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Quasilinear Hyperbolic Systems
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Abstract. We construct global solutions for quasilinear hyperbolic systems and
study their asymptotic behaviors. The systems include models of gas flows in a
variable area duct and flows with a moving source. Our analysis is based on a
numerical scheme which generalizes the Glimm scheme for hyperbolic con-
servation laws.

We consider the initial value problem for quasilinear partial differential equations
of the following form

~ + -=g(x,u\ -oo<x<oo, ί^O, (0.1)

u(x, 0) = ι/0(x), — oo<x<oo. (0.2)

Here u = u(x, t) is an π-vector, / is a smooth ^-vector-valued function of u, and g

and — are piecewise continuous π-vector-valued function of x, and are continuous
ou

in u. System (0.1) is assumed to be strictly hyperbolic, that is Bf(u)/cu has real and
distinct eigenvalues λί(u)<λ2(u) < ... <λn(u) for each u. In general (0.1) and (0.2) do
not possess smooth solutions, and we look for weak solutions, that is, solutions
satisfying

ίί u+f(u)-9Mφdxdt+ u0(x)φ(x,0)ώc = 0 (0.3)
ί^O V vt vX I -oo

for any smooth function φ(x, t) with compact support in t ̂ 0. The purpose of this
paper is to construct solutions for (0.1) and (0.2) and study their asymptotic
behavior as the time variable t tends to infinity.
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When g = Q, system (0.1) reduces to a system of hyperbolic conservation laws,

i J ^ ' π (C\ A\
~TΓ "I Λ — u lυ ^7
δt ox

Such systems have been extensively studied. It is known that solutions of (0.4) will
not, in general, be smooth [11, 14, 20], and a certain criterion, the entropy
condition, is required to select physically admissible weak solutions [7, 12, 13, 15].
Glimm [9] has constructed solutions for (0.4) when the initial data have small
total variation. Because the nonlinearity of f(u) and the entropy condition,
solutions for (0.4) attain very interesting large-time behavior [8, 10, 17, 18].

Due to the term g(x, u} which represents either geometrical or physical effects,
waves for (0.1) propagate in a much more complicated way than do those for (0.4).
As a result, system (0.1) exhibits richer nonlinear wave phenomena and is a
suitable model for a much wider range of physical phenomena. For instance, the
Euler equations with spherical or cylindrical symmetry [5] and the elasticity
model capable of describing shearing and flex-turing effects are of the form (0,1)
[1]. The one-dimensional model gas flow in a variable area duct is of the form

dρ d(ρu) a'(x)

dt ex a(x) ""

d(ρu) d(ρu2+p) _ af(x) 2

—Λ ' Λ ~ 7τQu ' vy ^jdt ox

δ(ρE) d(ρEu + pu) a'(x)
——- + — = —(ρEu + pu),

dt ox a(x)

where α(x) is the cross section of the duct, ρ, M, p, and E are, respectively, the
density, velocity, pressure and the total energy of the gas. Shock propagation for
(0.5) has been studied by suppressing the effects of nonlinear wave interactions [2,
3, 24,25]. The problem of secondary recovery of petroleum, [26], is also related to
the present situation because reservoirs in nature have variable thickness. When a
moving source term with speed c is applied to the system (0.4) [27], we have

fa , 5/(") ,, ^

which is of the form (1) with a change of variable v(y,t) = u(x,t\ y = x — ct:

8v , d(f(u)-cl)
~ 7̂ + Λdt cy

Our analysis will show that the asymptotic form of the solutions depends mainly
Λ />

on the relative magnitude of the characteristic speeds λt, i = 1,2,..., n of — and the

source speed c.
For the physical situations we have in mind, the term g(x, u) does not have a

preferred form and does not decay as t goes to infinity. Thus the usual Duhemel
principle and the energy method do not seem to be applicable here and the
solution may not exist for all time.



Quasilinear Hyperbolic Systems 143

Nevertheless, we will show that when Af(w(x)), i=l,2, . .., π, are nonzero and

when the L1 norm of g(x, u(x)) and — (x, w(x)) are small provided that w(x) is
dw

uniformly close to the initial data, MO(X), then a global solution of (0.1) and (0.2)
exists and tends pointwise to a steady state solution of

When each characteristic field is either genuinely nonlinear or linearly
degenerate, [12], the solution tends uniformly to the linear supperposition of
shock waves, refraction waves, traveling waves and a steady state solution.
Moreover these waves are determined by the values of the initial data u0(x) at
x = + oc. For general systems (0.1) we assume that the initial data u0(x) have small
total variation. This assumption is relaxed for the system (0.5) when the gas is
poly tropic [16]. The main assumptions for the system (0.5) are that the flow at
ί = 0 is not close to transonic and that the total variation of the cross section α(x) of
the duct is sufficiently small.

We now describe the difference scheme we employ for solving (0.1) and (0.2).
Choose an equidistributed sequence {α.}, in (— 1, 1) and mesh length Ax = r, At = s
satisfying the Courant-Friedrίchs-Lewy condition

for all eigenvalues Λ of (1) and all u under consideration. At ί = 0, the approximate
solution u}.(x,0) is a piecewise steady state solution which equals w0(x) at
x = (h + l)r, h even,

d^UrjX'°^ =g(x,ur(x,Q)) for hr<x<(h + 2)r, h even. (0.7)0

By resolving the discontinuities at x = hr, u r ( x , l ) is defined for Orgί<s. Suppose
that ur(x, t) has been defined for 0 rg ί < fcs. Then ι/,.(x, ks) is related to wr(x, ks — 0)
according to the prechosen equidistributed sequence {at} in the following way:

ur((h + 1 + ak)r, ks) = ur((h + l+ak)r-, ks - 0),
V // f

?—^ = 0(x, wr(x, ks)), /ι + k = even, hr<x<(h + l)r

when 0(x, w) = 0, ur(x, ks) is a step function and the discontinuities at x = hr, h + k
even, are resolved by considering certain related Riemann problems which will be
described in Sect. 1, [12, 15, 23]. In this case our scheme is reduced to the Glimm
scheme, [9], for solving the conservation law (0.4). For general g, ur(x,ks) has
steady state solutions lying adjacent to the discontinuity at x = hr. Such discon-
tinuities are resolved in Sect. 2 by perturbing about corresponding Riemann
problems and solving a system of nonlinear integro-partial differential equations.
To implement the scheme, we have only to resolve the dicontinuities locally in
time. It follows from number-theoretic results on equidistributed sequences that
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the Glimm scheme is of less than first order accuracy, [19], thus there is no need to
resolve the discontinuities exactly.

Section 3 is devoted to the study of wave interactions for the system (0.1). It is
shown that the difference between wave interactions for (0.1) and those for (0.4), [9,

da
18] can be dominated by the L1 norm of q(x,u(x)) and — (x, u(x)). This enables us

ou
to show in Sects. 4 and 6 that our scheme always converges and yields local
solution provided that g(x, u) is bounded. Section 5 is devoted to the partition of
waves which is needed in the subsequent sections to control the evolution of the
speed and the strength of waves. In Sect. 7 we deal with the global existence of the
solution. For this we require that the eigenspeeds are nonzero and g(x,u(x)) is
small in L1 so that the total effect of g is finite. This is done by effective uses of the
hyperbolicity of the system and the equidistributedness of the sequence {αj.
Sections 8-11 are devoted to the study of the asymptotic behavior of the solution.
The nonlinearity of f(ύ) and the entropy condition force the waves to combine
and cancel and so solutions assume a very simple form. In Sect. 8 we study
solutions consisting of the linear superposition of elementary waves and a steady
state solution. The basic mechanism of wave spreading and combining is described
in Sect. 9.

In Sect. 10 we show that the solution tends to a linear superposition of shock
waves, rarefaction waves, traveling waves and a steady state solution without rate
of convergence. For each genuinely nonlinear characteristic field, the asymptotic
form of the solution contains a shock or a rarefaction wave and, for each linearly
degenerate field, a traveling wave. Basic to our arguments is that the total amounts
of wave interaction are finite. In Sect. 11 we obtain a stronger asymptotic result
when the initial data w0(x) do not depend on x for |x| >M, and g(x,u) equals zero
for |x|>M. We show that the convergence of the solution to shock waves,
traveling waves and a steady state solution is of the rate ί~3 / 2 and the convergence
to rarefaction waves is of the rate t~1/2. For this, we need a detailed analysis of the
distribution of wave interactions.

1. Preliminaries

We assume that system (0.1) is strictly hyperbolic, i.e., df/du has real and distinct
eigenvalues λ1(u)<λ2(u)< ...<λn(u) with right and left eigenvectors rt(u) and l.(u),
i = 1,2,..., n. Although it is not essential for our existence theorem, we will assume
for simplicity throughout this paper that each /-characteristic field is either
genuinely nonlinear (g.nl.) or linearly degenerate (l.dg.) in the sense of Lax [12]

FA.(w) φ)Φθ for all w, (g.nl.)

or

Fλf(M) φ)Ξθ for all u. (l.dg.)

This makes it easier to describe the admissibility of discontinuities and to solve the
Riemann problem for system (0.4) [15]. Across any discontinuity x = x(ί) of a weak
solution M(X, £), the following jump (Rankine-Hugniot) condition is satisfied

(«+ -M_KM_,H + )=/(M + )-/(W_) (R-H)
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for some scalar σ(u_,u + } = x'(t\ the shock speed, where w = w(x(£)±0,ί). Under the
assumption of genuine-nonlinearity, a discontinuity ( M _ , W + ) is admissible in the
sense of Lax [12] if

λί(u + )<σ(u_,u + )<λi(u_) (L)

for some ie{l,2, ...,n}. Such a discontinuity is called an i-shock wave.
In the remaining of this section, we study the elementary waves for the

conservation laws (0.4). For each genuinely nonlinear field, there are shock waves
and rarefaction waves, and for each linearly degenerate field, there are contact
discontinuities. A centered f-rarefactίon wave (u^u^) connecting u0 on the left and
u1 the right is a smooth solution of (0.4) which depends only on x/ί and takes
values on the rarefaction curve RI(UO), the integral curve of rt(u) through u0

x x
(M 0 ,M 1 )(x,ί ) = W 0

 fθΓ T = Λ K ) > (u09U1)(x,t) = U1, for - ^λ^uj,

X X
for λ&J^-^λfri),

R.(u0) = {u :u is connected to u0 by an integral curve of rt and A.(w)

^(HQ)}, z-th field g.nl.

A centered ί-shock wave (MO, w :) is a discontinuity satisfying conditions (R-H) and
(L):

X
u0 for -<σ(M 0,M 1)

(u0,u1)(x,£) =

M I for — >σ(w0, w1),

WieS^Mo),

5f(w0) = {w :(w — u0)σ(u0,u)=f(u)— f(u0) for some scalar σ(tέ,t/0)

and λί(u)<σ(uQ,ul)<λί(u0), z-th field g.nl.}.

It is easy to see by the implicit function theorem that S (w0) is a smooth curve at
least for a small neighborhood of w0 and is tangent to K.(UO) at u0 up to second
derivations [4, 12], and

-M0 |
2). (1.1)

We set

Ti(M0) = Si(M0)^^i(w0)i *'-th field &nl

For l.dg. /'-field, we set

7](w0) = (w : w is connected to u0 by an integral curve of rj.
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For UIETJ(UQ), z'-th field l.dg., we have contact discontinuity

x
UQ for — <σ(u0,u1)

χ

uί for -

Thus for any z, (t^,^) is an elementary z'-wave provided that w1e7](w0).
To solve the Riemann problem (ul9 ur) for (0.4) with

M, for x < 0
'wr lor x>0,

we find states ui9 z = 0, 1,2, ...,n, uQ = ul9 un = ur, w^T^.J, so that the solution
consists of z waves (w ^W;). The strength (u^u^ of those /-waves (t^^w ) is
measured by

(u^uJi =λ ί(M ί)->l i(M ί_1) for g.nl. i-field,

(Mz,iOi = Ti(Mi)-Ti(Mi-i) for g.dg. z-field,

where τt is any nonsingular parameter along 7]. It is noted that an z-shock wave
has negative strength while an z-rarefaction wave has positive strength. The
Riemann problem was first solved for the polytropic gas equation by Riemann
[23]. It has been shown by Lax [14] that the Riemann problem (u0,ur) has a
unique solution provided that the system (0.4) is either g.nl. or l.dg. and ut is close
to ur [15].

2. Resolving Discontinuities

We want to solve the Cauchy problem (0.1) with

|Uί(x) for x<0

|wr(x) for x>0,

where u^x) and ur(x) are steady state solutions of (0.6). We will solve the problem
for small time and then only approximately. This is done by perturbing about the
solution of the corresponding Riemann problem (ul9 ur\ uλ = wz(0), ur = ur(0), for the
conservation laws (0.4). Let (wf _ 1? w f) be the z'-wave in the solution of the Riemann
problem (w / 9 w r ) for (0.4). We denote by M.(X) the steady state solution of (0.6)
satisfying wί(0) = Mί. The approximate solution of (0.1) and (2.1) will consist of
steady states ι^(x), z = 0,1, ...,n, MO(X) = MZ(X), un(x) = ur(x), separated by elementary-
like z-waves. When (w f _ 1? w.) is a shock wave or a contact discontinuity, we simply

separate t/ ^x) and w.(x) by a discontinuity with speed — =σ(ui_1,ui).
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When (ui_l, ut) is a rarefaction wave, w f _ ̂ x) and u^x) are separated by certain
wave in a region xί_1(t)<x<xi(t). This region and the wave in it are defined as
follows: The solution approaches the /-rarefaction wave (M ί _ 1 ,M ί ) as f->0,

(2.2)
Γ i 3^ *Jim— =A1(M ί)sξ1

lim u(x,ί) = K»ί) x (_ t(ί)<x<xι(0, (2.3)
ί->0 2^ = 77

ί

where υ^eR^u^ t) with /l.(ί;(f/)) = 77. Thus we expect w(x, ί) to have a singularity at
ί = 0. This singularity is resolved if we use the coordinate of time £ and the initial ί-
characterized speed ξ defined as follows :

ξ0<ξ<ξ1. (2.5)

These are consistent with (2.2) and (2.3) if we set

xi.ί(t) = x(ξθ9tl xi(t) = x ( ξ ί , t ) .

With the transformation (2.4) and (2.5), the system (0.1) becomes

dx δw δw δx

^^+(^-A^=^ί/'^<ξ<^' (2.6)

A^.du

To determine w(ξ, ί), (2.5) and (2.6) have to be supplemented by the boundary
condition on ̂ o^i^i-i) or £ ι = Λ i(wi) F°r definiteness we set

~β~ — ̂ i(Ui - 1 M) 5

(2.7)

Since M^^X) satisfies (0.4), it follows from (2.7) that

^0 for ξ-λfa.J. (2.8)

We now construct w(ξ,ί) from (2.4)^(2.7). It is noted that /I — λi is a singular

matrix, and — vanishes at ί = 0 and involve the derivatives of w. In fact, (2.6) is an

integro-differential system. Thus the local existence of the solution does not follow
from standard result on quasilinear systems [6]. However, we will show that usual
iteration scheme yield the solution.
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Multiplying (2.6) on the left with .̂(w), we have

for ;=K (2.8),

(2.8) can also be written as

l —=l. g

Integration (2.8) along the integral wave C of Dj (Fig. 1), we have

dx/dξ

(2.9)

(2.10),

(2.10),

(2.11).

Fig. 1

o o

( 7 ? , S )

(ξ 0 ,0) t η . o )

(2.11),

The curves C7, j ή= z, do not intersect t = 0 provided that

fix
~=ί + 0(r2) (2.12)

and t is small. In this case the initial-boundary value problem (2.4) and (2.7) is well-
posed. For convenience we quote the following elementary facts of calculus:
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Lemma 2.1. Let Λ(β,Λ0) be the solution of

~=η(β,Λ), Λ(β0,Λ0) = Λ0.

Thenσ(β)=dΛ(

δ

β

Λ

Λ°} satisfies

» dn(a,Λ)
da,

ϋΛ

dσ(β) dφ(Λ,β)

Lemma 2.2. Suppose that /(α, β) and g(a, β) are continuously differ entiable functions
of α and β. Then

c dβ dβ da] * J da

By differentiating (2.11), it follows form the lemmas and (2.4) that

^™»(λλ)dt (V dξ dξ dt J ' ,
--- ί T—j dξ\, (2.13),.

C,(ί,ί) Λj-Ai

_ _
.dt dξ dξ dΓJ ; dt

DV = — Γ—5 T (2 14)ds λj-^ i ds

Theorem 2.3. Suppose that g(x, u) is continuously differ entiable. Then for sufficiently
small Δξ = ξ1—ξ0 and At the initial-boundary value problem (2.4) (2.7) has an unique
smooth solution for O Sf </Jf satisfying

dw

~dt
= 0(1)0,,, (2.15)

dw

where G. = max {g, Vg], the maximum being taken over (x,u) in a neighborhood of
(x,u)

(0,Φ(ξ))
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Proof. The solution to (2.4) ~ (2.7) is constructed by the usual double iteration
process. We first define the values of x, λj9 lp g, and A by setting w equal to a given
smooth function υ satisfying

and denote by

w = Tυ

the solution of (2.4) ~ (2.7). To show that the operator T exists, we set the function
vv on the right hand side of (2.11) by a given function and use iteration process,
details are omitted. It is noted that on the right-hand sides of (2.10), (2.11) and
(2.13), (2.14) only depends on v and its first derivatives. It follows easily that for
small At and Fξ, Tis contractive in the max norm of v, w and their first derivatives.
This proves the existence of the solution by iterating the operator T. In the process,
however, we have to check condition (2.12) so that the problem is well-posed. This
is done by choosing v = wQ to satisfy (2.12) and by induction w π _ 1 ? n — 1,2, ..., all
satisfy (2.12). Details are omitted. It remains to prove (2.15) and (2.16). For this we
require further that w0 satisfies (2.15) and (2.16). The existence of such smooth
function vv0 can be shown easily. It follows from (2.10) and (2.13) that each wn

satisfies (2.15). As a result of (2.15) and (2.12) we have (2.16). This completes the
proof of the theorem. Q.E.D.

dg(x, u)
Theorem 2.4. Suppose thai λ.(u\ 7' =1,2, ..., n, is nonzero g(x,u\ — - - are

continuous for x in a small neighborhood o/O and u in a small neighborhood of φ(ζ).
Then for sufficiently small Ac and At (2.4) ~ (2.11) has a smooth solution w(x, t) for

satisfying

(2.17)

(2.18)

G — max G(x) , G(x) = max 0(x, u)
8u

where the maxima are taken for x near 0 and u near φ(ξ).

Proof. By chain rule and (2.7), we have

dg(x.v) λ j j λ j - λ d l j dgldx/dξ dv dv
dt λjdx/dξ \ g λv{ λt dt d

dg(x,v) ^λj-λj . dgfi dv dx/dξ dv

dξ ~ λ{

 g dυ\λ dξ d dt



Quasilinear Hyperbolic Systems 151

for any jΦί . In view of these estimates and Lemma 2.2, (2.13) yields

dw

3 1 L
dt dt

dx dυ dυ

dξ'dt~ ' d ξ ,

dλt dx /dλj dλi

dξ dξ \ dt dt

.dί+

dLλh^
ς ds λ.

(IJ.S)

J φ ί ,

eg dυ dx dv 1

tt dt

<3x

'dξ

l^dg

λj dυ

(2.19),

(2.19),

(2.19),

where we have used the fact that ut_ ^(x) is a steady state solution and ξ = ξ0 is an i-
characteristic curve for (0.1) so that

Finally the theorem is proved by the iteration techniques used in the proof of
Theorem 2.3 along with estimates (2.10) and (2.19). Q.E.D.

We are now ready to resolve the discontinuity (2.1) for the system (0.1).

Theorem 2.5. Suppose that g(x, u) and
(x u]

are continuous. Then for sufficiently
cu

small At and ^w = |w z — wr |, wz = wz(0), 1̂  = 1 (̂0), the initial value problem (0.1) and (2.1)
has an approximate solution u(x,t} for Q^t<At with the following properties. Let
(ut_ 1? Mf), i = 1, 2, . . ., π, be the i-waves in the solution of the Riemann problem (ul9 ur)
for (0.4) and u{(x\ f = l , 2 , ..., π, are the steady state solutions of (0.6) with ui(0) = ui.
Then

i) when (ui_l^u^ is a contact discontinuity or a shock wave, u(x,t) contains a
discontinuity along x = σ(w f _ 15 w )ί separating u^^x) and uτ(x) which almost satisfies
the Rankine-Hugoniot condition :

+ 0(l)G|H i_1-« ί | ί,

ii) when (M -J, «;) is a rarefaction wave, ( u ί _ ί , uί) = v(x/t) for λ ί ( u ί _ l ) < x / t
<Λ;(M;), then u(x,t) contains a wedge-shaped wave in x ί_ 1(ί)<x<x ί(t) separating
w i _ 1 (x) and ut(x) such that u(x,t) is an exact solution of (0.1) for x^^^^x^x^f)
with possible discontinuity along x, (t)> where x = x ;_1(ί) and x = x;(ί) are
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i-characteristίc curves of u(x,t) with initial speed λ^u^^ and λ^u^ respectively at
t — 0. Moreover, along any i- char act eristic curves x = x ΐ ( t ) and χ = χ2(t) in Xf-^ί)
<x1(f)^x2(f)<χ.(ί), with initial speed λ\ and λ\ respectively, w(x,ί) satisfies

x\t\ t) - u(x2(t\ 01 = v(λ\ ) - υ(λf) + 0(l)Gt\v(λl)- υ(λf)\ ,

χJ(t) = λ{t + 0(l)Gt2, ; = 1,2.

Finally, the discontinuity of w(x, ί) atom/ χ.(ί) satisfies

GΞ max {|g|, |gj} /or w ot βr α neighborhood of ^(0) αw^ wκ(0) and x near zero.

Proof Except for the strength of discontinuities in u(x, ί), the above theorems
follow from Theorem 2.4. When ( w f _ 1 ? w f) is a shock wave or a contact
discontinuity, then it follows from Lemma 2.1 that the corresponding discon-
tinuity in w(x, ί) satisfies

Since ( M f _ l 5 u.) satisfies the Rankine-Hugoniot condition, the above estimate
shows that (u(x — 0, ί), u(x + 0, t)) almost satisfies the Renkine-Hugoniot condition
as stated in the theorem. Suppose that (u{_^ u.) is a rarefaction wave. By our
construction,

w(xf _ i (ί), 0 = w f _ ! (Xf _ ! (0) and w(x .(ί) + 0, f ) = w^x^

We have from Lemma 2.1 that

Since χ.i(t)~xi_l(ι) = 0(\}t\uϊ_l-ui\ as follows from (2.12), we have

M ί_1(x i(ί)) = w ί _ 1 (x ί _ 1 ( ί

We have from (2.16) that

u(xί_1(4ί)-M(xί(ί)--0,

Finally the above estimates imply that

as asserted. Q.E.D.
The following corollary is an easy consequence of the above theorem :

Corollary 2.6. The approximate solution w(x, t) in the above theorem satisfies

8ώ

^

Vί

Δt °° 8ώ do °°
ί ί u^+f(u)jϊ--g(x9u)φ)dxdt+ j w(x,0)ψ(x,0)dx

- J
— oc

for any test function φ smooth and with compact support in t ̂  0.
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3. Local Interactions

Given three steady state solutions t^(x), wm(x) and ur(x) of (0.6), we want to
compare the solution of the initial value problem (0.1),

(MZ(X) for x < - Θ

um(x) for -Θ<x<θ, (3.1)

MΓ(X) for x>0,

with the solution of (0.1) and

ΓMZ(X) for x<0

Ur(x) for x>0

for some positive constant Θ. We set

W(X,0) = (3.2)

w+=ur(θ\ (3.3)

Denote by (^ t_ 1 ? (5f), <5 = u, v, w, the i-wave, z = l,2, ...,n, in the solution of the
Riemann problems ( δ _ , δ + ) for conservation laws (0.4) and set

Theorem 3.1. Suppose that wz(x), um(x\ and ur(x) are close to a constant. Then for
some bounded 0(1) depending only on the system (0.1)

Here Q0 = QS

0 + Qd

Ό measures the potential nonlinear wave interaction between {(vt_ 19

t/v), ΐ = l , 2 , . . . , n } αnJ {(w f _ l 5 w^), i=l,2, ...,n}, αnJ βj_ measures the effect of the
inhomogeneous term g(x, u):

ίe{l,2, ...,π}, i-field is g.nl.},

if α ^O, jg.^0,

a. if j8. ̂  — α > 0,

if α f ^ — jδj>0,

if ^<0, ^.<C

(3.6)

ed

0=

where G is the maximum of g(x, u) and — (x, w) /or — Θ > x > Θ and u in a small
neighborhood of v± and w±. cu
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Proof. We denote by um = um(Q). It follows from elementary theory of ordinary
differential equations (cf. Lemma 2.1) that

v+ — v_ = um — u_ + 0(l)GΘ\v+ — v_

w+ — w _ — u+ —um + 0(l)GΘ\w + — w _ | .

Since the solution of the Riemann problem depends continuously on its data, we
have

The wave interaction for conservation laws (0.4) has been studied [9, 16, 17] and it
has been shown (Theorem 3.3 of [16] and Theorem 2.2 of [17]) that our theorem
holds when g = 0. Thus we have from the above estimates that

It is clear that <20 depends continuously on its arguments and thus we have from
(3.17) and the above estimate that

The theorem follows easily from the above estimates. Q.E.D.

4. Local Estimates

The purpose of this section is to obtain estimates on total variation of approxi-
mate solutions locally in time. This is done by introducing a nonlinear functional
F^(J T) defined on any /-curve J. An /-curve is a spacelike curve connecting
points of the form ((m + αn)y, πs), m-hn odd, J2 is called an immediate successor of
J1 if they pass through same mesh points except one and J2 lies toward larger time
than Jv The region sandwiched by such two /-curves is called a diamond Δ. An z-
wave issued from (mr, ns\ m + n even, crosses J if it is contained in the solution of
the Riemann problem corresponding to the discontinuity of the approximate
solution at (mr, ns) and there is no mesh point between J and (mr, ns). For a given
positive T, we set

jyj; τHL(JHK[ρ0(j)+ρ^(j; T)], (4.1),

L(J) = £ {|α| : α is the strength of any z'-wave, i — 1, 2, . . ., n, cross-

ing J}, (4.1)2

Qd

0(J) — ]Γ {|α/?| : α, β crossing J, α is the strength of any z'-wave lying
toward the left of a /-wave with strength β, z>j}, (4.1)3

isg.nl.},

X {lαl3 : α ^s ^ne strength of any z'-shock wave crossing J}
+ 8 X {|α-f/?| |αj5| : α, j? are strengths of any z-shock waves
crossing J}, or (4.1)4
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^l : α' β are strengths of any /-waves crossing J
and not both of them are rarefaction waves}, (4.1)5

T) = ]Γ{G0(T-fcs)|α|: α is the strength of any i-wave,
j

ί=l,2, ..., H, crossing J and issued from (/zr,/cs)}, (4 1)6

0 = sup{|0|,|0J: xeJR, w

where K is some large constant to be determined later. In the definition of
QJ(J T) above, we assume that the /-curve J is contained in the strip O gί^T

Theorem 4.1. Let The a fixed positive constant. Suppose that the total variation TV
of the initial data (0.2) and the L^(x) norm G0 and the L^x) norm G1 of

: u in a neighborhood of w0(x)L (4.2)G(x)=max^|0(x,M)| +
" I

are small. Then there exists a positive constant K such that

F#(J2; T)^Fή:(Jί; T) (4.3)

for any I-waves J1 and J2 in the strip Ogί^TJ J2 an immediate successor of Jr

Proof. The theorem is proved by induction. Assuming that F(J^) is small, we will
show that (4.3) holds and thus F(J2) is also small. That F(0), 0 the /-curve in the
strip 0 g t —^s, is small follows easily from the definition (4.1) and that TV+ G0 -f G^
is small.

Let A be the diamond between J1 and J2. Assume for simplicity that the waves
entering A and leaving A correspond to the solutions of the Riemann problems
(<5_, (5 + ), δ — u,v,w, of (3.1)~(3.4). Here we have set θ of (3.1) to be equal to the
mesh length Ax = r. We denote QQ(V±,W±) = QΌ(A\ and Ql(Δ) = Ql(v±,w±).

Naturally, in the definition of Q<(v + ,w + ) we set G = m a x < g f , — I for
- - * [ ou]

(m— l)y <x <(m + l)y if A is centered at (rar, ns). It follows from Theorem 3.1 that

Δ}. (4.4)

Since the i-waves (ut_ 1? ut\ i = 1 , 2, . . ., n, do not interact among themselves, we have
from (4.4), (4.1)3, (4.1)4 that

Qo(J2} ^ QoW + Wi) LO(i)Q0(A} + 0(1)6,^)] - Q0(Δ) . (4.5)

Since J2 lies toward a larger time than J1? the definition (4.1)ft and Theorem 3.1
imply that

(4.6)
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Finally it follows from (4.4) -(4.6) that

Since - is bounded away from zero, it follows from the above estimate that (4.3)

holds when F5|ί(J1) is sufficiently small by choosing K sufficiently large. Q.E.D.

For a region A composed of diamonds, we set

βo(Λ)= Σ βoM, Q1(Λ) = Σ βι(Λ) (4.7)
AeΛ AeΛ

Assuming that the waves entering A are {α;} and {/?,.}, i=l,2, ...,n, we set

i{|α;| + |ft|-K + ftl}, (4.8)

X C,(d). (4.9)
ΔeΛ

The following lemma is an easy consequence of Theorem 4.1 and its proof.

Lemma 4.2. Suppose that the hypothesos of Theorem 4Λ hold and A is between J ί

and J2 in Q^t ^T, J2 lies toward larger time than J \. Then

)-ρjj2;T)], (4.10)
(4.11)

5. Partition of Waves

Suppose that the discontinuity of the approximate solution at (mr, ns),
m-fπ^even, is resolved into elementary i-waves (M^^X), wf(x)), ί=l,2, ...,n.

Locally these waves are approximate solutions of (0.1) as described in Theorem
2.5. The corresponding Riemann problem for (0.4) is then resolved into /-waves
(w f _ !, wf), w f _ j =M _ ^wr), u^u^mr). We will partition the elementary waves in the
following way [19]. If (w f _ 1? w.) is an i-shock wave or an i-contact discontinuity for
(0.6) with speed oΌ^i? u\) > ^eri we choose vectors y0, y\, ...,^, yo = ui-ί> yι = uϊ

-.J, ft =1,2, ...,/, and set

A^(m, n) = σ(w ί _ 1 ,w ί ) . (5.1)2

We let yh(x) be the steady state solution of (0.6) with yh(mr) = yh, and set yh(f) = yh(x\
for x - mr - σ(w{ _!, M f) (t - ns) and ϋΛ(m, n f) = j;h(ί) - yh _ ! (r), A?(m, π ί) = Af(m, n). If
( W f - i , w ) is an ί-rarefaction wave, we choose vectors }7

0,y1?...,} ;/, yQ = ui_l9 ^ = M ί5

^.(Mf-!), ft = 1,2,. . . ,/and set
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Moreover, we set yh(t) to be the value of the i-wave (u^^x), ut(x)) along i-
characteristic curve x = x(t) with initial speed λi(yh_ί) at (mr, ns) [cf. Theorem
2.5(ii)] andϋ?(m,n; ί) = yfc(ί)-yfc-1(ί),λ?(m,n; ί) = λ ί(yfc_1(ί))- Let ̂ (f) and χ.(ί)be
the boundary of the elementary wave (u^^x), wf(x)) as described in (ii), Theorem
2.5. Note that there is a discontiuity along x = xi(t) with strength β(zl). For this
reason, we set v\(m, n) to be the strength of this discontinuity. We always make the
partition fine enough so that

\λlKm,n\ί)-λ\~l(m,n\t)\^L, h = 1,2, . . . ,/ , ns^t<(n+ l)s, (5.3)

for a prescribed small positive constant ε. To make sure that v\(m, n ί) is not
partitioned further at ί — (m -f l)s because of the approximation procedure (0.7), we
further require that

Lemma 5.1. Let Λ be ίfee horizontal strip Q^t^T. There exists a partition of
elementary waves {v*(m,n; ί); ^(m,n; ί)} wftic/i satisfies (5.1)^(5.4), and, moreover,
{v*(m9 n ί) Λ,J(w, π r)} is α disjoint union of {v\(m, n ί), Aj(m, π ί)}
J?(m,π; ί)}, 5<9 ί/iαί /or some bound 0(1) depending only on (0.1)

max
i,h,m l

(5.5)

ί/?ere is a one-to-one correspondence between {v^(m, n\ λ*(m, n}} and
{^(m,0),;^(m,0)}:

(v!(m(n9 h, k\ n\ A?m(n, Λ, fe), ?ι))<-<ί;J(m, 0), If (m, 0))

SMC/I

(5.6)

(5.7)

m(n, Λ, i) = m(n- 1, /z, ί)T 1 if α/i ίj(m(n- 1, fe, i), «~ l)s, (5.8)1

w(0,fe,ϊ) = w. (5.8)2

Proo/ It follows from Theorem 2.5 and Lemma 2.1 that

Y
i ,Λ,m M'"

zl being the diamond centering at (mr, ns). Thus estimates (5.5)~(5.7) hold
provided that (5.5)' ~ (5.7)', obtained from (5.5) ~ (5. 7) by replacing ^(m, n; t) with
v^(m,n) etc., are valid. (5.5)r~(5.7y are proved by induction. Supposed that
elementary waves crossing u below J, have been partitioned and satisfy (5.5)'
~(5.7y. Let J2 be any immediate successor of J^ and A the diamond between J1
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and J2. Since waves entering A have been partitioned, we may partition waves
leaving A accordingly. However, according to Theorem 3.1, this procedure can be
carried out except for an error of the order Q0(A) + Q ί ( A ) J τ C ( A ) . This is remedied
by partitioning the waves finer and designate the error terms to be in {u*(m, ri)},
still keeping (5.5) valid. For an ί-rarefaction wave, υ\(m,ri) is always classified as
υ\(m,n) which has strength Q^A). Whenever necessary, we make the partition finer
so as to satisfy (5.4). It is noted that when (5.4)'~ (5.7)' hold for a partition, they
hold also for finer partitions. Details are omitted. Q.E.D.

6. Local Existence

Theorem 6.1. Under the same hypothesis as in Theorem 4Λ, the initial value problem
(0.1) and (0.2) has a solution ιι(x,t) for O^ί^T satisfying

Total variation {u(x,t): -oo<x<oo] =0(1) [TK + G J O ^ f ^ T, (6.1)

for some 0(1) depending only on the system (0.1) and T

Proof. That the approximate solutions tend to a limiting function ιφc,ί) as the
mesh lengths r, s tend to zero follows from a compactness argument based on the
Kelly's theorem and from the estimate on the total variation of the approximate
solutions in Theorem 4.1 [9]. Estimate (6.1) follows from (4.3) since it is clear from
the scheme that F(0) = 0(1) [TF+ GJ. To show that the limiting function u(x, t) is
a weak solution of (0.1) and (0.2) we require that the sequence {an} be equidistri-
buted [19]. We need to show that w(x, ί) satisfies (0.3). For approximate solutions
ur(x, t) we have

r r U0(x)φ(x,Q)dx
Ct

= Σ (En

oo

^n (r)= ί \-ur(χ > ns + ty — ur(x, ns — 0)] φ(x, ns) dx,
- oo

dφ
ns - oo

dxdt.

In the present situation, we require that φ vanishes for t^T It follows from
Lemma 2.6 that ur(x,t) is almost an exact solution for ns<ί<(n— \ ) s :

which tends to zero as r, s tend to zero. It remains to show that E^(r) tends to zero
as r, s tend to zero. This follows easily from the equidistributedness of {an} and the
lemma provided that we let ε of (5.3) goes to zero and that Q0(Λ) + Q^(Λ)
+ C(Λ) = Q. The effects of nonlinear interactions Q0(Λ) + Q^(Λ) and cancellations
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C(Λ] are minimized by taking advantage of the fact that the subsequence {an\qN
^n<PN} of {an} is also equidistributed for any fixed p>q, as JV-»oo and apply
Lemma 5.1 to each regions (p—l)Ns^t^PNs, p = l,2, ...,N being large and Ns
small. Details are omitted [19]. Q.E.D.

It is noted that in the proof of the local estimate Theorem 4.1, we do not have
to assume that TV, G, and G l 9 are small. Instead, due to the hyperbolicity of the
system (0.1) we need only to assume that the initial data have small local total
variation and TG is small in order to obtain local estimates and thus the local
existence of the solution for 0 rg ί rg T. The classical iteration technique for
constructing solutions local in time has been applied only for smooth initial data
and yields only smooth local solutions [6].

7. Global Existence

In this section we will use the assumption that Λ f(M)Φθ, i= 1,2, ..., w, for all u near
the initial data in an essential way to obtain global existence of the solution. Our
first step is to improve on estimates (4.10) and (4.11). For given T^=Ns, s the mesh
length in time direction, we denote by Jτ the /-curve in 0 ̂  t rg T, and lying toward
larger time than any /-curve in 0 ̂  t ̂  T. The region between the /-curve 0 in
Orgί rgs and Jτ is denoted by Aτ. We set

G m n = m a x {G(x):(m-l)r^x^(m + l)r},
' Λ:

where G(x) was given in (4.2). Suppose the elementary waves entering a diamond A
have strength (α J and {/?.}, i = 1, 2, . . ., π, and A is centered at (mr, ns). Then we set

Using the notations in Sects. 4 and 5, we define

{!!e?(m,0)rGm(Mι,jΠ:^Ko,«0) crossing J}
m,h,ί

N^n^n0

+ KTGΣ (Qo(A) 4- Q^(A) : A lies between J and Jτ} , (7.2)
Δ

for any J in Aτ. In the following theorems we always assume that the assumptions
in Theorem 4.1 hold.

Lemma 7.1. There exists a positive constant K such that for any J2 and J \ in Λτ, J2

an immediate successor of J1?

T) (7.3)

ι

m,h.i

^n^O

ΛT)). (7.4)
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Proof. Suppose that Jl and J2 sandwhich a diamond Δ centering at (mr, ns). We
have from (7.1), (5.6) and Theorem 3.1 that

The estimate (7.3) follows from the above estimates and the induction
hypothesis that F^JJ is small. (7.4) is proved in a similar way. Q.E.D.

Lemma 7.2. Suppose that {an} is equidistributed in (—1,1). Then

m(N,h,ί)r

G(x)dx (7.5)

where δ = δ(N) tends to zero as s tends to zero or, equivalently, as N tends to infinity.

Proof. As s tends to zero, it follows from the equidistributedness of {an} and (5.8),
that

m(n, h, ϊ) = m + λj(m, 0) ns + 0( 1 ) ns \δ + £ μ?(m, 0) - A J(m(fe, Jι, i), fc)|
L /c = 0

where δ measures equidistributedness of {an} in (— 1, 1) and tends to zero as s tends
to zero. The estimate (7.5) now follows easily from the above estimate and
(5.7). Q.E.D.

For any /-curve J, we set

Qι(J) — Σ W ί G(x)dx: α is the strength of any /-wave issued from
J I mr

(mr, ns\ crossing J and with positive speed

i mr
|α| j G(x)dx: α is the strength of any /-wave issued

from (mx,ns), crossing J and with negative speed > . (7.6)

(7.7)

Lemma 7.3. Suppose that T is sufficiently small Then

. (7.8)
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Proof. It follows from the definition (7.1) of Q^Λγ) and Lemma 5.1 that

which is less than the right hand side of (7.8) by Lemma 7.2. Q.E.D.

Lemma 7.4. Suppose that T is sufficiently small Then

vlr)]. (7.9)

Proof. Since Q = Q0 + Qλ and we have stimate (7.8) for β l 5 we have only to obtain
analogous estimate for Q0. This estimate follows easily from (7.4) and
(7.5). Q.E.D.

Lemma 7.5. Suppose that T is sufficiently small and K is sufficiently large. Then

F(JT] - F(0) g 0(1) Γ[<5 + TG] . (7. 10)

Proof. We have from Theorem 3.1 and (7.1) that

and thus we have from (7.7) and Lemma 7.4 that

F(JT) ~ F(0) ^ 0(1) Q(Λ) + K[_Q(FT] - β(0)]

For sufficiently large K, we have K — 3O(1)>0. From Lemma 7.4 we see that

Q(JT) - Q(0) ̂  f [0(l)dT+ O(l) TG(Q0(ΛT) + Q^Aj)']

which is 0(1) T(δ + TG]. Q.E.D.

Theorem 7.6. Let T0 be any positive constant and JTo be the I-wave lying toward
larger time than any I-wave in O^ίg T0, 0 the I-curυe in Ogίgs, and A the region
between JTo and 0. Then for sufficiently small TV, the total variation of the initial

data uΌ(x), and G1 ? the L±(x} norm of G(x) = max<g(x,u\ '

(7.11)

(7.12)

/or some errors ε x and ε2 w/π'cn tend to zero as r,s ίend Γo zero.

Proof. We apply Lemmas 7.4 and 7.5 repeatedly to the regions
T

A :(p-i)T<t<pT, 1 <p<M, where T= —. When M tends to infinity, Γtends top M
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zero and from (7.10) we have

F(JTo)-F(0) = Σ FG/^-FCV.)
p=l

which tends to zero as T tends to zero. (7.12) is proved similarly. Q.E.D.

The following global existence theorem follows from Theorem 7.6 and the
results in Sect. 6.

Theorem 7.7. Suppose that TV, the total variation of the initial data w0(x), and G1 5

(x H]
the LI(X) of G(x)Ξ=max , u in a small neighborhood of t/0(x),

{ — oo <x < 00} are sufficiently small, and λ{(u) is nonzero for u in a small neighbor-
hood of u0(x\ — oo<x<oo. Then the initial value problem (0.1) and (0.2) has a
solution w(x, ί) /or ί^O satisfying

total variation (u(x9t): - oo <x< ao} = 0(l)(TV+Gί), (7.13)

/or some bounds 0(1} depend only on the system (0.1).

Remarks. It is clear that slight modification of our techniques yield same existence
da

results when g and — , instead of being continuous, are piecewise continuous in x.

Thus our results apply to system (0.5) when the cross section α(x) of the duct is
piecewise continuously differentiable. Moreover, if the gas is polytropic then our
techniques combined with those in Liu [16] yield existence theorem for (0.5) when
the initial data may not have small total variation (see also [21, 22]).

8. Simple Solutions

We will study simple solutions of (0.1), solutions which do not produce in-
teractions and cancellations, and in the following sections show that these
solutions are the asymptotic forms of solutions of general initial value problem
(0.1) and (0.2). Since the initial data w0(x) have bounded total variation, we may set

w^Moί-oo), wr = M 0 (+oo). (8.1)

The eigenvalues are nonzero:

λ1(u)<...<λp(u)<0<λp+1(u)<...<λn(u) pe{0,l,2,...,n} (8.2)

for all u in a small neighborhood of MO(X). Recall that the ί-curve T.(WO) through u0

(see Sect. 2) consists of points which can be connected to u0 on the left by an i-
elementary wave for the conservation law (0.4).
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Theorem 8.1. Suppose that ut and ur are dose, g(x, u) and ^-(x, u) have small L^x)

norm, G, and (8.2) holds for all u in a small neighborhood of ιιt and ur. Then there
exists a unique set of points { M O , W I ? . ..,wπ, u_9 u+} in a small neighborhood of ul and
ur with the following properties :

(8.3)2

and u_ is related to u+ by a steady state solution u(x) o/(0.6):

u(± co) = u± .

Proof. We first note that for a given w _ , w + is determined uniquely and w(x) stays
near u _ and w + because Gλ is small and AZ-(W), i = 1, 2, . . ., rc, are nonzero. Thus if we
let u_ moves along T (u^), i= 1,2, ...,p, w* any point in a neighborhood of w / and wr,
then w + moves along a smooth curve T^i^). Moreover, Lemma 2.1 implies that
T.(UJ), i = 1, 2, . . ., p, has a tangent

at w + , because T^wJ has a tangent ^(w^) at u^. For (ρ1?ρ2, ...,ρj in a small
neighborhood of zero, we define

whenever there exist w f, z = 0, 1,2, ...,n, w _ , w + , such that (8.3)2 and (8.3)3 hold, w0

= wz, up = u_ and Mn = κ and

^i(Wi) - τ^ _ J = ρf , i = 1 , 2, . . ., n .

Here τ f, i=l,2, ..., w is any fixed parameter along 7]. It is clear that ul and
^ = #(0,0, ...,0) are related by a steady state solution. To complete the proof, we
need to show that H is one-to-one and onto in a neighborhood of the origin. By
implicit function theorem this the case if H has a nonsingular Jacobian at the
origin. We have

δ/f(0,0, ,0)
- — - - (γ^l . . ., γp(ut), yp+ >,), . . ., ?>,)) .

It follows from (8.4) and the strict hyperbolicity of the system (0.1) that this
matrix is nonsingular for small G^ This completes the proof of the
theorem. Q.E.D.

9. Global Interactions

Given a region A composed of diamonds, we denote by E^(A) and E^(Λ\
respectively, the amount of i-shock waves entering A. The amounts of i-waves
leaving A are denoted by I^(A). We have from Theorem 3.1 that

(9.1)
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Let J be an /-curve which approaches time — t as r, s tend to zero and denote by
Q(t) the limit of Q(J) as r, 5 tend to zero. Similarly, the terms Q(Λ), C(Λ) etc. also
refer to their limits as r,s tend to zero. The total amount of /-shock and /-
rarefaction waves, respectively, at time t is denoted byX f~(T) and ^7" (f). We have
from Theorem 7.6 that

Q(Λ)<3Q(t),^Λ ) — κ\ >, ,

An /-generalized characteristic curve χ. is a Lipschitz continuous curve traveling
either with /-shock or /-characteristic speed. The strength of χ , Str. χί? is the
amount of /-shock wave, /-th field g.nl, contained in χ . An /-wave may cross χf

only due to interactions.

Lemma 9.1. Given any time T^rO and an arbitrary small ε>0, choose a positive M
-M oo

large enough so that total variationx{u(x,t): x|^M}+ j G(x)dx + j G(x)dx:gε.
-oo M

Through ( — M, T) and (M, T), respectively, we draw χ l and χf, i = l,2,...,n.
Because of the strict hyperbolicity of (0.1), t/iese characteristics do not intersect after
time T*>T, and, because λ^u) are nonzero for all u under consideration, these
characteristics leave the region |x |rgM a/ίβr time T*, W£ /zai β

(9.3)

^Ξ{(X,ί):ί^Γ}, (9.4)

where Xt(T*) is the total amount of i-waves not in the region At between χί and χf
over all t^. T*.

Proof. Since /-waves not in Λi are those produced by interactions or those related
to the /-waves crossing time ί=Γat x|>M [cf. (9.1)]. The total amount of such
waves are 0(l)(ε + Q(Λ)). This proves (9.3). Note that /-waves between χ* and χt

2,
do not interact with j-waves between χj and χ2 after time T* and thus do not
contribute to Qd

0(T*). Since χ/ and χf leave x| ^M after time T*, the contribution
of /-waves between χ.1 and χ? is at most εTV. The above two facts and the estimate
(9.3) yield (9.4). Q.E.D.

Lemma 9.2. Under the same hypothesis as in Lemma 9.1, let 1 (̂0 be the amount of
i-rarefaction and i-shock waves between χl and χf at time t ̂  T*, and D.(ί) be the
distance between χ/ and χf at time t then for g.nl. i-field and t^ T*,

+ 0(1) [ε + β(Λ)], (9.5)

Proof. Let MJ

±(S), j=l,2, be the one-sided limits of u(x,t) along χί at time s, and
Str. χ{(s), j = f , 2, the strength of χf at time s. We have from the jump condition:

s),M1

+(s)) (9.6)
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which lies between λ2_(s) — λί

+(s) and λ2

+(s) — λi_(s).>λ\.(s) = λi(u1

+(s)) etc., because the
/-field is g.nl. and the entropy condition (L) holds. Therefore we have from the
mean value theorem that there exists θ = θ(s\ 0 < θ < 1 , such that

(9.7)

We recall that the strength of /-waves is measured by the jump in λi9 and the

amount of j-waves, j = i, between χ* and χf is

Thus we have

l

2(S)). (9.8)

Applying (9.1) to the region between χ.1, χ?, time = Tand time = s, we obtain

Integrating (9.8) from T* to ί and using the above estimates we have

where max Str. denotes the maximum strength of χl and χf between time T* and t.
By applying the above arguments to regions with predominant /-rarefaction waves
(cf. [10], Sect. 8), the above estimate can be improved to yield (9.5). Details are
omitted. Q.E.D.

10. Weak Asymptotic Behavior

In this section we will show that solutions tend to their asymptotic form with no
rate of convergence. Our sole assumption is that the initial data have small total

variation TFand G(x)= max<(7(x, u\ — -1 — > has small LΛx) norm G 1 5 and the
M [ du J

characteristic speed λ^u) are nonzero for all u under consideration. We will employ the
notations ul9 ur, MO, M 1 5 . . ., MM, u_ and u+ defined by (8.1) — (8.3). The primary /-region
Ω , i = 1, 2, . . ., n, and Ω^ are defined as follows :

i = 1,2, ...,
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where μ , ί=l,2, ..., n, and μ^ are constants separating Λ , ι = l,2, ..., ft, and zero,
i.e., for some positive constant (5 and for all u under consideration,

μ0 ̂  λt(u) - δ ,

.̂+ iM-iS, i = 0,l,...,p- !,-+!,..., π,

Theorem 10.1. Suppose that the total variation of the initial data UQ(X] and the L^x)

norm of G(x) = max < g(x, u\ — - — :u in a small neighborhood o/w0(x)> are small and

(8.2) holds. Then the solution w(x, ί) 0/(0. 1) βftd (0.2) ίeftds to elementary waves (ut _ 1? w -),
i = 1, 2, . . ., n, αftrf α steady state (u _ , w + ) defined by (8. 1) ~ (8.3) as f -> GO. More precisely,

i) T/ie amount of i-waves, i=l,2, . . . , f t , not in Ω. teftds fo zero.
ii) /ft ί/ie region Ω^, M(X, ί) approaches uniformly and in total variation norm to

the steady state solution of (0.6) relating u_ on the left to u+ on the right.
iii) // ί/iβ i-field is linearly degenerate, then w(x, t)/Ωί tends to a traveling wave

which connects ui_1 on the left to ut on the right and takes values along 7](w_).
iv) // the i-field is genuinely nonlinear and (nt_ 1? ut) is an i-raref action wave for

(0.4), then w(x, t)/Ωi tends to (w._ ^ w.) pointwise uniformly, and the amount of i-shock
wave in u(x, t)/Ωi tends to zero.

v) // the i-field is genuinely nonlinear and (ut_ 1? w f ) is an i-shock wave for (0.4),
then there emerges an i-shock wave in u(x,f]/Ωί which tends to (ui_l, u{) and outside
the i-shock wave u(x, t)/Ωί tends to zero in total variation norm.

Proof. Since Q(Λ) is finite for any A as follows from (9.2), we may take t sufficiently
large so that Q(Λ) is (9.5) less than any prescribed number ε. It is noted that A{ in
Lemma 9.1 is contained eventually in Q{. Thus i) of the theorem follows from (9.3)
by letting ε and ε approach zero. As a consequence of i), and the set-up of our

scheme, (0.7), u/Ω^ tends to a steady state solution, and, because j G(x)dx tends to
β,

zero as ί->oo, u/Ω^ f-field l.dg., tends to a traveling wave. The left and right limits
of the steady state solution and the traveling wave are yet to be determined.

x
Another consequence of i) is the following: The amount of waves crossing — =μf,

x
i = 0, 1, . . . , f t , and —=μή: approaches zero as t tends to zero. As a result, the

following limits exist :

vt= lim w(μ.f, t), ί = 0, 1, . . . ,n,
r^ oo

v+= lim u(μ t , t ) .

It remains to show that vL = ut, ί = 0,1,2, . . . , f t , M ± =M + , and in Ωt, i-field g.nl, the
solution tends to either shock or rarefaction wave. ,
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Suppose that the /-field is g.nl. and λi(vi)<λί(vi_ί). Choose T and M which
satisfy the condition of Lemma 9.1 and that Q(Λ)^ε for Λ = {(x9t)\t^T}. That
Q(Λ) is small for large T follows from the finiteness of Q(Λ0) [cf. (9.2)J,
Λ0Ξ{(χ,ί)|ί^O}. We define χ f , χf and T* as in Lemma 9.1. Let uj

±(s\j = l,2, be
the one-sided limits of φc, t) along χ{ at time s. Suppose that χ\ and χf enters Qi

before time T^T*. Because of our choice of TJ we have \uί_(s) — vί_ί + \u2

+(s) — vi\
= 0(l)(ε + ε) for s^f. Thus it follows from (9.7) that

^

s^T (10.4)

for some constant 0<0<1. Thus from (9.5) we have the following integral
inequality for Dt(s) :

as s— 1

and so

t>i(s) ^ ( M V i ) - λ^ _ J (s - T*) + 0(1) (ε + ε) (s - T*). (10.5)

Since λi(vi) — λί(vi_1)<0 and ε, ε are arbitrary, we conclude from (19.5) that
Df(s) = 0 for s and T sufficiently large. That is, χ* and χf coalesce to form an /-shock
wave and outside the shock wave, u(x,t]/Ωi has total variation 0(\)Q(Λ) + ε
= 0(l)(ε + ε). In particular we show that ι; eS'I.(ι;ί_1).

Similar arguments also yield that if /ί(ι>ί)^/lI.(ι;ί_1), /-field g.nl., then u(x,t)/Ωi

tends to an /-rarefaction wave and VIER^VI^ ^. Thus we have shown that {ι;0,
υί9...,υn, v±} satisfies (8.1)~(8.3). This completes the proof of the
theorem. Q.E.D.

11. Strong Asymptotic Behavior

In this section we assume that

[u, for x< — M,
"oW=1 f M 11-1[wr for x>M,

^(x, t/) Ξ 0 for x > M

for some positive constant M and constant states ul and ur.

Theorem 11.1. Suppose that the hypothesis of Theorem 10.i and the assumption
(11.1) hold. Then the convergence of the solution u(x,t) of (0.1) and (0.2) to simple
waves as described in i)~v) of Theorem iOΛ attains the following rates: the
convergence to shock waves, steady state solution and traveling waves is of the rate
t~3/2 the convergence to rarefaction waves is of the rate t~ί/2, and the amount of i-
waves in Ω , iή^j tends to zero at the rate of t~3/2.



168 T.-P.Liu

Proof. According to Theorem 10.1, there exists T0>0 such that the amount of i-
waves in Ω and the amount of wave interactions is small after time T0 as
compared to the strength of relatively strong shock waves [cf. v), Theorem 10.1]
that have imerged from the solution before time T0. Theorem 10.1 does not
provide an estimate for T0, however, the techniques used in its proof and to be used
in this proof can be applied to obtain an estimate for T0 . In general, T0 is large if
the minimum strength of the shock waves in (u{_ 1? w.) (cf. Lemma 9.1) is small. We
will not elaborate on this point however (cf. [18]). Suppose that (ut_l9 ut) is a shock
wave with strength αf for ie{svsi9 ...,sp}C{l,2, ...,n}, anά(ui_i,uί)is a rarefaction
wave for fe{r 1,r 2, ...,r g}c{l,2, ...,n}, and (wt _ l 5 w f) is a contact discontinuity for
iφ{sl9 ...,sp, r1? ...,rβ}. The strengths of the relatively strong shock waves in Ωf,
i = s1? s2, . . ., sq, are denoted by α (ί), so that αf(ί) is close to α f for ί large. We will use
(4.1)4 to define Q] for i^r^ r2, ...,r^ and (4.1)5 to define Q\ for z = s l 9 s2, ...,sp, and
show by induction that

1/2, (11.2)

= 0(l)r3/2 as f-> + oo. (11.3)

For a given ί^M, assumption (11.1) implies that there exist xz(ί), xr(ί), xz(ί)
— xr(ί)| = O(l)ί, such that g = Q for x>xr(t) or x<xz(ί), and w(x,ί) equals ul for
x<x^(ί) and equals ur for x>xr(ί). Through (xz(ί),ί) and (xr(t),i), ί^M, re-
spectively, we draw [-characteristics χ^(ί) and χf(t). Because Af(M(x, ί)), z= 1,2, ...,n,
are nonzero and distinct, there exists ί*>ί, such that χj(ί)> χ?(ί) do not intersect
χ^(ί), /fc(ί), feΦj, and these characteristics leave the region |x|<M after time ί*.
Moreover, for some C > 1 independent of ί,

Note that in the present situation we may take ε in Lemmas 9.1 and 9.2 to be zero.
We set Θ = TV+GI, TV total variation in x of w(x,0) and G1 the L^x) norm of

max <g, — >. We have assumed θ to be small.
*'« ( du\

We shall prove by induction that for

there exist sequences {Km}, {Lm}, and {ym}, m = 0, 1,2, ..., such that

max{\X7-(t)\9i = rί9r2,...9ril}£KmΓίl2

9 for t^CmT 0, (11.4)

Q(t)^Lmt~312 for ί^CmT0, m-0,1,2, . . . , (11.5)

(11.6)

2 - 1 / 1 0 y m _ 1 < l , m=l,2,. . . , (11.7)

0(l)(XJ3, m = 0,l,2,.. . . (11.8)
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These estimates imply that K = lim Km and L = lim Lm exist and are finite and
m— >• + oo m— > + oo

thus yield (11.2) and (11.3). To start the induction process we set

so that (11.4)~(11.6) hold for m = 0 if T0 is large (Theorem 10.1). Suppose that
(11.4) -(11. 8) hold for m = p^l. We set

(11.9)

so the induction hypothesis implies that

(11.10)

. (11.11)

Let χ.(ί) be any point between ^(TJ and ^-^T^). Because of the presence of a
strong z-shock wave, i = s1, s2, ...,sq, %*(CPT0) and χt

2(CpT0) meet before a finite
time I We have from (11.10) and (11.11) (cf. proof of Theorem 10.1)

(11.12)
i = 1 i = 1

where 7(ί) is the total amount of j- waves, 7 = 1,2, ...,«, not between χ/(Γ*) and
χf(Γ*). This estimate and (11.10), (11.11) imply that

for ί^CT;. (11.13)

For f = r t, r2, ...,r^, it follows from (11.11) and (11.13) that

(11-14)

where Yι+(t} and Ύ^(t) are the amount of i- waves between χl(T^) and χ^T^) at time
ί. It follows from (1.1) and (9.6) that, for CT^

:;f))
aι

+ 0(1) [Str. χl(T* t) + Str. χf(T* ί)]2, (11.15)

whence we have from (11.10). (11.11), and (11.14) that

dD(t)
—— ^KJ1/2(i + 0(1)7 _) + 0 ( ί ) y l +(ul9url, Cϊ

as μ p μ

Integrating this inequality from CT^ to CPT0, we obtain

(11.16)
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For CpT0^t^Cp+1T0, we use (11.10), (11.11), (11.14), and (9.5) to conclude:

By solving this differential inequality, we have from (11.16) that

-CT;

This estimate along with (9.5), (11.10), and (11.13) yields estimates for Y*(t). The
desired estimate forXr(ί) in (11.4), Kp + ^ in (11.6), and yp+1 in (11.7) then follows
from (11.12) and (11.9). Details are omitted.

We now prove (11.5) and (11.8) for m = p + l. Using (9.4) repeatedly we have
from (11.5) for m^p that

Σ
k-ί

lT0. (11.17)
k= 1

For i = r l 5 r 2 , ...,rq, we have from (11.4) for m g p - f l , which has just been proved,
that

ρ;(0-θ(i)^r(ί)|3^o(i)κp

3

+1r
3/2, cpτ0^t^cp+1τ0. (ii . iδ)

JFor i = sl9s2, ...,sp, and CpT0^ί^Cp + 1Γ0, there exists t<t such that χ/(ί) and
χf(t) meet before time ί and ί ̂ 0(l)ί/αSι. This is so because of the presence of the
relatively strong shock wave. Thus it follows from the induction hypothesis (11.12)
and (4.1) that

βj(ί) = 0(1) [1̂ (0 - αsi(ί)|(α5ι(f)2+ ̂ .(ί) - αSί(ί)|3]

= 0(1) (1CP + J
3 [(αsiί)- 3/2(αSι(ί))2 + M~ 3/2

= 0(1) (Kp+ J
3r 3/2[(oO1/2 + (αj- 3/2 β(ί)2] (11.19)

which is 0(l)(Kp + 1)
3r3 / 2 because Q(ί) is small. Finally (11.5) and (11.8) for

m = p + l follow from (11. 17)~(11. 19). This completes the proof of (11.2) and (11. 3).
The theorem now follows from (11.2) and (11.3) using similar techniques used in
the proof of Theorem 10.1. Details are omitted. Q.E.D.

Suppose that u^u^—oo) and ur = u0(+co) are related by a steady state
solution u(x) of (0.6), i.e., u = u(— oo) and ur = u(+ao). Then in Theorem 8.1, uί = ul

for / — 1,2, ...,p and ut = ur for i = p+l, ...,n, and Theorem 11.1 implies that the
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solution M(X,£) of (0.1) and (0.2) approaches the steady state solution u(x) of (0.6)
and traveling waves uniformly and in total variation norm at the rate f ~ 1 / 2 as t
tends to infinity. In fact, more is true: w(x, ί) tends to a linear superposition of N-
waves, traveling waves and steady state solution in L^x) norm and the con-
vergence is also at algebraic rates [17,18].

Acknowledgement. I want to thank Professor James Glimm whose interest in the problem has been a
great encouragement.
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