## A Remark on Dobrushin's Uniqueness Theorem

Barry Simon*<br>Princeton University, Princeton, New Jersey 08544, USA

Ten years ago, Dobrushin [1] proved a beautiful result showing that under suitable hypotheses, a statistical mechanical lattice system interaction has a unique equilibrium state. In particular, there is no long range order, etc.; see $[6,7]$ for related material, Israel [4] for analyticity results and Gross [3] for falloff of correlations.

There does not appear to have been systematic attempts to obtain very good estimates on precisely when Dobrushin's hypotheses hold, except for certain spin $\frac{1}{2}$ models $[6,4]$. Our purpose here is to note that with one simple device one can obtain extremely good estimates which are fairly close to optimal.

Let $\Omega$ be a fixed compact space (single spin configuration space), $d \mu_{0}$ a probability measure on $\Omega$ and for each $\alpha \in Z^{v}, \Omega_{\alpha}$ a copy of $\Omega$. For $X$ a finite subset of $\mathbb{Z}^{v}$, let $\Omega^{X}=\underset{\alpha \in X}{X} \Omega_{\alpha}$. An interaction is an assignment of a continuous function, $\Phi(X)$, on $\Omega^{X}$ to each finite $X \subset \mathbb{Z}^{\nu}$. While it is not necessary for Dobrushin's theorem, it is convient notationally to suppose $\Phi$ translation covariant in the obvious sense.

Let $\mathscr{E}=\underset{\alpha \neq 0}{\mathrm{X}} \Omega_{\alpha}$ be the set of "external fields" to $\alpha=0$. Given $s \in \Omega_{0}, t \in \mathscr{E}, \Phi$ with $\sum_{0 \in X}\|\Phi(X)\|_{\infty}<\infty$, we define $H(s \mid t)$ on $\Omega_{0}$ by

$$
H(s \mid t)=\sum_{0 \in X} \Phi(X)(s, t)
$$

and for any $t$, the probability measure $v_{t}=e^{-H(\cdot \mid t)} d \mu_{0}(\cdot) / \mathbb{Z}_{t}$ with $\mathbb{Z}_{t}=\int e^{-H(s \mid t)} d \mu_{0}(s)$. Let

$$
\begin{equation*}
\varrho_{i}=\sup \left\{\left.\frac{1}{2}\left\|v_{t}-v_{t^{\prime}}\right\| \right\rvert\, t_{k}=t_{k}^{\prime} \text { for } k \neq i\right\} \tag{1}
\end{equation*}
$$

where the norm on measures is the total variation norm:

$$
\|v\|=\sup \left\{\mid v(f)\|f \in C(\Omega) ;\| f \|_{\infty}=1\right\} .
$$

[^0]Dobrushin's theorem says that if

$$
\begin{equation*}
\sum_{i \neq 0} \varrho_{i}<1 \tag{2}
\end{equation*}
$$

then there is a unique equilibrium state for $\Phi$. Our main result here is :
Theorem. If $\sum_{0 \in X}(|X|-1)\|\Phi(X)\|_{\infty}<1$, then (2) holds.
Remarks. 1. There are long range models (see [5]) where the sum is $1+\varepsilon$ and there are multiple states.
2. For purely pair interactions, if $a=\sum_{i \neq 0}\|\Phi(\{i, 0\})\|$ our condition is $a<1$. By comparison Gross [3], who investigated when (2) holds, required (Corollary 4.2 of [3]) $4 a e^{4 a}<1$, i.e. $a<a_{0} \sim 0.142$.

Lemma. Let $d \mu_{0}$ be a probability measure on $\Omega$ and let $d \mu_{h}=e^{h} d \mu_{0} / \int e^{h} d \mu_{0}$ for any $h \in C(\Omega)$. Then $\left\|\mu_{h}-\mu_{g}\right\| \leqq\|h-g\|_{\infty}$.
Proof. Let $v_{\theta}=\mu_{\theta h+(1-\theta) g}$. Let $q=h-g$ and let $f \in C(\Omega)$ with $\|f\|_{\infty}=1$. Then, with $\langle q\rangle_{\theta}=v_{\theta}(q)$ :

$$
\begin{align*}
& \left|\mu_{h}(f)-\mu_{g}(f)\right| \\
& \quad \leqq \int_{0}^{1} v_{\theta}\left(\left[q-\langle q\rangle_{\theta}\right] f\right) d \theta \\
& \quad \leqq \int_{0}^{1} v_{\theta}\left(\left|q-\langle q\rangle_{\theta}\right|\right) d \theta  \tag{3}\\
& \quad \leqq \int_{0}^{1} v_{\theta}\left(\left|q-\langle q\rangle_{\theta}\right|^{2}\right)^{1 / 2} d \theta  \tag{4}\\
& \quad \leqq \int_{0}^{1}\left[v_{\theta}\left(q^{2}\right)\right]^{1 / 2} d \theta \leqq\|q\|_{\infty},
\end{align*}
$$

where we used $\frac{d}{d \theta} v_{\theta}(f)=v_{\theta}(f q)-v_{\theta}(f) v_{\theta}(q)$ in the first step, then the Schwarz inequality and finally that $v_{\theta}\left(\left(q-\langle q\rangle_{\theta}\right)^{2}\right)=v_{\theta}\left(q^{2}\right)-\left[v_{\theta}(q)\right]^{2} \leqq v_{\theta}\left(q^{2}\right)$.
Proof of the Theorem. Clearly, if $t_{k}=t_{k}^{\prime}$ for $k \neq i$ :

$$
\begin{align*}
\left\|H(\bullet \mid t)-H\left(\bullet \mid t^{\prime}\right)\right\|_{\infty} & \leqq \sum_{\{0, i\} \subset X}\left\|\Phi(X)(\bullet, t)-\Phi(X)\left(\bullet, t^{\prime}\right)\right\|_{\infty}  \tag{5}\\
& \leqq 2 \sum_{\{0, i\} \subset X}\|\Phi(X)\|_{\infty} . \tag{6}
\end{align*}
$$

Thus, by the lemma

$$
\sum_{i \neq 0} \varrho_{i} \leqq \sum_{i} \sum_{\{0, i\} \subset X}\|\Phi(X)\|_{\infty}=\sum_{0 \in X}(|X|-1)\|\Phi(X)\|_{\infty}
$$

One can often do better by looking at the guts of the above proof. Let me give some examples in a number of remarks:

1. In going from (5) to (6) we can clearly replace $\|\Phi(X)\|_{\infty}$ by $\frac{1}{2}[\max (\Phi(X))$ $-\min (\Phi(X))]$ and thus we can also make this replacement in the theorem.
2. Since $\left.\left.\langle | q-\left.\langle q\rangle\right|^{2}\right\rangle \leqq\langle | q-\left.\alpha\right|^{2}\right\rangle$ for any constant $\alpha$, we have that $\left\|\mu_{h}-\mu_{g}\right\|$ $\leqq\|h-g-\alpha\|_{\infty}$ for any constant $\alpha$.
3. By using (2), we can recover Lanford's proof [6] that for $\Omega=\{0,1\}, \Phi(X)$ $=A_{X} \varrho^{X}\left(\varrho^{X}=\pi \varrho_{\alpha \in X} ; \varrho_{\alpha}=0\right.$ or 1 on $\left.\{0,1\}\right)$, (2) holds if $\sum_{0 \in X}\left|A_{x}\right|(|X|-1)<4$, For in that case, if $t_{i}=1, t_{i}^{\prime}=0$ :

$$
H(\bullet \mid t)-H\left(\bullet \mid t^{\prime}\right)=\sum_{\{0, i\} \subset X} \Phi(X)(\bullet \mid t)
$$

so that

$$
\left\|H(\bullet \mid t)-H\left(\bullet \mid t^{\prime}\right)-\frac{1}{2} \sum_{\{0, i\} \subset X} A_{X}\right\| \leqq \frac{1}{2} \sum_{\{0, i\} \subset X}\left|A_{X}\right| .
$$

We have thus picked up two factors of 2 .
4. If $\Omega=\{-1,1\}$, and $\omega_{a}( \pm 1)=e^{ \pm a} / 2 \cosh a$, then by a direct computation

$$
\left\|\omega_{a}-\omega_{b}\right\|=|\tanh b-\tanh a| \leqq 2 \tanh \frac{1}{2}|b-a| .
$$

If $\Phi(X)=-J_{X_{\alpha}} \pi_{\alpha \in X} \sigma_{\alpha}$, then $\left|v_{t}-v_{t^{\prime}}\right| \leqq 2 \tanh \frac{1}{2}\left[2 \sum_{\{0, i\} \subset X}\left|J_{X}\right|\right] \leqq \sum_{\{0, i\} \subset X} \tanh \left|J_{X}\right|$. This shows that if $\sum_{0 \in X}(|X|-1) \tanh \left(\left|J_{X}\right|\right)<1$, there is no multiple phase and if $J_{X}=0$ for $|X|$ odd and $\mu_{0}( \pm 1)=\frac{1}{2}$; no spontaneous magnetization. (This is also noted by Israel [4]). This improves results of Griffith's [2] who considered only pair interactions and $J_{X} \geqq 0$, i.e. Griffith's result follows from Dobrushin's theorem.
5. Let $\Omega=[-1,1], \quad S^{X}=\pi_{\alpha \in X} S_{\alpha}$ and $\Phi(X)=-J_{X} S^{X}$. Let $d \mu_{0}=d x$ and $\omega_{a}=e^{a x} d x$ /Normalization. Then $\omega_{a}\left((S-\langle S\rangle)^{2}\right)$ takes its maximum at $a=0$ by the GHS inequality so, by (4), $\left\|v_{a}-v_{b}\right\|_{\infty} \leqq \sqrt{1 / 3}|a-b|$. Thus, the 1 in $\Sigma(|X|-1)$ $\|\Phi(X)\|_{\infty}$ can be replaced by $\sqrt{3}=1.73$ compared with the $\pi / 2=1.57$ obtained by Israel [4] with different methods. If one can show $\omega_{a}(|s-\langle s\rangle|)$ has its maximum at $a=0, \sqrt{3}$ can be replaced by 2 using (3).

## References

1. Dobrushin, R.L.: Theory Probab. Its Appl. 13, 197-224 (1968)
2. Griffiths, R.: Commun. Math. Phys. 6, 121-127 (1967)
3. Gross, L.: Preprint, Cornell University (1979)
4. Israel, R.: Commun. Math. Phys. 50, 245-257 (1976)
5. Israel, R.: Commun. Math. Phys. 43, 59-68 (1975)
6. Lanford, O. III : Lecture notes in physics, Vol. 20. Berlin, Heidelberg, New York: Springer 1973
7. Vaserstein, L. : Prob. Trans. Infor. 5, No. 3, 64-72 (1969)

[^0]:    * Research supported by USNSF Grant MSC-78-01885

