and uniformly

T= —

bounded in L. Then one uses Vitali’s Theorem.

3. The Pure Phase

We recall now some relevant results concerning the pure phases. Although the
analysis below is originally due to Minlos and Sinai [6], most of it can be found in
[7]- Some new results (Theorem 3) are due to Kunz and Souillard [8]. We use the
algebraic formalism [7].

Let E be a set with elements x, y etc. such that there is a notion of ‘being adjacent’
between the elements of E. Then we say that a subset F < E is connected if for any
x and y of F we can find a sequence x,,...,x, of elements of F such that x, = x,
x,=y,x; and x,,, are adjacent, i=1,...,n — 1. Connected subsets of R*® are
defined with the usual topology on R3.

We consider now the lattice Z3. To each pair of nearest neighbor sites, {i,j»,
we associate the unit closed face perpendicular to the segment with endpoints
i and j and passing through the middle of the segment. We call an edge any side
of a face. Let s be the set of all these faces. Two faces in # are adjacent if their
union is a connected subset of R*. Given a configuration in A4, ,, with + b.c. we
consider the set of all faces of # associated to <i,j) with o, # ¢;. We decompose
this subset into maximally connected components called contours. For every
contour y of a configuration in 4, ,, there exists exactly one configuration o, in
Ay p which contains only this contour. We write y = 4, ,,. We denote by ¢ the
set of all possible contours y in Z3. Two contours y, and y, are compatible if there
exists a configuration in some A; , with +b.c. containing exactly these two
contours. We define the interior of 7y, Int y, as the subset of all sites of Z> where
o, is equal to — 1 and the exterior of y, Ext y, as the subset of all sites where o is
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equal to + 1. There is a bijection between configurations in 4, ,, with + b.c. and
families of contours (y,,...,7,) with y,c 4, ,,i=1,...,n,7, compatible with
Vj»i#j,i,j=1,...,n. Such a family of contours is called admissible. We identify
this family with its characteristic function I on % :I'(y) =1 if y belongs to the
family, I'(y) = O otherwise.

To use the algebraic formalism we consider also non-admissible families of
contours. These include families in which a contour y occurs several times. These
families are identified with the functions I" : ¢ — N such that N(I') = Y I'(y) < .

I'(y) is the multiplicity of the contour y in the family. The function idenytically Zero
is denoted by 0. Let % be the set of all these functions. We define on . an addition
by '+ I'")(y)=T(y)+ I''(y). We say that I' < I"" if and only if I'(y) £ I''(y)V7y.
We define the length of a contour y by |y|, ie., cardinality of y = #, and
|I'| = ZF (y)|7|. We also use the notation I' for (] y< #. Let us remark that

i (»)#0
I'is adm1551ble if and only if I'(y) = 1 or 0 and the connected components of I" are

exactly the y with I'(y) # 0. Let A and B be two sets (of 5#). We write AiB if for
every connected component of B there is a connected component of 4 such that
their union is connected. Caution: 4iB # BiA. In particular if B=7y a contour
and A = I' a family of contours, then I'iy means that there is a y,,I(y,) # 0 such
that y, Uy is connected. On the other hand yiI' means that the union of y and each
connected component of I" is connected. We also use the notation I' = 4, ,, if
y < Ay, for every y with I'(y) # 0.
Let z = e~ 2#/. We define two functions on & :

2T I" admissible
(I = .
0 otherwise

and

o ( )n+1

p'N= Y ———)' H o)) (3.1
n=1
where the sum ) "isover all ', ,...,I', such that I'; ## O and ) I'; = I'. We make the
convention that an empty sum is zero. Therefore we have ¢”(0)= 0. ¢"(I') is a
polynomial in z since I'; # 0 in (3.1). Furthermore ¢(I') and ¢’(I') are translation
invariant in an obvious manner.

Theorem 2
(@) T(I')# 0=>T is connected,
(b) For any R > 0 there exists an r > 0 such that

>’z o)<
Ie¥ I_IZ|
O€IntI’
whereIntI'= () Inty.
y:I'(7)#0

Remarks. Theorem 2 is standard although the formulation of (b) may not be.
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For a proof see [App. 1in 5] and [7]. It is easy to see that (b) implies

> R s L 2l <s
I'e¥ I
rif

where 1 is some face of #. Using (b) one obtains also that

Y ")

I'c4a

is analytic in z, | z| < r and a justification, for |z| < r, of the formula

2 ¢(F)=exp< 2 ¢T(F)>-

I'ca I'cA
Here A is any finite subset of Z°>.

Theorem 3. Let A be a subset of Z*. For any R > 0 there exists r > 0 such that for
any finite B < A and any I there exists a function f (') which is analytic in z,|z| <r
and such that:

(@) (a7 =Y (D)

Irea

(b) f(I') # O implies that
r=>T,
i=1

for some I';,i=1,...,n, with the properties: I'; is a connected set, i=1,...,n;
IntI''mnB#+g,i=1,...,n

) Z |fB(F|R|F|<eXp<‘Bl E l |>

The proof of this theorem is in Appendix 1.

4. The Interface

Given a configuration in 4; ,, with + b.c. we consider the set of all faces of #
associated to {i,j) with o, # ;. We decompose this set into maximally connected
components. There is exactly one component which is infinite when we extend the
configuration to all Z* using the + b.c. We call this component the interface A.
All other components are contours. For every interface 4 of a configuration in
Ay there exists exactly one configuration o, which contains 4 and no contour.
As for the contours we use the notation 4 = Ay, ;. A contoury ¢ Ay yyand 4 < Ap
are compatible if there exists a configuration in A; ,, with + b.c. containing 4 as
interface and only the contour 9. This is the case if and only if yfA(yf 4 is the negation
of yid). Let

1 if vid
X (y) = .
4) {0 it yid
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Let also

X, =[1X ).
Y
Then we have

Ziw= X Y o)x D).

AcAr, M I'cAL

Since X (I') is multiplicative, X (I'; + I',) = X (I )X (T,),

> w(r)XA(D:exp( > wT(F)XA(D).

FcAr,m I'<Ar,m

We are going to consider the system in an infinite cylinder of base L x L,
A, ={iez®: — L<i,,i, <L}, by taking the limit M — co. This is necessary
in order to analyze the interface. Let us prove first the existence of the limit for
the ratio of the partition functions

Ziu
ZL,M - ZZ,M
Y Y o)X ,I)
- Ac AL, m I'cAL,Mm
2 o)
I'cAp,.Mm
— 3 exp< s DX ) 1))
AcArL,m IcApm
- x M exp<— )y wT(F)).
AcArm I'cAL,m
rid
Using Theorem 2 we have
S 1o slal 2 e <
FCAL,M 1 - IZl
rid

and moreover

lim Y "= Y "), |z|<r.

M- w 'cAL M I'cAL
ria ria
This shows that
T
2 o'
IrcAj,
ria

is analyticin z, | z| <.
We now use the fact that the number of possible 4 with | 4| = k is smaller than
¢k in order to obtain the bound

Zius Y Mzff<oo
k20
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where

c=c, ex —’Zl—
=C; &Xp l_lzl .

This shows that lim Z; ,, = Z, exists and that
M-

Z,= Y z""exp(— > wT(F)>-

AcAyL I'cAyp
rid

Hence the probability distribution of 4 in 4, ,, given by

PL’M(A)=z“"exp<— Y q)T(F)>'Z,:}W

I'cAp,Mm
ria

has the limit

lim Py \,(4)=Py(4) =2 exp( -3 (pT(r))Z;P
M- Irc AL
ria

We recall now the basic geometrical properties of the interface in 4,. We
refer to Dobrushin [1] for details. Let 7= {xeR®:x, = — 1/2} be the regular
plane and p(-) be the orthogonal projection on 7. Let 2 be the set of all projections
of the elements of s# on 7. An element of Z is either a face or an edge. Let
P, =P n A be the set of faces in Z. Two elements of 2 are adjacent if their union
is a connected subset of 7. There are two types of faces in 4: The c-faces which are
the horizontal faces f such that there is no other face g in 4 with p(f) = p(g). The
w-faces are all other faces of 4. The interface 4 is decomposed into walls which are
the connected components of the set of all w-faces and into ceilings. (The ceilings
are connected subsets but not maximally connected components of the set of all
c-faces, see [1].)

Let W,,...,W, be the wallsof 4 and C, ..., C,, the ceilings of 4. We project 4
on 7. Then if W, and W, are different walls of 4, i.e., they are disconnected, then
p(W,) and p(W,) are disconnected. Moreover all faces of Z\p(W,) which are
adjacent to p(W;) are projections of c-faces. Let W be a wall. We decompose
2,\p(W) into connected components. The interior of p(W), Int W, is the union
of the finite components of 2 ,\p(W) and the exterior Ext W is the infinite com-
ponent of Z\p(W). To every component of Z,\p(W) there corresponds one ceiling
adjacent to W which projects into this component. The base of W is the ceiling
adjacent to Wwhich projects into Ext W. We call a standard wall a wall W such
that there is an interface 4(WW) containing only this wall. The base of a standard
wall lies in the regular plane. To any wall W of an interface we can associate a
standard wall which is just the translate of W in such a way that its base lies in 7.
Therefore we can associate to every interface 4 a family of standard walls such
that their projections in & are disconnected. The converse is also true: for any
family 6 of standard walls with disconnected projections we can reconstruct in a
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unique way an interface 4(6). We say that such a family of standard walls is admis-
sible. The set of all standard walls is denoted by # and we write W< A4,
if AW)< A;. We identify 0 with the function on # such that 0(W)=1if W
belongs to the family and 8(WW) = 0 otherwise. As before N(6) = ZH (W). We write

also 0 = A, if W< A, for all W with O(W) + 0. The function 1dent1cally Zero is

denoted by 0. 0, <0, if and only if 0,(W) < 0,(W). In this case 6, — 0, is well

defined. The projection of 0 is p(6) = U p(W). In the following we omit the
W:0(W)#0

word standard when no confusion arises. A wall Wof a family 6 is called minimal

if there is no other wall W’ of 0 such that p(W’) = Int W. Each family 0 has at least
one minimal wall. We call external a wall W of 8 if p(W’') = Int W for every W'
of 0. We define for each W the “excess” number of faces in W,

oOw)=|W|—|pWw)n#|.
We notice the inequality
|p(W)| < I(W)

(In Dobrushin [1] |p(W)| denotes |p(W)n #|) It is easy to verify that the total
i = (2L)* + I1(0) where I1(0) =

ZG(W)H(W). We introduce now the function

w
<PL(9)=Z"‘9)€XP[— Y o'+ Y o'l )]

IT<Arp I'cApL
Trid(9) iz,

if = A4; is admissible and ¢, (0) = 0 otherwise.
Then we can write

_ ¢ (0)
PL(A(@))—~————Z o0 4.1)
The quantity
U= Y (pT(r)—rZ o™(I 4.2)
T o

is called the effective energy of the family of walls 6. The normalization of U,(0)
is chosen so that U,;(0)=0
We introduce also nonadmissible 8 so that we can use the algebraic formalism.
Let 7 be the set of functions 0 on # with values in N and such that
N@) = ZG(W)< . We extend ¢,(0) on J by putting ¢,(6) =0 if § is non-

adm1551ble. We introduce also the function

1n+1
¢f(9)=2( ) Z I—an

nx1 LOpi=1

where the prime indicates the restriction in the sum to 0,%#0,i=1,...,n and

Y0, = 0.
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Remarks

(1) Using properties of the ¢ (I') one shows that ¢,(6) is analytic in z for | z| small.
Since the sum defining ¢} (6) is in fact finite ¢ (6) is also analytic in z for |z| small.
(2) The formal expression

> ¢L(9)=exp< ) <p{(9))

0cAr 6cAr

is valid for | z| small using the estimations of Theorem 4.
(3) The surface tension in 4; is given by

1 .
T, = — oLy log{ﬂl ZL’M}

=2pJ ) — —— T(p
A +(2L)2Fr%“‘(p ) (2L)20§4L @(0). 4.3)

We derive now convenient expressions for the correlation functions {o® ).
Let 4 = A(0) be an interface in A;,. We define S(0) as the set of sites ieZ3 such that
there exists a face, associated to some <i,j», which has a non-empty intersection
with 4(6). If we fix A4(8) and look at all possible spin configurations in A4; with
this interface, then S(0) is exactly the set of sites i where o, has a well-defined value
determined by 4(6). We put S(0) = A;\S(6) and we observe that S(6) induces for
each connected components of S(6) a pure boundary condition &« = + or o = —.
We can always take this to be a + b.c. by reversing the spins in some of the con-
nected components of S(0). Let now B be a finite subset of 4; ,, we then have

(oByE = lim (aPyE, = Y PO){d®|0),

M-« 0cAyr,

= Y P,O0xy0)<a?>,

0cAr

where (o®|0), is the conditional expectation value of o® in A, given A(0);
P,(0) = P,(4(0)) and y(0) is chosen to be + 1 or — 1 so that

<O'BIH>L XB(0)<GB>6

with B = B~ S(0). {o® >, 18 the expectation value of o® in S(6) with + b.c. Notice
that the sum is in fact only on admissible 6 since otherwise P,(f)=0. Given a
family of walls 0, in 4; we define their correlation function as

. ZA o0, + 92)
pL(01) =224

Z ¢.(0,)
92C AL
Using (4.1) we have
pL0y) = Z P.(6,).
9, <AL

010>
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since P,(0) = p,(0) = 0 if 0 is non-admissible we have the formula

P (0))= Z pL(GZ)(_ l)N(ez_el)-

6,c AL
016>

Putting <aB| 0>, =0 if 0 is non-admissible we have

Pp= ) PO<®|0),

OcAr

=TT pl0)(= 1000,
OCAL99C§1;’L
= Z pL(G’)< Z (—I)N(G'_9)<0'B|9>L>. (4.4)
' Ar O0c AL
00

Theorem 4. For any R >0 there exists r > 0 such that if |z| <r

N©)
(@) [p,(O)| <R —I’Z_’

2]

and p;(0) is analytic in z.

T Jol0ls Ly Jel<r
Int 63X
where Int 0= | ) Int Wand x,€en.
OW)+0

Remark. It is in fact possible to show also

ne)| T |Z‘
¥ RMlgf0) s

‘]
Int 63x0

However we do not use such a bound.

5. The Energy of the Walls

In this section A, is fixed and we do not write always I' = A; or 0 = 4;. The
effective energy of an admissible family of walls is defined by (4.2). We rewrite
U,(0) as a sum of potentials ®;(0)
U 0= Y &,0).
0'=6
Notice that since 0 is admissible 6" is also admissible. The Mobius inversion
formula yields
P0)= ) (= 1)N°"DUL0).
0'<0
Theorem 5 below gives the properties of these potentials which allow us to analyze
the distribution P,(6).
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is analytic in z for | z| <r, and satisfies

2]

Y |90)|R7 < 30(W)
w<0'<6 1-|z|
where W is any minimal wall of 0 and 5(0) = min{]E| 1 E connected = 2,E v p(0)
connected}.

Proof. By definition
U0)= Y o'(N— Y "D
Tid#) I'i%o
Suppose that I' is connected (otherwise ¢ (I') = 0) and that I'i4(0) but 7. To
simplify the notation we have put I" = p(I') and 8 = p(f). Then from the definition
T'iC exactly for one ceiling C of A(f). Using the invariance under translation in the
i,~direction of ¢ we get

Y o')= Y "I

Tid©) Ti?o
oir 6ir
Therefore
U0)= Y o'~ ¥ o).
ria@) Tizo
oir oir

We treat each sum separately. We define @, ;(6) by
Y @,.0)=U (0= ) o"(I).

0= rid®)
oir

By the inversion formula
e 0= Y (=17 ) "D

0%#6'50 i)
o'ir

= Yo"/ (— 1y
r o

where the final sum ) is over 0 such that 0 # ' < 0, I'iA(0) and §'iT for fixed I".

Let Whbe a minimal wall of . For any ¢', 0 # 0’ <0 we c%lsider the connected
component of 2,\(8\ W) which contains W. We denote by W(#') the part of A(B’)
which projects on this connected component. For example if W¢6', then W(¢')
is just a ceiling in A(@") and if 8" = W, W(0') = A(W). Let us now suppose that we
have a I' satisfying the following condition

either FiW

or ['iWw and T'iW(®) forall @ <0
For a such a I we have

Z/(_ 1)N(9—9’)= Z’ (_ 1)N(9—0’)+ Z’ (_ 1)N(0—0”—W)=0

0 0#60'<60-W 0£0"<0-W
We have another cancellation when there exists an external wall W in 6. Since
W is external it is also a standard wall in A(6). If there exists a I" such that I'i4(6)
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with @ — Wil and I'/W, then there exists a translate I of I' with I"iA(0 — W).
Therefore we obtain a cancellation. Using these two results we get

P, ,(0)= ZQDT(F)Z’(_ PNe-o
— Z* T F)Z ( )N(O—G’)

ri6

where the sum ) is as above and the sum )_*is restricted to I" such that I intersects
the translate W(6') for some 6’ < 6 whenever W is minimal in 6. Since Wil for all
minimal or external walls W in 6 and since I is connected we have Wi T for all W
in 60 and therefore I'ifl. We choose now some minimal wall W,, of 6.

|@,,0)] < X° | (D)2Y

rio
4% ) Jo"(n)]
rio
Tid(Wo)

where ) ° is restricted to I such that I intersects w, »(0") for some 4(0'),0' < 0.
The first inequality comes from counting the number of ' < 6 and the second
inequality comes from the fact that there are at most 2V® different WO(H’) and from
the translation invariance of ¢(I).

Using the definition of I'if and the fact that I' is a contour, i.c., the union of the
faces of I' is a closed connected polyhedron, we have the inequality

NO) <|T).

Therefore
|2,,0)] = X, 47e"(N)].
rlél;(l;"o)
We now observe that for R > 1
Y ROY "4 Y 2 o] @R)". (5.1)
Wo<0 <6 Tio Wo<0'<60 Tio’
Tid(Wo) Tid(W o)

Since I'iff and I is connected we have §(0") |F | =|I'|. The number of ¢ such
that W, <60’ <0 and T'if is smaller than 2|r I since 0 is admissible. Indeed this
implies that there is only one wall in 6 with a given projection and all projections
of the walls of 6 are disconnected. Therefore if we sum first over 8" and then over
I' in (5.1) we have
S ROl 0 T Y ERIeI)] <200y

Wos0' <0 JeAWo) Tif —|z
if | z| is small enough. The sum is estimated as in (5.2) below.
We estimate now the second part of U, (6):

UZ,L(G) - Z p'(N= Z 2, .(0)

Trizo 0 <0

or

= T (=1 T 9T,

(=Y LiZo
r:ar
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By identification we get
@,,0) = (= 1" ) o"(D).

rizo
rio
Therefore
Y ROle0)s T TR 62
Wos0'=0 Wo=<0'=0Ti%Po

rio

Using the invariance by translation of ¢*(I") we get

Y X le"MRMr

Wo<0'<6 Tif
Tiwo

Indeed any I' such that I'i, and I'iW, can be translated so that its translate
intersects 2, in W,,. We can obtain at most |I'| times the same contour. Therefore
we have the upper bound

> oY ot (D) QR < (W) 2l
Woé0’—_<-9rf;'_§' 1- ‘Z|

This finishes the proof.

Remark. Theorem 5 shows also that if 6 is admissible and if W is any wall of 6,
then we have

S e@) R < 3mw) L
S rsese 1—|z]

6. Proof of Theorem 1
(a) We know from (4.3) that

1
Q2= T 6D T 00
I'cAL 0cAL
I'i%o

By Theorem 2 we have for |z| <r

X le"l=1 Y [

I'cAL OelntI”
T'i%o

and by Theorem 4
Y le1@= X |of0)
OcArL xo€elnt 6

2 |Z|
S EE
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From this we conclude that T, — 2fJ is analytic in z, z| <r, since it is equal to a
uniformly bounded absolutely convergent series of analytic functions. Moreover
the bound is uniform in Land we have convergence for L— oo when fJ is real [9].
This finishes the proof of (a).

(b) From Sect. 4 (4.4) we have

CaPyi= Y Y p0)(— DV O(P]0),.

0c AL 0 AL
06

The right hand side of this equation is analytic in z, for | z| small, because
Ca™0>, = 1(0)<a" >,

is an expectation value in the pure phase times a constant and moreover p;(0)
is analytic in z by Theorem 4.

We are going to show that this series is actually uniformly bounded in L and
then we conclude as in (a). Let =5 be the set of 0 such that p(B)~ Int W = ¥ for
every Wof 0 and E} the set of 6 such that p(B) n Int W = ¥ for every Wof 6. Every 0
can be decomposed into 0, + 0, with 0, €Z, and 0,eE}. We notice that yz(0) =
¥5(0,) since 0, determines completely the part of 4(0, + 0,) which projects itself
on p(B). Hence we may write

(oByE=) Z*pL(0+0’) Y xs(0)(= DN,

beEp ezl 616
) Z (_1)N(0,_92)<°'B>01+92~
0,0

Let 0, be fixed. We then have, using Theorem 3
L (=DM = (=DM Y D)

0,50 0,0 I cS@®:1+062)
= Y fo{tl) Y (—1re-e 6.1)
I'cAjp 0,50
I'eS®1+62)

where an empty sum is equal to zero. Consider now those terms in the above sum
for which f3(I') # 0. We are going to show that
Z (__ I)N(O’—Gz)

62,0
I'=S(6;+02)

is nonzero only if I" is large, i.e., p(I)ip(d).
By Theorem 3 we can write

r=yr,
i=1

with I'; connected and Int I';~ B # (. Let us suppose that there exists a wall W
in 0" such that p(I')ip(W). Since Int Wnp(B)= ¢ and IntI';n B+ & for any
i=1,...,np(I')NnInt W = . This implies that the presence and absence of W in
0, does not affect the condition I" = S(6; + 6,) and hence that

Y (=1e=o.

0,20
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Thus to have a nonzero contribution to the sum (6.1) we must have p(I')ip(W)Y W
in 0, i.e., p(I)ip(6'). Let us label also by p(B) the set of faces of 2, which contains
the projection of B on the regular plane. Observing that each contour y is a closed
polyhedron we have in the case f3(I') # 0 that p(B) = p(I') and p(B)np(I';) + &
foralli=1,...,n. Since p(I')ip(t) we have 6(p(B)L p(@')) < |I'| + 5(p(B)).

Y= NGB S| S 28N
>0 r
p)ip(6’)

< 2N(e')Ra(p(B)JR—6(p(0’)Up(B))Z| fE(F)lRm
T

< INO)RIPB) R ~(p(0')p(B) GXp<[B[ IZ{ |>
= 1—-|z

for | z| small. Using Theorem 4 and N(6) < I1(0) we get
[<o®>.| = exp(]B[ %)Ré(mﬂn.
—1Z

. Z Z 2H(6)2H(9’)|pL(9 + g/)lRﬂé(p(ﬂ’)umB))

0'eE% 6eER

_exp<|BI 2] I)R‘“’(B’) |2 { lez (R/2)~1®

—|z

. Z (R/2)" HOIR ~op(®)p(B)
0eE

We estimate the last sum by

S RO Y L ( > ron
0cEp nz0 n' IntWnB+ ¢
= exP(lBl Cr)

Cr—~0asR— 0.

On the other hand
Z (R/2)" TR ~0w@)0pB)) < o

0'eEy
Indeed

Y R2TO< Z <Z* (R/2) ”<W>

0'eEg

S(p(6)up(B)) =¢
where Y * is the sum over all W which are connected to a set with / elements.
Therefore we get the bound exp(Cr¢). Now we sum over all connected sets which
connects p(B). But the number of connected sets with 7 elements and connecting
p(B)is smaller that | B|CS for some constant. Therefore (6%, < K uniformly in L.
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Appendix 1
Proof of Theorem 3. We define a function on % by

—1 if ielnty
o(y)= ] ieZ’.
) §4—11fieExtyl

We put

O‘i(F) = 1—[ O'i(Y)r(y)

vell

oB(I) =[]o,I).

ieB
Let A c 73 be finite, then
Y o(e"(T)
(o®yf =TAa——
4 2 o)
I'ca
Since ¢(I') is multiplicative

ZW%W#%{Z¢WW®}

Irea I'cAa

Therefore

<a®> 1 =exp[ 2 T(NE*() — 1)}

Irea
=exp—< > 2<PT(F)> (A-1)
eB(Iry=-1
Using the bound
L BN L e
red OclntI’ 1'—‘Z|

oB(IN=-1

and standard arguments we can prove the formula (A-1) for A infinite. We have
also a uniform bound on | (o> ] and using Vitali’s Theorem we get the analyticity
of (%)} in z,|z| < r. Let us now expand (%) .

<GB>A+=6XP<—2 > <pT(F)>

I'ea
cB(I)=-1
(_ 2)n n
B Zo n! I"ZA @)
"= oB(IN=-1
(=2

nz1 M rca Yri=r i=1
aB(Irn=—1
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We define
— ) n
W=t S8 5 [le'e. réo (A2
nz1 : ri=r i=1
eB(Ii)=-1
f50)=1.

All rearrangements in the sums are justified using Theorem 2. The sum defining
f() is finite since ¢ (0) = 0 and therefore f,(I") is a polynomial in z.
If f5(I') # O then one of the terms in (A-2) must be nonzero and therefore

r=yr,
i=1

I'; connected since otherwise ¢(I')=0 and IntI';n B+ ¢ since otherwise
oB(I') = + 1. Finally

oy ,
SAnRTs1+E Y OE 5 TelR
' et 03(1%2{11—1
S RG
nx1 . r

oB(IN= -1

208 3 R0 )

OelntI’

Remark. The formula

<03>I=exp[—2 2. <PT(F)]
R

together with Theorem 2 shows that
(aBaCH

(a?> 1<)
is exponentially small with the distance between B and C, uniformly in A.

It isremarkable that the only ingredients of the proof of Theorem 3 are Theorem
2 and the multiplicative property

o ()=o) .

yel'

Now it can be seen from the proof of Theorem 2, see e.g., [7] that the same
expansion can be made for the contours of any ferromagnetic spin 1/2 system with
finite range interactions provided that this system satisfies the decomposition
property (see [11]).

The multiplicative property also holds trivially for these systems. On the other
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hand, it has been shown [11] that spin 1/2 systems on Z¢ can be reduced to a
system with the decomposition property in the following sense: all correlation
functions with + b.c. either vanish or are equal to some correlation functions with
+ b.c. in the reduced system.

It follows then that all correlation functions of any spin 1/2 ferromagnetic
system on Z¢ with finite range interactions are analytic in e~ 2#® for B large,
where J(B) is the coupling of the bond B. Notice that this extends previous results
obtained with Asano contractions because these were restricted to the correlation
functions generated by the bonds. For higher spin systems or systems on different
lattices than Z¢, the above results hold for systems with the decomposition property
and, with the results of [ 12], presumably for all systems.

Appendix 2

Proof of Theorem 4. We refer to [7], Sect. 4 for an exposition of the algebraic
formalism. Let , and ¥, be two functions on 7. We define a commutative
multiplication by

Yo+, (0) = Z Y16 —0,)y,00,).

016

Let ¥ be such that (0) = 0. We define an exponential by

expy =1+ % S

where 1(0) =0, 0 #: 0 and 1](0) = 1. We have
(exp ¥)(0) =1(0) + Z Z W(0,)...¥(6,)
nz 1 0, =0

exp ¥ is a function on J such that exp y(0) = 1. For all such functions we can
define the inverse of the exponential, the logarithm, by

log ¥(6) = log({ + ) (0)
_1n+1
D A A ANACY

nx1 >0,=0

with /,(0) = 0. Formally we have logexp ¢ = .
Let

0) = { 2 exp(— U,(0)) 0 admissible
7T 0 otherwise

with U, (0) defined in (4.2). From now on we suppress the index L. We see that
p=expo’
and that

@~ =exp(—o").
These expressions are true not only formally but also analytically for |z| small.
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This is a consequence of the bounds we derive in this Appendix.

Let

A,0)="Y o Y0 —0,)p(0 +0,).

626"

We observe that 4,(6') =0 if 0 is not admissible. The quantity 4,(0') satisfies
a recurrence equation which implies very strong bounds on 4,(0'). To see this we
choose one minimal wall W in 6. We write 6 adm. for 6 admissible and rewrite
U6 + 0), for 0 + 0" adm., in the following way

Uo+0)=U,0+U@O+0—W)+10,0)

where
U= ) o0,
W=0;=0
10,0) = Z V(0,0,)
0£6, 20
V(,0,) = Z D0, +0,).
W<=0;=6

In what follows we need to expand

exp(—1(0,0))= [] (exp(—V(0,0,))—1+1)

0¢02<9

-T o 3 [leren-

n>0n 0#6,20" i=1

0¢ojvu
- 3 LT Ileren-
0 =6 n>0

where the sum ) is over all 6, , ..., 0, such that
0#0,<0", 0,#0Vij ¥ 0,20 (A-3)
i=1

We define K(0, 8”) for 8” + 0 by

L X e -

n>1

where the sum ) is over all 6, , ..., 0, which satisfy (A-3) and we put K(0,0") = 1
if 0”=0.

Lemma. We have the equation:
A,0) ="M=V N K(6,07).

0 <0’
0+0" adm.
Z (_ 1)N(93)A0”+9+63_W(0/ _ (9” + 93))
03<60"—0" o
63 adm.

Wi0s3
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where 0 is admissible and W is a minimal wall of 0. We sum over 0, = 0.

See Gallavotti [5] Appendix 5 for a proof.
Let

I,’f,=sup< Y o0 ) (A-4)
] ,

N(9+99’)=m

Since the equation for A4y(@') relates 4,0) with N(0 + 0")=m+ 1 and 4, (0,)
with N(0, + 0,) = m it is possible to prove

Lemma. For R large enough there exists anr, > O such that IR, | < |z|IRif|z| <r,.

Proof.
0

NO+0)=m+1

) Y |K@.0)| R
o : 0 <o’
N@+6'—W)=m 0+ 6" adm.
. Z R0 g +10+0" +93—W)|A6”+9+03_W(0’—(0”+03))’ (A-5)
03 adm.
Wi03

—10") Z R_H(93):|.

glﬁ[([d}{)mme'”*‘”)' Y. |K@,0")|R
0" 03 adm.

0+0" adm. Wio3

We have to take the sup over 0 for these square brackets. Two estimations are easy:

@ U0 T |90)|<3mm L]

W=<60;<0 "I }

for | z| small enough by Theorem 5.

(b) Z R H(93)<Z Z HR onw ;)

03adm n WlW, Vj j
Wib3

—Z ( Z R‘"‘W”)"gexp(H(W)C)

wiw’

where C is a constant.
It remains to estimate

> |K@,0)| R

0+00””:adm.

i+ ) Z Zﬂle‘V‘”‘—llR e
0+6" i=1
0+ 0" adm.

where the sum )" is over all 0, , ..., 0, which satisfy (A-3). We use the inequality
Ie—V(G,G') -1 | § | V(O, Qi),RJ(W+0,)e|V(G,6,)[R—6(W+6¢) (A-6)
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and therefore we have to estimate
Y V6,60 RR% Y < Y Y @05+ 0)|ROP 0, (A7)
0#0, 20" 0#0;<0” W<0350
Since 0+ 60" is adm. 0, + 0, is adm. Therefore 6(W + 0,) < 5(0; + 0,) because
W < 0,. Thus we get the upper bound
Y, | @0, R
W<0120+0"

However we cannot apply Theorem 5 since W is minimal in 6 but not necessarily
inf+0". Let W,,..., W, be the walls in 0" such that W is external for these walls.

p
Yo |e@pR™ <y Y [e0)[R
W=6;=60+0" i=1 W;i=0;560+6"

W; minimal in 6;

X [@0)[R

W=<0;=60+0"
W mimmal in 6

< 3L|Z<H(W) + i H(Wi)>

i=1

+

S W) + 107)

for |z| small enough using the remark following the proof of Theorem 5. We
observe also that

Z |V(6,0)] with 0£0,<6", 0,%6,¥ij

is certainly smaller than
DR A CACAIES 3 2] I(wW)+ 11(07)) (A-8)

046;<0” l [
for | z| small enough. Finally we notice that 0 + 6, < ",

imply

HV

i (W +0) + | p(W)| = s(W +0").

i=1
We get using (A-6), (A-7), (A-8) and | p(W)| < II(W) the upper bound (R > 1)
Y |K@O,0)|RT—1< Y RTHEIR-OWHOIRIW)

0" 070"
0+0" adm. 0+ adm

exp( 6| l | |(I'[(W)+ H(@”)))
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The sum is equal to

6]2’ ")+ (W)
R2HW) z ROV +07) R~ 'exp
z

007

0+6" adm. 6|Z| ")
_S__ RZH(W) Z R—é(()”)|:R— 1 exp i ] .

w<o"
0" adm.,0” W

For fixed | z| and R large enough the last sum is convergent (see Proof of Theorem 1)
and is bounded by

6|z| o)
KRH(W)[R*1 exp— IZJ

where K is a constant depending on R and such that K, - 0as R— «. (0" # W
implies 6(6”) > 0). Therefore

Y |K@O,0)|RTTIS1+K H(W)[Rexp 2| ]H(W)

R 1=z

6+0" adm.
and we have the following upper bound for the square brackets in (A-5)

of | z|, R (1 + K II(W)B(| 2|, RY'™)

with
R)=|z|Rexp 3] +C
1]z

1||

= Rexp

For a given R we can choose r,(R) so that if | z| < r,(R) we have

m+ 1= l |IR
since II(W) = 4.
Let us finish now the proof of the theorem. U

1§ = sup| (W) RT™ <sup(R |2[YT ™ exp| U (W)
w

<sup<R[ [exp1 ,|,‘>H(W=[Z|, |z| <r,.

X is monotone in R we can find for any
R an r(R) (monotone decreasing in R) such that #(R) — 0 as R — o0 and

IR< |z]"' if |Z| <r(R).
Using the algebraic formalism one shows that

pO)= Y. 40

0 cAr,
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Using (A-4) and the above lemma we have
IO =REO 5 3 |4,0)|R"

m=N@®) NO+0)=m
IZ]N(B)

< R~H(9)I__I_Z' (A-9)
Y le"O= X Yle"W+0)
Int 63x¢ Int Waxg €
< ¥ R ¥ rec, L
- Int;yco mgl - R 1 - 'Zl

where C, —0as R — o0. We choose r(R) so that C, < 1.

The functions 4,(6') are analytic in z because they are polynomials in ¢, (6)
which are themselves analytic functions (see Section 4). From this we get the
analyticity of p,(0) since Y 4,(6') is a uniformly bounded absolutely convergent

v

series by (A-9). J

Appendix 3

Widom Rowlinson Models

For simplicity we consider only the model which we treated in detail in [3] and [4].
We refer the reader to those papers for notations and definitions. We consider a
pure A boundary condition in a volume A. Let (S;,ieA) be a configuration in A
such that the set y of empty sites in this configuration is connected. We define
Int vy as the set of sites where we have a B particle and Ext y as the set of sites where
we have an A particle.

Definition. A contour is the couple (y, Int y)
For each contour we can define

+1 if ieExty
Si(y)= 0 if iey
— 1 if ielnty

It is not difficult to see that any configuration in A with 4 — b.c. can be de-
composed uniquely in contours so that the value of S; in the configuration is
given by

H S()

the product being over all contours of the configuration. Therefore we can prove
Theorem 3 and since the analysis of the interface is the same as before we also
have Theorem 1. However the existence of the limits for real activity in this theorem
does not follow by correlation inequalities but we may use either the results of
[4] that prove the existence of these limits or use the methods of this paper.
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