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Abstract. We consider the spatially inhomogeneous Gibbs states for the three
dimensional Ising and Widom-Rowlinson models. We prove the analyticity
in z = exp (— 2βJ) for small | z | of the spin correlation functions of these Gibbs
states and of the surface tension.

1. Introduction

We consider the three-dimensional Ising model, with nearest neighbor ferro-
magnetic interactions, in a box with + boundary conditions (b.c); the spins
surrounding the top (bottom) half of the box are equal to + 1 (— 1). It is known
[1,2] that, at low temperatures, these b.c. lead, in the thermodynamic limit, to an
extremal non-translation invariant Gibbs state whose correlation functions cluster
exponentially.

In this paper we prove that these correlation functions are analytic in the
variable z = exp(— 2βJ) for \z\ sufficiently small; β is the inverse temperature
and J is the coupling. We also study the surface tension τ, i.e., the thermodynamic
limit of the difference in free energy per unit cross-section between the system with
± b.c. and one with + b.c. (all spins on the boundary equal to + 1). We show that
τ — 2βJ is analytic in z at low temperatures. Moreover, we extend our results to
Widom-Rowlinson models on a lattice; the systems discussed in the first two
papers of this series [3, 4].

The method we use is a low-temperature expansion of the Minlos-Sinai or
Kirkwood-Salzburg type. (This is similar to the method used by Gallavotti in
his work [5] on the two-dimensional Ising model with + b.c.) The Minlos-Sinai
equations [6] were originally developed for studying the low-temperature behavior
of the pure phase, i.e., the state obtained with the + b.c. The configurations of the
system with + b.c. are described by means of contours and Minlos and Sinai
apply Kirkwood-Salzburg equations to the 'gas' of contours. The factor
exp(— 2βJ) plays the role of an activity.
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In the + b.c, we first remark that for each configuration there is an interface,
i.e., a contour that is connected to the part of the boundary separating the + and
— spins. By definition, this interface divides the box into two regions having pure
+ or — b.c. Our strategy will be to concentrate on the interface and then use the
Minlos-Sinai low-temperature expansion for the pure phases.

Dobrushin has shown that the interface can be decomposed into elementary
excitations in the following way: in the ground state, the interface is perfectly
flat. At non-zero temperatures, however, the interface will be deformed: these
deformations are called walls in [1] and, once specified, completely determine the
interface. We do a low-temperature expansion for the correlation functions of
these walls. Unlike the contours which interact only through a hard-core, our
walls have in addition complicated (effective) interactions. These come about
because a modification of the interface also changes the regions with pure + and
— b.c. On the other hand, very large walls are unlikely in the system with + b.c.
for the same reason that long contours are unlikely with + b.c. It turns out that
all we need to control the interactions between the walls is good control on the
pure phases and this is given by the Minlos-Sinai expansion. We can then apply
a more or less standard Kirkwood-Salzburg expansion for the correlation functions
of the walls.

Associated with these walls is a free energy that turns out to be related to the
surface tension and therefore our expansion shows also the analyticity of the latter.

One may ask: what is the relationship with Gallavotti's work mentioned
above? There, the physical situation is completely different, since the same b.c.
leads to a translation invariant Gibbs state in two dimensions. However, to show
that the separation line (analogue of our interface) fluctuates, Gallavotti uses
essentially the same decomposition into walls and then does a low-temperature
expansion to show that these walls (called 'jumps') are almost independent. The
difference between two and three dimensions is geometrical. It comes from the
fact that in two dimensions large deviations of the interface from its flat ground
state can be produced by the addition of a large number of small jumps, while in
three dimensions this is impossible.

Let us mention that we use the 'algebraic formalism' instead of the equations
in Banach spaces to perform our expansions. Although we strongly rely on [5],
we assume only a knowledge of the algebraic formalism as expressed, e.g., in [7].

We also recall without proofs the results of Dobrushin [1] on the geometry
of the interface.

Since we are interested in quantities whose existence in the thermodynamic
limit follows from correlation inequalities for real values of βJ, we simplify matters
somewhat by using Vitali's Theorem to prove analyticity of the limit functions.
This requires only giving uniform bounds for the quantities under consideration
rather than controlling the expansion term by term.

Outline

In Sect. 2 we state the main results (Theorem 1). Section 3 is devoted to the case
of the pure phases. We introduce the contours and give in Theorem 2 (which is
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not proved because it is standard) the main estimates on these. Theorem 3 gives
an expansion for the spin correlation functions in the pure phase which is very
convenient for our purposes. This is proven in Appendix 1 and is due to Kunz
and Souillard [8].

Section 4 deals with the + b.c and the geometry of the interface. We give there
the connection between the interactions of the walls and the properties of the
pure phases. Also given there is the relation between the spin correlation functions
for the + b.c. and the correlation functions of the walls. In Theorem 4 we state
the necessary estimates on the correlation functions of the walls. This is the ana-
logue of Theorem 2 for the pure phase.

In Sect. 5 we give and prove the basic ingredients for the proof of Theorem 4,
that is the estimates on the potentials (interactions) between the walls. This relies
basically on Theorem 2. The actual proof of Theorem 4 is deferred to Appendix 2.

Section 6 gives the proof of Theorem 1, combining Theorem 3 (expansion of
the spin correlation functions in the pure phases) and Theorem 4 (estimates on the
correlation functions of the walls).

Appendix 3 is devoted to the Widom-Rowlinson models [3,4]. With the
correct definition of contours, all our results extend immediately and we do not,
therefore, give many details.

2. Main Results

Let i = (ίί, z2, * 3 )eZ 3 specify a lattice site and σx be a spin variable with values ± 1.
A configuration on A c Z 3 is σΛ = (σhίeA). We put σ z 3 = σ. Given A c: Z 3 we
can always write σ= (σΛ,σΛc) where AC = Z3\A. We denote by <z'J> a pair of
nearest neighbors sites i and j of Z 3 . The energy of a configuration σΛ, given
σΛ c, A finite, is

where the sum is restricted to all < ί,j> such that is A. We choose now a special set
A:A = ALM = {ίeZ3: — M ^i1<M, — L^ i2, 13 < L}L and M being positive
integers. We define three boundary conditions for ALM, the + b.c, the —b.c,
and the + b.c, by specifying the values of σ. ϊoτjeAc

L M as follows

+ or - b.c.: σ. = + 1 or -

;

Let α be + , —, or ±. The energy of the configuration σAL M given the α b.c is
denoted by HLM(σA]L M | α). The corresponding partition function is

ZI,M= Σ

where β > 0 is the inverse temperature. We denote by < >£>M the expectation value

for the Gibbs state in Aτ *, with α b.c. Let B be a finite subset of Z 3 . We define
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σB = Y[σ. and the spin correlation functions by <σβ>£ M. These functions depend
ίeB

on βj. At low temperature the + b.c. yields, in the thermodynamic limit, a non-
translation invariant Gibbs state in which the two pure phases, obtained for α = +
and α = —, are separated by an interfacial region. The surface tension τ between
these two phases is defined by [9]

τ = - l i n w l i m l o g P^
Theorem 1. Let z = e~2βJ. Then there exists r > 0 such that:

{a) for real z, 0 < z < r, τ(βj) exists and τ(βj) — 2βJ is an analytic function of
z,\z\<r;

(b) for every finite B aj3

lim lim < σ B } ^ M = <σ B > ± is analytic in z,\z\< r.
L-> oo M-> oo

Remarks. The existence of the limits in Theorem 1 can be proven with the method
of this paper, or by using correlation inequalities [9,10]. Actually using correlation
inequalities one proves existence for all βj. The proof of the analyticity of < σB ) ± (z)
is done by showing first that lim < σB >^M(z) is analytic in z, I z I < r and uniformly

M-*oo '

bounded in L. Then one uses Vitali's Theorem.

3. The Pure Phase

We recall now some relevant results concerning the pure phases. Although the
analysis below is originally due to Minlos and Sinai [6], most of it can be found in
[7]. Some new results (Theorem 3) are due to Kunz and Souillard [8]. We use the
algebraic formalism [7].

Let £ be a set with elements x, y etc. such that there is a notion of'being adjacent'
between the elements of E. Then we say that a subset F a E is connected if for any
x and y of F we can find a sequence xί,...,xnoΐelements of F such that x1 = x,
xn = y,xi and χ.+ 1 are adjacent, z = l , . . . 5 n — 1 . Connected subsets of U3 are
defined with the usual topology on U3.

We consider now the lattice J3. To each pair of nearest neighbor sites, O'j'X
we associate the unit closed face perpendicular to the segment with endpoints
i and j and passing through the middle of the segment. We call an edge any side
of a face. Let jtf* be the set of all these faces. Two faces in J f are adjacent if their
union is a connected subset of 1R3. Given a configuration in ALM with + b.c. we
consider the set of all faces of 2tf associated to < Ϊ J > with σ. φ σ.. We decompose
this subset into maximally connected components called contours. For every
contour y of a configuration in ΛL M there exists exactly one configuration σγ in
ALM which contains only this contour. We write γ a ALM. We denote by ^ the
set of all possible contours γ in I3. Two contours yx and y2 are compatible if there
exists a configuration in some ALM with + b.c. containing exactly these two
contours. We define the interior of 7, Int γ, as the subset of all sites of J3 where
σγ is equal to — 1 and the exterior of γ, Ext γ, as the subset of all sites where σy is



Non-Translation Invariant Gibbs States III 271

equal to + 1. There is a bijection between configurations in ALM with + b.c. and
families of contours (γ1,..., γn) with y. a AL M, i = 1,..., n, γ compatible with
y.jφjjj = I 5 . . . 9 n. Such a family of contours is called admissible. We identify
this family with its characteristic function Γ on ^ : Γ(y) = 1 if 7 belongs to the
family, Γ(y) = 0 otherwise.

To use the algebraic formalism we consider also non-admissible families of
contours. These include families in which a contour y occurs several times. These
families are identified with the functions Γ : <6 -» N such that N(Γ) = ^Γ(y) < 00.

y

Γ(y) is the multiplicity of the contour y in the family. The function identically zero
is denoted by 0. Let i f be the set of all these functions. We define on i f an addition
by (Γ + Γ')(y) = Γ{y) + Γ(γ). We say that Γ^Γ iϊ and only if Γ(y) ̂  Γ\y)\fy.
We define the length of a contour y by |y|, i.e., cardinality of yajf, and
IΓI = ΣΓ(y)\y\. We also use the notation Γ for (J y a ffl. Let us remark that

Γ is admissible if and only if Γ(y) = 1 or 0 and the connected components of Γ are
exactly the y with Γ(y) =£ 0. Let A and β be two sets (of jfp). We write AiB if for
every connected component of B there is a connected component of A such that
their union is connected. Caution: AiBψ>BiA. In particular if B = y a contour
and A = Γ a family of contours, then Γiy means that there is a yί, Γ(y x) 7̂  0 such
that y 1 u 7 is connected. On the other hand yiΓ means that the union of y and each
connected component of Γ is connected. We also use the notation Γ c= ALM if
y c i L M for every y with Γ(y) φ 0.

Let z = e~2βJ. We define two functions on if :

ί z | Γ | Γ admissible

l θ otherwise

and

oc ( _ ]\n

(3 i)

where the sum £ ' is over all J \ , . . . , Γπ such that Γf ^ 0 and Σ Γ f = Γ. We make the

convention that an empty sum is zero. Therefore we have φτ(0) = 0. φτ(Γ) is a

polynomial in z since Γ. ^ 0 in (3.1). Furthermore φ(Γ) and φΓ(Γ) are translation

invariant in an obvious manner.

Theorem 2
(a) φτ{Γ) =f=0=>Γ is connected;
(b) For any R > 0 there exists an r > 0 swc/z that

,—1—\—, \z\<r
1 Z

OelntΓ

where Int Γ = (J Int y.
y:Γ(γ)ψO

Remarks. Theorem 2 is standard although the formulation of (b) may not be.
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For a proof see [App. 1 in 5] and [7]. It is easy to see that (b) implies

r, z\<r

where/ is some face of J»f. Using (b) one obtains also that

Σ φτ(n
ΓczΛ

is analytic in z, I z I < r and a justification, for I z I < r, of the formula

Here A is any finite subset of/3.

Theorem 3. Let Abe a subset ofl}. For any R>0 there exists r > 0 such that for
any finite B ̂  A and any Γ there exists a function fB(Γ) which is analytic inz,\z\<r
and such that:

(a) <σB}+ = Σ fB(Γ)
ΓczΛ

Φ) fB(Π Φ ° implies that

ί= 1

for some Γ.,i= l,...,n, with the properties: Γi is a connected set, i = l , . . . 9 n ;

The proof of this theorem is in Appendix 1.

4. The Interface

Given a configuration in ALM with + b.c. we consider the set of all faces of J f
associated to < ij > with σi φ σ.. We decompose this set into maximally connected
components. There is exactly one component which is infinite when we extend the
configuration to all Z 3 using the ±b.c. We call this component the interface A.
All other components are contours. For every interface A of a configuration in
ALM there exists exactly one configuration σΔ which contains A and no contour.
As for the contours we use the notation A <= ALM. A contour y a ALM and A cz ALM

are compatible if there exists a configuration in ALM with + b.c. containing A as
interface and only the contour y. This is the case if and only if yjίA(y^A is the negation
oίγίΔ). Let

1 if yiA

0 if yiA'
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Then we have

ZΪ,M= Σ Σ φ{Γ)XΔ{Γ).
ΓCZAL,M

Since XA(Γ) is multiplicative, XA(Γί + Γ2) = XA(ΓJXΔ(Γ2),

Σ φ(Γ)XA(Γ) = cxp( Σ φτ(Γ)XA(Γ)\

J

We are going to consider the system in an infinite cylinder of base Lx L,
AL = {ieZ3: — L^i29i3< L}, by taking the limit M->oo. This is necessary
in order to analyze the interface. Let us prove first the existence of the limit for
the ratio of the partition functions

L,M

^L,M

ΓCZAL,M

= Σ ̂
ΔA

Σ φ(Γ)
=A

Σ

*μιexp ΨT(Π\
ΓiA

Using Theorem 2 we have

I

Σ Wτ

and moreover

\z\ <r

Km
M-̂ oo Γ^AL,M

This shows that

ΨT(Π= Σ ΨT(Π, \z\<r.
ΓCZAL

ΓiA

ΣAΨ
T(Γ)

ΓiA

is analytic in z, | z | < r.
We now use the fact that the number of possible A with | A \ = k is smaller than

c\ in order to obtain the bound

• k < oo
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where

c = c 1exp
_

This shows that lim ZLM = Z L exists and that

zL= Σ z M | e χ P ( - Σ φτ(n)
ΠΔ

Hence the probability distribution of A in AL M given by

ΓCZAL,M
ΓiA

has the limit

lim PLM

M->oo
ΓiΔ

We recall now the basic geometrical properties of the interface in ΛL. We
refer to Dobrushin [1] for details. Let π= {xeR2 :x1 = — 1/2} be the regular
plane and p( ) be the orthogonal projection on π. Let SP be the set of all projections
of the elements of j f on π. An element of & is either a face or an edge. Let
£PQ = 0> n J f be the set of faces in ^ . Two elements of & are adjacent if their union
is a connected subset of π. There are two types of faces in A : The c-faces which are
the horizontal faces/ such that there is no other face g in A withp(/) = p(g). The
w-faces are all other faces of A. The interface A is decomposed into walls which are
the connected components of the set of all w-faces and into ceilings. (The ceilings
are connected subsets but not maximally connected components of the set of all
ofaces, see [1].)

Let Wί,..., Wn be the walls of A and Cγ,..., Cw the ceilings of A. We project A
on π. Then if Wγ and W2 are different walls of Δ, i.e., they are disconnected, then
p(Wx) and p{W2) are disconnected. Moreover all faces of ^\p{W^ which are
adjacent to p(P^) are projections of ofaces. Let W be a wall. We decompose
^0\p(W) into connected components. The interior of p{W\ Int W, is the union
of the finite components of ^0\p(W) and the exterior Ext W is the infinite com-
ponent of &*0\p(W). To every component of ^0\p(W) there corresponds one ceiling
adjacent to W which projects into this component. The base of W is the ceiling
adjacent to Wwhich projects into Ext W. We call a standard wall a wall W such
that there is an interface A(W) containing only this wall. The base of a standard
wall lies in the regular plane. To any wall W of an interface we can associate a
standard wall which is just the translate of W in such a way that its base lies in π.
Therefore we can associate to every interface A a family of standard walls such
that their projections in & are disconnected. The converse is also true: for any
family θ of standard walls with disconnected projections we can reconstruct in a
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unique way an interface Δφ). We say that such a family of standard walls is admis-
sible. The set of all standard walls is denoted by tff and we write WaAL

if A{W)aAL. We identify 0 with the function on J f such that Θ{W)=1 if W
belongs to the family and Θ(W) = 0 otherwise. As before N(θ) = Σθ(w)- W e w r i t e

w
also 0 cz AL if W cz AL for all W with Θ(W) φ 0. The function identically zero is
denoted by 0. θx g 02 if and only if Θ^W) ^ 02(FP). In this case 02 - 0X is well
defined. The projection of 0 is p(0) = \J p{W). In the following we omit the

W:θ(W)ψO

word standard when no confusion arises. A wall Wof a family 0 is called minimal
if there is no other wall W of 0 such that p(W) cz Int W. Each family θ has at least
one minimal wall. We call external a wall W of θ if p(FΓ) c= Int Wϊor every FF'
of θ. We define for each J^the "excess" number of faces in W,

Π(W)=\W\-\p(W)njf\.

We notice the inequality

(In Dobrushin [1] \p(W)\ denotes \p(W)nj^\.) It is easy to verify that the total
excess area of an interface A(θ) is 17(0), i.e., \A{Θ)\ = (2L)2 +17(0) where 17(0) =
YJΘ(W)Π(W). We introduce now the function
w

Σ φτ(Π+ Σ φτ(Π
ΓCIAL Γ<^AL

ΓiΔ (θ) Γί&o

if 0 c AL is admissible and φL(θ) = 0 otherwise.
Then we can write

(4.1)

The quantity

UL(Θ)= Σ ΨT(Γ)- Σ ΨT(Π (4.2)
Γc4 ΓCAL

ΓiΔ (θ) Γi0>o

is called the effective energy of the family of walls 0. The normalization of UL{Θ)
is chosen so that UL(0) = 0.

We introduce also nonadmissible 0 so that we can use the algebraic formalism.
Let 3~ be the set of functions 0 on J f with values in N and such that

ΛΓ(0) = Σ0(WO< oo. We extend φL{θ) on iΓ by putting φL(θ) = 0 if 0 is non-
w

admissible. We introduce also the function

φl(θ)= Σ ^ ^ Σ' flψLiθ,)
n^ί n Θ1,...,θnί=l

where the prime indicates the restriction in the sum to 0. Φ 0,i = 1,... ,n and

Σ



276 J. Bricmont, J. L. Lebowitz, and C. E. Pfister

Remarks
(1) Using properties of the φτ{Γ) one shows that φL{θ) is analytic in z for | z | small.
Since the sum defining φτ

L{θ) is in fact finite φτ

L{θ) is also analytic in z for | z | small.
(2) The formal expression

is valid for \z\ small using the estimations of Theorem 4.

(3) The surface tension in AL is given by

1 .
τL = — ——2icw

1
Σ

We derive now convenient expressions for the correlation functions <σ β >^.

Let Δ = Δ(θ) be an interface in ΛL. We define S(θ) as the set of sites ieZ3 such that

there exists a face, associated to some <z'J>, which has a non-empty intersection

with A(θ). If we fix Δφ) and look at all possible spin configurations in AL with

this interface, then S(θ) is exactly the set of sites i where σ. has a well-defined value

determined by Δ(θ). We put S(0) = ^4L\5(Θ) and we observe that S(θ) induces for
each connected components of S(θ) a pure boundary condition α = + or α = — .
We can always take this to be a + b.c. by reversing the spins in some of the con-
nected components of S(θ). Let now B be a finite subset of AL M we then have

<σB}^ lim < σ * > ± M = £ |

= Σ
θc:AL

where <σ β | θ> L is the conditional expectation value of σB in AL given
pL(0) - PL(J(0)) and χB(0) is chosen to be + 1 or - 1 so that

with B = BnSφ). < σβ> θ is the expectation value of σB in S(θ) with + bx. Notice
that the sum is in fact only on admissible θ since otherwise PL(Θ) = 0. Given a
family of walls θ1in AL we define their correlation function as

~ Σ 9L(Θ2)

Using (4.1) we have

I ) = Σ PL(Θ2)
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since PL(Θ) = pL(θ) = 0 if θ is non-admissible we have the formula

Θ2^AL

Putting (σB\ Θ}L = 0 if θ is non-admissible we have

< σ * > ± = y p7(,

(4.4)

<r

= Σ Σ pL(θ'κ-ίrθ'-θ)<σB\θ>L
Θ^AL Θ'CIAL

= Σ PL(Θ')( Σ (-irθ'-eKσB\θ>L\
θ'aAL \0CZAL /

Theorem 4. For any R>0 there exists r > 0 suc/z that if\z

\N(Θ)

and pL(θ) is analytic in z.

0 3 ) Σ I ^ L ( ^ ) I = I — — \ - > \z\<γ

Intθ3X0 ~ \Z\

where Int θ = (J Int Wand x0 e π.
θ(W)ψO

Remark. It is in fact possible to show also

θ L \ z \
Int θsxo

However we do not use such a bound.

5. The Energy of the Walls

In this section AL is fixed and we do not write always Γ c AL or θ a AL. The
effective energy of an admissible family of walls is defined by (4.2). We rewrite
UL(Θ) as a sum of potentials ΦL(Θ)

UL(Θ)= Σ *L(V).

Notice that since θ is admissible θf is also admissible. The Mδbius inversion
formula yields

Theorem 5 below gives the properties of these potentials which allow us to analyze
the distribution Pτ(θ).
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is analytic in zfor | z | < r, and satisfies

Σ \ΦL(θ')\Rδ{ΘΊS.

where W is any minimal wall of θ and δ(θ) = min {| E | : E connected c 0>, E u p(0)

ected}.

/. By definition

Σ Σ
ΓiΔφ) Γi&Ό

Suppose that Γ is connected (otherwise φτ(Γ) = 0) and that ΓiΔφ) but θfΓ. To
simplify the notation we have put Γ = p(Γ) and θ = p{θ). Then from the definition
ΠC exactly for one ceiling C of A(θ). Using the in variance under translation in the
^-direction of φτ we get

Σ φτ(n=
ΠA(Θ)

θfΓ

Therefore
ψτ(n-

ΓiΔφ)
θίΓ ΘiΓ

We treat each sum separately. We define ΦifL(θ) by

θ'^θ ΓiΔφ)

ΘiΓ

By the inversion formula

φ ίg\ _ y (_ jyv(β-β') y ω

τ(f)
Oψθ'^θ ΓiΔφ')

where the final sum £ ' is over θ' such that Oφffi^θ, ΓiΔ(θr) and θ'iT for fixed Γ.
Let FFbe a minimal wall of θ. For any θ',0 φ θf ^θ we consider the connected

component of &Q\φ'\W) which contains PΓ. We denote by W(ff) the part ofJ(θ')
which projects on this connected component. For example if W$θ\ then ^(θ 7)
is just a ceiling in zl(0r) and if ff = W, W(θf) = Δ(W). Let us now suppose that we
have a Γ satisfying the following condition

eitherf \W
or ΓiW and ΓfίWψ') for all ff ^ θ

For a such a Γ we have

We have another cancellation when there exists an external wall W in θ. Since
W is external it is also a standard wall in Δ(θ). If there exists a Γ such that ΠΔ(Θ)
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with θ - WίΓ and ΓjlW, then there exists a translate Γ of Γ with Γ'iΔ(θ - W).
Therefore we obtain a cancellation. Using these two results we get

where the sum ]Γ' is as above and the sum ]Γ* is restricted to Γ such that Γ intersects

the translate W(θ') for some θ' ̂  θ whenever W is minimal in θ. Since WίΓ for all

minimal or external walls W in θ and since Γ is connected we have Wi F for all W

in θ and therefore f iθ. We choose now some minimal wall Wo of θ.

K#)I^_Σ° \φτ(Π\2N{θ)

Γiθ

^4^<β> Σ \φτ(n\
Γiθ

ΓiΔ(W0)

where Σ° ^s restricted to Γ such that Γ intersects W0(θ') for some Δ{θ'\θ' <̂  0.
The first inequality comes from counting the number of θ' ̂  θ and the second
inequality comes from the fact that there are at most 2N(Θ) different W0(θr) and from
the translation invariance of φτ(Γ).

Using the definition of Γiθ and the fact that Γ is a contour, i.e., the union of the
faces of Γ is a closed connected polyhedron, we have the inequality

Therefore

_
Γiθ

ΓiΔ{W0)

We now observe that for R > 1

k W ^ Σ Σ kτ(r)|(4Rfi (s.i)
Wo^0'̂ 6> Γiβ' T^o^θ'^θ Γiθ'

ΠΔ(W0) ΓiΔ{W0)

Since Γiθ' and Γ is connected we have £(#') ̂  | Γ | ̂  | Γ | . The number of θ' such
that Ĥ Q ̂  θ' ̂  θ and Γ/θ' is smaller than 2 | Γ | since θ is admissible. Indeed this
implies that there is only one wall in θ with a given projection and all projections
of the walls of θ are disconnected. Therefore if we sum first over θ' and then over
Γ in (5.1) we have

Σ Rδ^\ΦULψ')\S Σ Σmfl\φT(Π\ g
Wo^θ'^θ feΔ(W0)Γif

if I z| is small enough. The sum is estimated as in (5.2) below.

We estimate now the second part of UL(Θ):

θιΓ
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By identification we get

Γiθ

Therefore

jθ')\s Σ Σ\φτ(Π\RίΓι. (5.2)
Γiθ'

Using the in variance by translation of φτ{Γ) we get

Σ Σ \φτ(Π\Rm\r\
θ Γίθ'

ΠWo

Indeed any Γ such that Γi&0 and ΓiW0 can be translated so that its translate
intersects ^ 0 in Wo. We can obtain at most | Γ | times the same contour. Therefore
we have the upper bound

Σ Σ_ IφT(Π\(2Rp 5Ξ Π(W0) —W-r
Wo^θ'^θ Γiθ' ί \z\

ΓiWo

This finishes the proof.

Remark. Theorem 5 shows also that if θ is admissible and if W is any wall of 0,
then we have

1 — \Z
W minimal in θ'

6. Proof of Theorem 1

(a) We know from (4.3) that

τL-2βJ=τ2 Σ ψτ(n-^2 Σ
^ Γ<=AL ^ Θ<=AL

By Theorem 2 we have for | z | < r

Σ Wτiruϋ Σ \ΨT(Π\
Γ^AL OelntΓ
Γi&Q

and by Theorem 4

Σ \ΨI(Θ)\SL2 Σ

< Γ 2 IZI
- 1 - l z
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From this we conclude that τL — 2βJ is analytic in z, | z \ < r, since it is equal to a
uniformly bounded absolutely convergent series of analytic functions. Moreover
the bound is uniform in Land we have convergence for L-> GO when βj is real [9].
This finishes the proof of (a),
(b) From Sect. 4 (4.4) we have

<**>£ = Σ Σ PL(ΘΊ(-l)N(θ'-θ)<σB\θ>L.

The right hand side of this equation is analytic in z, for | z\ small, because

is an expectation value in the pure phase times a constant and moreover pL(θ)
is analytic in z by Theorem 4.

We are going to show that this series is actually uniformly bounded in L and
then we conclude as in (a). Let ΞB be the set of θ such that p(B) n Int W ^= 0 for
every Woi θ and Ξ* the set of θ such that p{B) n Int W = 0 for every W of θ. Every θ
can be decomposed into θγ + θ2 with Θ1EΞB and θ2eΞ^. We notice that χB(θ) =
Xβiθ^ since θί determines completely the part of A(θί + θ2) which projects itself
on p(B). Hence we may write

<σ*>i= Σ Σ pL(θ
θeΞB θ'eΞ%

• Σ (-ir
02^0'

Let θγ be fixed. We then have, using Theorem 3

Σ (-ir'-θ 2 )<^>β l + θ 2= Σ (-ir-θ2» Σ fsin
Θ2^θ' θ2ύθ' ΓczSψι+θ2)

= Σ Λ(n Σ (-if(θ'-θ2) (6.i)
Γ^AL Θ2^θ'

Γ<=S(Θ1 + Θ2)

where an empty sum is equal to zero. Consider now those terms in the above sum
for which fB(Γ) Φ 0. We are going to show that

y ί_ι\N(θ'-θ2)

02^0'
ΓcS(0i+02)

is nonzero only if Γ is large, i.e., p{Γ)ip{θ').
By Theorem 3 we can write

with Γ. connected and Int Γ^Bφ 0. Let us suppose that there exists a wall W
in θ' such that p(Γ)jlp(W). Since Int Wnp(B) = 0 and ΊntΓinBφ0 for any
i = 1,...,n p(Γ)nlntW = 0. This implies that the presence and absence of W in
θ2 does not affect the condition Γ c S(θ1 + 02) and hence that
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Thus to have a nonzero contribution to the sum (6.1) we must have p(Γ)ip(W)V W
in 0', i.e., p(Γ)ip(θ'). Let us label also by p(B) the set of faces of ^ 0 which contains
the projection of B on the regular plane. Observing that each contour γ is a closed
polyhedron we have in the case/έ(Γ) φ 0 that p(B) cz p(Γ) and p{B)np(Γi) φ 0
for all i = 1,..., n. Since p{Γ)ip(θ') we have δ(p(B)u p{θ')) ^ | Γ| + <5(p(J3)).

)/
\ Γ

p(Γ)ίp(θ')

< 2NiθΊRδ(p{B))R

< 2N{ΘΊRδip{B))R~δ{p{θ')up{B)) exp

for z\ small. Using Theorem 4 and N(θ) <; Π(θ) we get

l - U

ί-\z\ Σ

We estimate the last sum by

θeΞB

>< y y
— ZJ " 7 I Z J

n>0 n ' Vlnt^nβ:

C^ -> 0 as i^ -> 00.

On the other hand

V (R/2)~Π{ΘΊR~δ{p{θ')upiB)) < 00.

Indeed

θ'eΞ%

δ(p(θ')up(B))=<?

where Σ * is t n e sum over all W which are connected to a set with / elements.
Therefore we get the bound exp(CR/). Now we sum over all connected sets which
connects p(B). But the number of connected sets with *f elements and connecting
p(B) is smaller that \B\C*3 for some constant. Therefore ioB}LSKB uniformly in L.
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Appendix 1

Proof of Theorem 3. We define a function on <€ by

— 1 if ielnty

+ 1 if j'eExt 7

We put

γeΓ

Let A cz Z 3 be finite, then

Since σB(Γ) is multiplicative

φ(Γ)σB(Γ)=exp

Therefore

= e x p -

Using the bound

Σ

σB(Γ)=-l

OelntΓ

(A-l)

and standard arguments we can prove the formula (A-l) for A infinite. We have
also a uniform bound on | < σB >^ | and using Vitali's Theorem we get the analyticity
of (GB)A in z,\z\ < r. Let us now expand <σ β >^.

- 2

n\n > 0

Σ Σ Π ΨT(Q
n> 1
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We define

(— ?Y n

un=Σ—r Σ ΓWΛ ΓΦO (A-2)
σ

B (Γo=-i

/n(0)=l.
All rearrangements in the sums are justified using Theorem 2. The sum defining
fB(Γ) is finite since φτ{0) = 0 and therefore fB(Γ) is a polynomial in z.

IffB(Γ) ψ 0 then one of the terms in (A-2) must be nonzero and therefore

ί-1

Γt connected since otherwise φτ(Γi) = 0 and I n t Γ ί n 2 ? ^ 0 since otherwise

σ

β(Γ.) = + 1. Finally

y y t + 2)" y π\mτ(Γλ\κ\Γ*\

Σ I
r

OelntΓ

D

Remark. The formula

< 7 B ( Γ > = - 1

together with Theorem 2 shows that

is exponentially small with the distance between B and C, uniformly in /I.
It is remarkable that the only ingredients of the proof of Theorem 3 are Theorem

2 and the multiplicative property

γeΓ

Now it can be seen from the proof of Theorem 2, see e.g., [7] that the same
expansion can be made for the contours of any ferromagnetic spin 1/2 system with
finite range interactions provided that this system satisfies the decomposition
property (see [11]).

The multiplicative property also holds trivially for these systems. On the other
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hand, it has been shown [11] that spin 1/2 systems on Ί_d can be reduced to a
system with the decomposition property in the following sense: all correlation
functions with + b.c. either vanish or are equal to some correlation functions with
+ b.c. in the reduced system.

It follows then that all correlation functions of any spin 1/2 ferromagnetic
system on Td with finite range interactions are analytic in e~2^J{B) for β large,
where J(B) is the coupling of the bond B. Notice that this extends previous results
obtained with Asano contractions because these were restricted to the correlation
functions generated by the bonds. For higher spin systems or systems on different
lattices than Zd, the above results hold for systems with the decomposition property
and, with the results of [12], presumably for all systems.

Appendix 2

Proof of Theorem 4. We refer to [7], Sect. 4 for an exposition of the algebraic
formalism. Let φ1 and φ2 be two functions on 2Γ. We define a commutative
multiplication by

ψ1*ψ2(θ)= Σ ψ.φ-θjψ^θj.

Let φ be such that ^(0) = 0. We define an exponential by

exp φ = ί + V —φ*...*φ

where 1(0) = 0, 0 φ 0 and 1(0) = 1. We have

(exp^)(θ) = 1 ( θ ) + χ l Σ Φ{θγ)...φ(θn)
H ^ l H' Σθι=θ

exp φ is a function on 3Γ such that exp φ(0) = 1. For all such functions we can
define the inverse of the exponential, the logarithm, by

Σ UβJ-Uo,)

with φo(0) = 0. Formally we have log exp φ = φ.
Let

_ {zΠ{θ) exp( - UL(Θ)) θ admissible

[O otherwise

with UL(Θ) defined in (4.2). From now on we suppress the index L. We see that

φ = exp φτ

and that

These expressions are true not only formally but also analytically for z\ small.
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This is a consequence of the bounds we derive in this Appendix.
Let

Uθ')= Σ φ-ψ-

We observe that Δe(θ') = 0 if 0 is not admissible. The quantity Δe(θ') satisfies
a recurrence equation which implies very strong bounds on Aθ(θ'). To see this we
choose one minimal wall W in 0. We write 0 adm. for 0 admissible and rewrite
U(θ + 0'), for 0 + 0' adm., in the following way

U(θ + &) =

where

+ (7(0 + 0' - WO + I(θ,ΘΊ

/(Θ,Θ')= Σ
0ψθ2^

vφ,θ2)= Σ

In what follows we need to expand

exp(-/(0,0O)= Π (exp(-7(0,0 2 ))- l
0ψθ2^θ'

= ΣΪ Σ
θtψθjV

= Σ Σ ^
where the sum Σ ' is over all θί,..., θn such that

O^0fg0", θ.φθjViJ, Σθt^θ" (A-3)

We define K(θ, θ") for θ" ^ 0 by

Σ AΣ'Π(e-m β < )-i)
where the sum Σ ' is over all 0X,..., θn which satisfy (A-3) and we put K{θ9 θ") = 1

Lemma. ί/ze equation:

Θ3 adm.
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where θ is admissible and Wisa minimal wall ofθ. We sum over θ3 = 0.

See Gallavotti [5] Appendix 5 for a proof.
Let

( ) (A-4)

Since the equation for Δθ(ff) relates Aθ(ff) with Nψ + θ") = m+l and Δθί{θ2)
with iV(θ1 + θ2) = m it is possible to prove

Lemma. For R large enough there exists anr2>0 such that I^+1^\z\l^iϊ\z\<r2.

Proof.

• Σ Σ \K(Θ,Θ")\R-Π^
θ". θ"^θ'

N(θ + Θ'-W) = m θ + θ" adm.

Σ R-Π(θ3)R+Π(θ+θ"+θ3'W)\Λβ,,+θ+0,_w(θ'-ψ" + Θ3))\ (A-5)
03 adm.

Wiθ3

θ" θi adm.
θ + θ" adm. Wiθj,

We have to take the sup over θ for these square brackets. Two estimations are easy:

(a) 1^(0)1^ Σ " "

for I z I small enough by Theorem 5.

(b) V R-Π{θ3)<Y— Y
κ ' La — La ^ La

θ3adm n n ' WiWj,Vj j

W1Θ3

Σ / \~* —

n n \WiW

where C is a constant.
It remains to estimate

Σ
0":

θ + θ" adm.

Ofθ" n=l H i=l
θ + θ" adm.

where the sum J]' is over all θx,..., θn which satisfy (A-3). We use the inequality

(A-6)



288 J. Bricmont, J. L. Lebowitz, and C. E. Pfister

and therefore we have to estimate

Σ \Φ(β3 + ΘJ\Rδ<r+θ<\ (A-7)

Since θ + 0" is adm. 0. + 03 is adm. Therefore <5( W + 0.) ^ δ{θi + 03) because
P^ ^ 03. Thus we get the upper bound

Σ

However we cannot apply Theorem 5 since W is minimal in θ but not necessarily
in θ + 0". Let H^,. . . , Wp be the walls in θ" such that FFis external for these walls.

Σ |φ(M* < ( β l ) ^Σ Σ
Wί minimal in θ\

+ Σ

for \z\ small enough using the remark following the proof of Theorem 5. We
observe also that

Σ I V{θ, θt)I with 0 ^ 0 . ^ 0", 0. φ θjV ij
i= 1

is certainly smaller than

Σ I vφ9θi)\ ^ 3 ' z AΠ(W) + πφ")) (A-8)

for I z I small enough. Finally we notice that

i= 1

imply

Σ δ(W+ ΘJ + \p(W)\ ^ δ(W+ θ").
i=ί

We get using (A-6), (A-7), (A-8) and \p(W)\ S Π(W) the upper bound (R > 1)

Oψθ"
d
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The sum is equal to

289

Θ") + Π(W)

0 + 0" adm.

\ R - i e x p J ^ Ί
L i •" z I J

For fixed | z | and JR large enough the last sum is convergent (see Proof of Theorem 1)
and is bounded by

where KR is a constant depending on R and such that KR -> 0 as K -> oo. (θ" ψ W
implies δφ") > 0). Therefore

θ + θ" adm.

and we have the following upper bound for the square brackets in (A-5)

with

<x(\z\9R) = |z|^exp( - ^ - L + C )
\1 - \z J

For a given K we can choose r2(R) so that if | z | ^ r2(K) we have

IR < I z IIR

1m+l = \Z\1m

since Π{W)^ 4.
Let us finish now the proof of the theorem. D

IR = sup\φ(W)\RΠ{W) Ssup(K|z|
w w

exp| U±(W)\

exp
1 -

Therefore / ^ | z |m, | z | < r2(R) and since J* is monotone in R we can find for any
R an r(R) (monotone decreasing in R) such that r(R) -> 0 as R -• oo and

7 ^ | z | m if |z |<r(Λ).

Using the algebraic formalism one shows that
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Using (A-4) and the above lemma we have

Σ Σ
^N(θ) N(θ + Θ') =

(A-9)

Σ \φτ(θ)\= Σ ΣW
Intθ3xo IntPFsxo θ

^ L κ

where CR -• 0 as R -> oo. We choose r(R) so that CR < 1.
The functions Λβ(0') are analytic in z because they are polynomials in φL{θ)

which are themselves analytic functions (see Section 4). From this we get the
analyticity of pL(θ) since Y^Δ^Θ') is a uniformly bounded absolutely convergent

series by (A-9). •
Appendix 3

Widom Rowlinson Models
For simplicity we consider only the model which we treated in detail in [3] and [4].
We refer the reader to those papers for notations and definitions. We consider a
pure A boundary condition in a volume A. Let (S^ίeA) be a configuration in A
such that the set y of empty sites in this configuration is connected. We define
Int y as the set of sites where we have a B particle and Ext y as the set of sites where
we have an A particle.

Definition. A contour is the couple (y, Int y)
For each contour we can define

Ϊ
+ l if ieExty

0 if iey

- 1 if ie lnty

It is not difficult to see that any configuration in A with A — b.c. can be de-
composed uniquely in contours so that the value of 5- in the configuration is
given by

the product being over all contours of the configuration. Therefore we can prove
Theorem 3 and since the analysis of the interface is the same as before we also
have Theorem 1. However the existence of the limits for real activity in this theorem
does not follow by correlation inequalities but we may use either the results of
[4] that prove the existence of these limits or use the methods of this paper.
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